

Disorders of the Nervous System

Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome^{1,2,3}

Matthew T. Dinday, and Scott C. Baraban 1,2

DOI:http://dx.doi.org/10.1523/ENEURO.0068-15.2015

¹Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143, ²Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143

Abstract

Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ~ 1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy.

Key words: antiepileptic; drug discovery; epilepsy; high throughput; pharmacology; zebrafish

Significance Statement

Dravet syndrome is a catastrophic childhood epilepsy that is resistant to available medications. Current animal models for this disease are not amenable to high-throughput drug screening. We used a zebrafish model for Dravet syndrome and screened >1000 compounds. We report the identification of compounds with the ability to suppress seizure behavior and electrographic seizure activity. This approach provides an example of precision medicine directed to pediatric epilepsy.

Introduction

Dravet syndrome (DS) is a devastating genetic epileptic encephalopathy that has been linked to more than >300

de novo mutations in a neuronal voltage-gated sodium channel (SCN). Children with DS are at a higher risk for sudden unexplained death in epilepsy and episodes of

Received June 18, 2015; accepted August 4, 2015; First published August 20, 2015

¹The authors declare no competing financial interests.

²Author contributions: M.T.D. and S.C.B. designed research; M.T.D. and S.C.B. performed research; M.T.D. and S.C.B. analyzed data; S.C.B. wrote the paper.

³Funding was provided by National Institutes of Health-National Institute of Neurological Disorders and Stroke EUREKA Grant 5R01-NS-079214 and The Joseph & Vera Long Foundation to (S.C.B.).

Acknowledgments: We thank B. Grone and D. Lowenstein for comments on earlier versions of this manuscript.

Correspondence should be addressed to Scott C. Baraban, Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, San Francisco, CA 94143. E-mail: scott.baraban@ucsf.edu.

DOI:http://dx.doi.org/10.1523/ENEURO.0068-15.2015

Copyright © 2015 Dinday and Baraban

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use,

uncontrolled status epilepticus (Dravet et al., 2005; Ceulemans et al., 2012). Delayed language development, disruption of autonomic function, and motor and cognitive impairment are also associated with this disease. Seizure management includes treatment with benzodiazepines, valproate, and/or stiripentol (Caraballo et al., 2005; Chiron and Dulac, 2011). Some reduction in seizure activity has been reported with the use of bromides and topiramate, or a ketogenic diet (Lotte et al., 2012; Wilmshurst et al., 2014; Dressler et al., 2015). Despite these options, available antiepileptic drugs (AEDs) do not achieve adequate seizure control in most DS patients (Dravet et al., 2005; Chiron and Dulac, 2011; Dressler et al., 2015), making the identification of new drugs a critical unmet need. Highthroughput screening offers a powerful tool to identify new drug candidates for these patients. However, commonly available screening approaches rely on in vitro cell-based assays (Masimirembwa et al., 2001; Snowden and Green, 2008; Ko and Gelb, 2014) and do not recapitulate the complicated neural networks that generate seizures in vivo. Given the need for new treatments for children with DS, and the growing number of genetic epileptic encephalopathies that are medically intractable (Leppert, 1990; Epi4K Consortium, 2012; Ottman and Risch, 2012), we developed an alternative phenotypebased in vivo drug-screening strategy. While cell-based in vitro screening assays can efficiently identify compounds that bind specific targets, whole-organism-based screens are more likely to reliably predict therapeutic outcomes as they maintain the complex neural circuitry involved in the underlying disease process. Whole-organism screens do not require well validated targets to identify compounds that yield a desirable phenotypic outcome, but can be prohibitively costly and time consuming in mammals. As a simple vertebrate with significant genetic similarity to human, zebrafish are now recognized as an ideal costeffective alternative to achieve rapid in vivo phenotypebased screening (Ali et al., 2011).

Using scn1a mutant zebrafish larvae with a gene homologous to human and spontaneously occurring seizures (Baraban et al., 2013), we screened, in a blinded manner, a repurposed library of ~1000 compounds for drugs that inhibit unprovoked seizure events. We also screened two compounds (huperzine A and fenfluramine) that were discovered in rodent-based assays using acquired seizure protocols and that were recently suggested as potential treatments for DS (Boel and Casaer, 1996; Coleman et al., 2008; Ceulemans et al., 2012; Bialer et al., 2015). Only 20 compounds in the repurposed drug library reduced swim behavior to control levels. However, many of these compounds were toxic or were not confirmed on retesting, and only four compounds advanced to a second-stage in vivo electrophysiology assay. Of these compounds (cytarabine, dimethadione, theobromine, and norfloxacin) only dimethadione, a T-type calcium channel antagonist previously reported to have anticonvulsant activity (Lowson et al., 1990; Zhang et al., 1996), reduced

distribution and reproduction in any medium provided that the original work is properly attributed.

ictal-like electrographic discharges seen in *scn1Lab* mutant larvae. This two-stage phenotype-based screening approach, using a genetic DS model with >75% genomic similarity to human, is a sensitive, rapid means to successfully identify compounds with antiepileptic activity.

Materials and Methods

Zebrafish

Zebrafish were maintained in a light- and temperaturecontrolled aquaculture facility under a standard 14:10 h light/dark photoperiod. Adult zebrafish were housed in 1.5 L tanks at a density of 5-12 fish per tank and fed twice per day (dry flake and/or flake supplemented with live brine shrimp). Water quality was continuously monitored: temperature, 28-30° C; pH 7.4-8.0; conductivity, 690-710 mS/cm. Zebrafish embryos were maintained in round Petri dishes (catalog #FB0875712, Fisher Scientific) in "embryo medium" consisting of 0.03% Instant Ocean (Aguarium Systems, Inc.) and 000002% methylene blue in reverse osmosis-distilled water. Larval zebrafish clutches were bred from wild-type (WT; TL strain) or scn1Lab (didy^{s552}) heterozygous animals that had been backcrossed to TL wild-type for at least 10 generations. Homozygous mutants (n = 6544), which have widely dispersed melanosomes and appear visibly darker as early as 3 d postfertilization (dpf; Fig. 1b), or WT larvae (n = 71) were used in all experiments at 5 or 6 dpf. Embryos and larvae were raised in plastic petri dishes (90 mm diameter, 20 mm depth) and density was limited to ~60 per dish. Larvae between 3 and 7 dpf lack discernible sex chromosomes. The care and maintenance protocols comply with requirements outlined in the Guide for the Care and Use of Animals (ebrary Inc., 2011) and were approved by the Institutional Animal Care and Use Committee (protocol #AN108659-01D).

Seizure monitoring

Zebrafish larvae were placed individually into 1 well of a clear flat-bottomed 96-well microplate (catalog #260836. Fisher Scientific) containing embryo media. Microplates were placed inside an enclosed motion-tracking device and acclimated to the dark condition for 10-15 min at room temperature. Locomotion plots were obtained for one fish per well at a recording epoch of 10 min using a DanioVision system running EthoVision XT software (DanioVision, Noldus Information Technology); threshold detection settings to identify objects darker than the background were optimized for each experiment. Seizure scoring was performed using the following three-stage scale (Baraban et al., 2005): Stage 0, no or very little swim activity; Stage I, increased, brief bouts of swim activity; Stage II, rapid "whirlpool-like" circling swim behavior; and Stage III, paroxysmal whole-body clonus-like convulsions, and a brief loss of posture. WT fish are normally scored at Stage 0 or I. Plots were analyzed for distance traveled (in millimeters) and mean velocity (in millimeters per second). As reported previously (Winter et al., 2008; Baraban et al., 2013), velocity changes were a more sensitive assay of seizure behavior. For electrophysiology studies, zebrafish larvae were briefly paralyzed with

Figure 1. Locomotion assay to identify drugs that rescue the scn1Lab mutant epilepsy phenotype. a, Schematic of the phenotype-based screening process. Chemical libraries can be coded and aliquoted in small volumes (75 μ L) into individual wells containing one mutant fish. The 96-well microplate is arranged so that six fish are tested per drug; with one row of six fish maintained as an internal control (red circles) on each plate. b, Representative images for WT and scn1Lab mutant zebrafish larvae at 5 dpf. Note the morphological similarity but darker pigmentation in mutant larvae. c, Box plot of mean velocity (in millimeters per second) for two consecutive recordings of mutant larvae in embryo media. Experiments were performed by first placing the mutant larvae in embryo media and obtaining a baseline locomotion response; embryo media was then replaced with new embryo media (to mimic the procedure used for test compounds), and a second locomotion response was obtained. The percentage change in velocity from baseline (recording 1) versus experimental model (recording 2) is shown. In the box plot, the bottom and top of the box represent the 25th percentile and the 75th percentile, respectively. The line across the box represents the median value, and the vertical lines encompass the entire range of values. This plot represents normal changes in tracking activity in the absence of a drug challenge. d, Plot of locomotor seizure behavior for scn1Lab mutants at 5 dpf for the 1012 compounds tested. Threshold for inhibition of seizure activity (positive hits) was set as a reduction in mean swim velocity of \geq 44%; the threshold for a proconvulsant or hyperexcitable effect was set at an increase in the mean swim velocity of \geq 44% (green dashed lines).

 α -bungarotoxin (1 mg/ml) and immobilized in 1.2% agarose; field recordings were obtained from forebrain structures. Epileptiform events were identified *post hoc* in Clampfit (Molecular Devices) and were defined as multispike or polyspike upward or downward membrane deflections greater than three times the baseline noise level and >500 ms in duration. During electrophysiology experiments zebrafish larvae were continuously monitored for the presence (or absence) of blood flow and heart beat by direct visualization on an Olympus BX51WI upright microscope equipped with a CCD camera and monitor.

Drugs

Compounds for drug screening were purchased from MicroSource Discovery Systems, Inc. (PHARMAKON 1600) and were provided as 10 mm DMSO solutions (Table 1). Test compounds for locomotion or electrophysiology studies were dissolved in embryo media and were tested at an initial concentration of 100 μ M, with a final DMSO concentration of <2%. In all drug library screen studies, compounds were coded and experiments were performed by investigators who were blind to the nature of the compound. Baseline recordings of seizure behavior

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

ABACAVIR SULFATE

ABAMECTIN (avermectin B1a shown)

ACADESINE ACARBOSE

ACEBUTOLOL HYDROCHLORIDE

ACECLIDINE ACECLOFENAC ACENOCOUMAROL ACETAMINOPHEN

ACETOHYDROXAMIC ACID ACETOPHENAZINE MALEATE

ACETRIAZOIC ACID

ACETYLCHOLINE CHLORIDE

ACETYLCYSTEINE ACIPIMOX ACONITINE

ACRIFLAVINIUM HYDROCHLORIDE

ACRISORCIN ACTARIT ACYCLOVIR ADAPALENE ADELMIDROL ADENINE ADENOSINE

ADENOSINE PHOSPHATE
ADIPHENINE HYDROCHLORIDE

AKLOMIDE
ALAPROCLATE
ALBENDAZOLE
ALBUTEROL (+/-)
ALENDRONATE SODIUM
ALEXIDINE HYDROCHLORIDE

ALLANTOIN ALLOPURINOL ALMOTRIPTAN

alpha-TOCHOPHEROL

alpha-TOCHOPHERYL ACETATE ALPRAZOLAM

ALRESTATIN ALTHIAZIDE ALTRETAMINE ALVERINE CITRATE

AMANTADINE HYDROCHLORIDE

AMCINONIDE AMIFOSTINE AMIKACIN SULFATE

AMILORIDE HYDROCHLORIDE

AMINACRINE
AMINOCAPROIC ACID
AMINOGLUTETHIMIDE
AMINOHIPPURIC ACID

AMINOLEVULINIC ACID HYDROCHLORIDE

AMINOSALICYLATE SODIUM
AMITRIPTYLINE HYDROCHLORIDE

AMLEXANOX

AMLODIPINE BESYLATE

AMODIAQUINE DIHYDROCHLORIDE AMOROLFINE HYDROCHLORIDE

AMOXICILLIN AMPHOTERICIN B AMPICILLIN SODIUM

(Continued)

AMPROLIUM AMSACRINE ANASTROZOLE

ANCITABINE HYDROCHLORIDE

ANETHOLE ANIRACETAM ANISINDIONE

ANTAZOLINE PHOSPHATE

ANTHRALIN ANTIPYRINE

APOMORPHINE HYDROCHLORIDE

APRAMYCIN

ARGININE HYDROCHLORIDE

ARMODAFINIL ARTEMETHER ARTEMOTIL ARTESUNATE ASCORBIC ACID ASPIRIN

ATENOLOL

ATORVASTATIN CALCIUM

ATOVAQUONE
ATROPINE SULFATE
AUROTHIOGLUCOSE
AVOBENZONE
AZACITIDINE
AZASERINE

AZATADINE MALEATE AZATHIOPRINE AZELAIC ACID AZITHROMYCIN AZLOCILLIN SODIUM

AZTREONAM

BACAMPICILLIN HYDROCHLORIDE

BACITRACIN BACLOFEN

BALSALAZIDE DISODIUM

BECLOMETHASONE DIPROPIONATE

BEKANAMYCIN SULFATE

BEMOTRIZINOL

BENAZEPRIL HYDROCHLORIDE BENDROFLUMETHIAZIDE

BENORILATE

BENSERAZIDE HYDROCHLORIDE BENZALKONIUM CHLORIDE BENZETHONIUM CHLORIDE

BENZOCAINE
BENZOIC ACID
BENZONATATE
BENZOYL PEROXIDE
BENZTHIAZIDE
BENZYL ALCOHOL
BENZYL BENZOATE
BEPRIDIL HYDROCHLORIDE

BERGAPTEN beta-CAROTENE

BETAHISTINE HYDROCHLORIDE BETAINE HYDROCHLORIDE

BETAMETHASONE

BETAMETHASONE 17,21-DIPROPIONATE

BETAMETHASONE VALERATE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

BETAMIPRON beta-NAPHTHOL

BETAZOLE HYDROCHLORIDE BETHANECHOL CHLORIDE

BEZAFIBRATE BICALUTAMIDE BIOTIN BISACODYL BISOCTRIZOLE BISORCIC

BITHIONATE SODIUM

BLEOMYCIN (bleomycin B2 shown)

BRETYLIUM TOSYLATE BRINZOLAMIDE

BROMHEXINE HYDROCHLORIDE BROMOCRIPTINE MESYLATE BROMPHENIRAMINE MALEATE

BROXYQUINOLINE BUDESONIDE BUMETANIDE

BUPIVACAINE HYDROCHLORIDE

BUPROPION BUSULFAN BUTACAINE **BUTAMBEN** BUTOCONAZOLE **CAFFEINE** CAMPHOR (1R) **CANDESARTAN**

CANDESARTAN CILEXTIL

CANDICIDIN

CANRENOIC ACID, POTASSIUM SALT

CANRENONE CAPECITABINE

CAPREOMYCIN SULFATE

CAPSAICIN CAPTAMINE CAPTOPRIL CARBACHOL

CARBENICILLIN DISODIUM CARBENOXOLONE SODIUM CARBETAPENTANE CITRATE

CARBIDOPA CARBINOXAMINE MALEATE

CARBOPLATIN CARISOPRODOL CARMUSTINE

CARNITINE (dl) HYDROCHLORIDE

CARPROFEN **CARVEDILOL CEFACLOR** CFFADROXII

CEFAMANDOLE NAFATE CEFAMANDOLE SODIUM **CEFAZOLIN SODIUM**

CEFDINIR

CEFEPIME HYDROCHLORIDE CEFMENOXIME HYDROCHLORIDE

CEFMETAZOLE SODIUM CEFOPERAZONE CEFORANIDE

(Continued)

CEFOTAXIME SODIUM CEFOTETAN CEFOXITIN SODIUM CEFPIRAMIDE CEFSULODIN SODIUM

CEFTIBUTEN

CEFTIOFUR HYDROCHLORIDE CEFTRIAXONE SODIUM TRIHYDRATE

CEFUROXIME AXETIL CEFUROXIME SODIUM

CELECOXIB CEPHALEXIN

CEPHALOTHIN SODIUM CEPHAPIRIN SODIUM

CEPHRADINE

CETYLPYRIDINIUM CHLORIDE

CHENODIOL CHLORAMBUCIL CHLORAMPHENICOL

CHLORAMPHENICOL HEMISUCCINATE CHLORAMPHENICOL PALMITATE CHLORCYCLIZINE HYDROCHLORIDE

CHLORHEXIDINE CHLOROCRESOL

CHLOROGUANIDE HYDROCHLORIDE CHLOROQUINE DIPHOSPHATE

CHLOROTHIAZIDE CHLOROXINE CHLOROXYLENOL

CHLORPHENIRAMINE (S) MALEATE

CHLORPROMAZINE CHLORPROPAMIDE

CHLORPROTHIXENE HYDROCHLORIDE CHLORTETRACYCLINE HYDROCHLORIDE

CHLORTHALIDONE CHLORZOXAZONE CHOLECALCIFEROL CHOLESTEROL CHOLINE CHLORIDE CICLOPIROX OLAMINE

CILOSTAZOL **CIMETIDINE CINCHOPHEN CINNARAZINE** CINOXACIN CINTRIAMIDE **CIPROFIBRATE CIPROFLOXACIN CISPLATIN**

CITALOPRAM HYDROBROMIDE

CITICOLINE **CLARITHROMYCIN CLAVULANATE LITHIUM**

CLEMASTINE

CLIDINIUM BROMIDE

CLINAFOXACIN HYDROCHLORIDE CLINDAMYCIN HYDROCHLORIDE

CLIOQUINOL

CLOBETASOL PROPIONATE

CLOFARABINE CLOFIBRATE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

CLOMIPHENE CITRATE CLONIDINE HYDROCHLORIDE CLOPIDOGREL SULFATE

CLORSULON CLOSANTEL CLOTRIMAZOLE CLOXACILLIN SODIUM

CLOXYQUIN CLOZAPINE COENZYME B12 COLCHICINE COLFORSIN

COLISTIMETHATE SODIUM CORTISONE ACETATE

COTININE CRESOL

CROMOLYN SODIUM CRYOFLURANE CYCLAMIC ACID CYCLIZINE

CYCLOBENZAPRINE HYDROCHLORIDE

CYCLOHEXIMIDE

CYCLOPENTOLATE HYDROCHLORIDE CYCLOPHOSPHAMIDE HYDRATE

CYCLOSERINE (D) CYCLOSPORINE CYCLOTHIAZIDE CYPERMETHRIN

CYPROTERONE ACETATE
CYSTEAMINE HYDROCHLORIDE

CYTARABINE
DACARBAZINE
DACTINOMYCIN
DANAZOL
DANTHRON

DANTROLENE SODIUM

DAPSONE
DAPTOMYCIN
DASATINIB
DAUNORUBICIN
DECIMEMIDE

DEFEROXAMINE MESYLATE

DEFLAZACORT
DEHYDROACETIC ACID
DEHYDROCHOLIC ACID

DEMECLOCYCLINE HYDROCHLORIDE

DERACOXIB

DESIPRAMINE HYDROCHLORIDE DESOXYCORTICOSTERONE ACETATE DESVENLAFAXINE SUCCINATE

DEXAMETHASONE

DEXAMETHASONE ACETATE

DEXAMETHASONE SODIUM PHOSPHATE

DEXIBUPROFEN DEXLANSOPRAZOLE

DEXPROPRANOLOL HYDROCHLORIDE DEXTROMETHORPHAN HYDROBROMIDE

DIAVERIDINE

DIBENZOTHIOPHENE

DIBUCAINE HYDROCHLORIDE

DICHLOROPHENE

(Continued)

DICHLORVOS DICLAZURIL

DICLOFENAC SODIUM DICLOXACILLIN SODIUM

DICUMAROL

DICYCLOMINE HYDROCHLORIDE

DIENESTROL

DIETHYLCARBAMAZINE CITRATE DIETHYLSTILBESTROL DIFLOXACIN HYDROCHLORIDE

DIFLUNISAL DIGITOXIN

DIGOXIN

DIHYDROERGOTAMINE MESYLATE DIHYDROSTREPTOMYCIN SULFATE DILAZEP DIHYDROCHLORIDE

DIMENHYDRINATE DIMERCAPROL DIMETHADIONE DIOXYBENZONE

DIPHENHYDRAMINE HYDROCHLORIDE DIPHENYLPYRALINE HYDROCHLORIDE

DIPYRIDAMOLE DIPYRONE DIRITHROMYCIN

DISOPYRAMIDE PHOSPHATE

DISULFIRAM

DOBUTAMINE HYDROCHLORIDE

DOCETAXEL

DONEPEZIL HYDROCHLORIDE DOPAMINE HYDROCHLORIDE DOXEPIN HYDROCHLORIDE

DOXOFYLLINE

DOXYCYCLINE HYDROCHLORIDE DOXYLAMINE SUCCINATE DROFENINE HYDROCHLORIDE

DROPERIDOL DROSPIRENONE

DYCLONINE HYDROCHLORIDE

DYPHYLLINE

ECAMSULE TRIETHANOLAMINE

ECONAZOLE NITRATE EDETATE DISODIUM

EDITOL EDOXUDINE EMETINE

ENALAPRIL MALEATE

ENALAPRILAT ENOXACIN ENROFLOXACIN ENTACAPONE

EPHEDRINE (1R,2S) HYDROCHLORIDE

EPINEPHRINE BITARTRATE

EPRINOMECTIN
ERGOCALCIFEROL
ERGONOVINE MALEATE
ERYTHROMYCIN

ERYTHROMYCIN ESTOLATE
ERYTHROMYCIN ETHYLSUCCINATE

ESCITALOPRAM OXALATE
ESOMEPRAZOLE POTASSIUM

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

ESTRADIOL
ESTRADIOL BENZOATE
ESTRADIOL CYPIONATE
ESTRADIOL DIPROPIONATE
ESTRADIOL VALERATE
ESTRAMUSTINE

ESTRADIOL VALERA
ESTRAMUSTINE
ESTRIOL
ESTRONE
ESTROPIPATE
ETHACRYNIC ACID

ETHAMBUTOL HYDROCHLORIDE ETHAVERINE HYDROCHLORIDE

ETHINYL ESTRADIOL ETHIONAMIDE ETHISTERONE

ETHOPROPAZINE HYDROCHLORIDE

ETHYL PARABEN ETODOLAC ETOPOSIDE EUCALYPTOL

EUCATROPINE HYDROCHLORIDE

EUGENOL
EVANS BLUE
EXEMESTANE
EZETIMIBE
FAMCICLOVIR
FAMOTIDINE
FAMPRIDINE

FASUDIL HYDROCHLORIDE

FEBUXOSTAT FENBENDAZOLE FENBUFEN

FENDILINE HYDROCHLORIDE

FENOFIBRATE FENOPROFEN

FENOTEROL HYDROBROMIDE FENSPIRIDE HYDROCHLORIDE FEXOFENADINE HYDROCHLORIDE FIPEXIDE HYDROCHLORIDE

FIROCOXIB FLOXURIDINE FLUCONAZOLE

FLUDROCORTISONE ACETATE

FLUFENAMIC ACID FLUINDAROL FLUMEQUINE FLUMETHASONE

FLUMETHAZONE PIVALATE FLUNARIZINE HYDROCHLORIDE

FLUNISOLIDE

FLUNIXIN MEGLUMINE FLUOCINOLONE ACETONIDE

FLUOCINONIDE FLUOROMETHOLONE FLUOROURACIL FLUOXETINE

FLUPHENAZINE HYDROCHLORIDE

FLURANDRENOLIDE FLURBIPROFEN FLUROFAMIDE FLUTAMIDE

(Continued)

FOLIC ACID
FOSCARNET SODIUM
FOSFOMYCIN CALCIUM
FTAXILIDE
FULVESTRANT
FURAZOLIDONE
FUROSEMIDE

FLUVASTATIN

GABOXADOL HYDROCHLORIDE

GADOTERIDOL GALANTHAMINE

GANCICLOVIR

FUSIDIC ACID

GALLAMINE TRIETHIODIDE

GATIFLOXACIN
GEFITINIB
GEMFIBROZIL
GENTAMICIN SULFATE
GENTIAN VIOLET
GLIMEPIRIDE
GLUCONOLACTONE

GLUCOSAMINE HYDROCHLORIDE

GLUTAMINE (D) GRAMICIDIN

GRANISETRON HYDROCHLORIDE

GRISEOFULVIN GUAIFENESIN

GUANABENZ ACETATE GUANETHIDINE SULFATE

HALAZONE HALCINONIDE HALOPERIDOL

HEPTAMINOL HYDROCHLORIDE HETACILLIN POTASSIUM HEXACHLOROPHENE HEXYLRESORCINOL

HISTAMINE DIHYDROCHLORIDE HOMATROPINE BROMIDE

HOMATROPINE METHYLBROMIDE

HOMOSALATE HYCANTHONE

HYDRALAZINE HYDROCHLORIDE

HYDRASTINE (1R, 9S)
HYDROCHLOROTHIAZIDE
HYDROCORTISONE
HYDROCORTISONE ACETATE
HYDROCORTISONE BUTYRATI

HYDROCORTISONE BUTYRATE
HYDROCORTISONE HEMISUCCINATE

HYDROCORTISONE PHOSPHATE TRIETHYLAMINE

HYDROFLUMETHIAZIDE HYDROQUINONE

HYDROXYAMPHETAMINE HYDROBROMIDE HYDROXYCHLOROQUINE SULFATE HYDROXYPROGESTERONE CAPROATE

HYDROXYTOLUIC ACID HYDROXYUREA

HYDROXYZINE PAMOATE

HYOSCYAMINE

IBANDRONATE SODIUM

IBUPROFEN IDOXURDINE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

IDOXURIDINE IMIPRAMINE HYDROCHLORIDE **IMIQUIMOD INAMRINONE INDAPAMIDE INDOMETHACIN INDOPROFEN** INOSITOL **IODIPAMIDE IODIXANOL** IODOQUINOL IOHEXOL **IOPANIC ACID**

IOTHALAMIC ACID

IOXILAN IPRATROPIUM BROMIDE

IRBESARTAN ISONIAZID

IOVERSOL

ISOPROPAMIDE IODIDE

ISOPROTERENOL HYDROCHLORIDE

ISOSORBIDE DINITRATE ISOSORBIDE MONONITRATE

ISOTRETINON ISOXICAM

ISOXSUPRINE HYDROCHLORIDE ITOPRIDE HYDROCHLORIDE

IVERMECTIN

KANAMYCIN A SULFATE **KETOCONAZOLE KETOPROFEN**

KETOROLAC TROMETHAMINE KETOTIFEN FUMARATE LABETALOL HYDROCHLORIDE

LACTULOSE LAMIVUDINE LANATOSIDE C **LANSOPRAZOLE LEFLUNOMIDE** LETROZOLE

LEUCOVORIN CALCIUM LEVAMISOLE HYDROCHLORIDE LEVOCETIRIZINE DIHYDROCHLORIDE

LEVOFLOXACIN LEVOMENTHOL **LEVONORDEFRIN LEVONORGESTREL LEVOSIMENDAN LEVOTHYROXINE**

LIDOCAINE HYDROCHLORIDE LINCOMYCIN HYDROCHLORIDE

LINDANE **LINEZOLID** LIOTHYRONINE

LIOTHYRONINE (L- isomer) SODIUM

LISINOPRIL LITHIUM CITRATE

LOBELINE HYDROCHLORIDE LOFEXIDINE HYDROCHLORIDE LOMEFLOXACIN HYDROCHLORIDE LOMERIZINE HYDROCHLORIDE

(Continued)

LOMUSTINE LORATADINE LORNOXICAM LOSARTAN LOVASTATIN **LUMIRACOXIB**

MAFENIDE HYDROCHLORIDE **MALATHION**

MANGAFODIPIR TRISODIUM MANIDIPINE HYDROCHLORIDE

MANNITOL

MAPROTILINE HYDROCHLORIDE

MEBENDAZOLE

MEBEVERINE HYDROCHLORIDE

MEBHYDROLIN NAPHTHALENESULFONATE

MECAMYLAMINE HYDROCHLORIDE

MECHLORETHAMINE

MECLIZINE HYDROCHLORIDE MECLOCYCLINE SULFOSALICYLATE

MECLOFENAMATE SODIUM

MECLOFENOXATE HYDROCHLORIDE MEDROXYPROGESTERONE ACETATE

MEDRYSONE MEFENAMIC ACID **MEFEXAMIDE MEFLOQUINE**

MEGESTROL ACETATE

MEGLUMINE

MELOXICAM SODIUM

MELPERONE HYDROCHLORIDE

MELPHALAN

MEMANTINE HYDROCHLORIDE

MENADIONE MEPARTRICIN

MEPENZOLATE BROMIDE

MEPHENESIN

MEPHENTERMINE SULFATE MEPIVACAINE HYDROCHLORIDE

MEQUINOL MERBROMIN **MERCAPTOPURINE MEROPENEM MESNA** MESO-ERYTHRITOL

MESTRANOL METAPROTERENOL

METARAMINOL BITARTRATE

METAXALONE

METHACHOLINE CHLORIDE METHACYCLINE HYDROCHLORIDE METHAPYRILENE HYDROCHLORIDE

METHAZOLAMIDE **METHENAMINE** METHICILLIN SODIUM **METHIMAZOLE METHOCARBAMOL** METHOTREXATE(+/-)

METHOXAMINE HYDROCHLORIDE

METHOXSALEN

METHSCOPOLAMINE BROMIDE

METHYCLOTHIAZIDE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

METHYLBENZETHONIUM CHLORIDE

METHYLDOPA

METHYLERGONOVINE MALEATE

METHYLPREDNISOLONE

METHYLPREDNISOLONE SODIUM SUCCINATE

METHYLTHIOURACIL

METOCLOPRAMIDE HYDROCHLORIDE

METOPROLOL TARTRATE

METRONIDAZOLE

MEXILETINE HYDROCHLORIDE MICONAZOLE NITRATE MIDODRINE HYDROCHLORIDE

MIGLITOL

MILNACIPRAN HYDROCHLORIDE MINAPRINE HYDROCHLORIDE MINOCYCLINE HYDROCHLORIDE

MINOXIDIL MITOMYCIN C MITOTANE

MITOXANTRONE HYDROCHLORIDE

MOLSIDOMINE

MONENSIN SODIUM (monensin A is shown)

MONOBENZONE MORANTEL CITRATE MOXALACTAM DISODIUM

MOXIFLOXACIN HYDROCHLORIDE MYCOPHENOLATE MOFETIL MYCOPHENOLIC ACID

NABUMETONE NADIDE NADOLOL

NAFCILLIN SODIUM NAFRONYL OXALATE

NALBUPHINE HYDROCHLORIDE

NALIDIXIC ACID

NALOXONE HYDROCHLORIDE NALTREXONE HYDROCHLORIDE NAPHAZOLINE HYDROCHLORIDE

NAPROXEN(+) NAPROXOL NATEGLINIDE

NEFAZODONE HYDROCHLORIDE

NEFOPAM NELARABIN

NEOMYCIN SULFATE NEOSTIGMINE BROMIDE

NEVIRAPINE NIACIN

NICARDIPINE HYDROCHLORIDE

NICERGOLINE NICLOSAMIDE

NICOTINYL ALCOHOL TARTRATE

NIFEDIPINE
NIFURSOL
NILUTAMIDE
NIMODIPINE
NITAZOXANIDE
NITRENDIPINE
NITROFURANTOIN
NITROFURAZONE
NITROMIDE

NOCODAZOLE

(Continued)

NOMIFENSINE MALEATE NOREPINEPHRINE NORETHINDRONE

NORETHINDRONE ACETATE

NORETHYNODREL NORFLOXACIN NORGESTREL NORTRIPTYLINE

NOSCAPINE HYDROCHLORIDE NOVOBIOCIN SODIUM NYLIDRIN HYDROCHLORIDE

NYSTATIN

OCTOPAMINE HYDROCHLORIDE

OFLOXACIN OLMESARTAN

OLMESARTAN MEDOXOMIL OLSALAZINE SODIUM OLSELTAMIVIR PHOSPHATE

OMEGA-3-ACID ESTERS (EPA shown)

ONDANSETRON ORLISTAT

ORPHENADRINE CITRATE

OUABAIN

OXACILLIN SODIUM OXALIPLATIN OXCARBAZEPINE OXETHAZAINE OXIBENDAZOLE

OXIDOPAMINE HYDROCHLORIDE

OXOLINIC ACID OXYBENZONE

OXYMETAZOLINE HYDROCHLORIDE

OXYPHENBUTAZONE

OXYPHENCYCLIMINE HYDROCHLORIDE

OXYQUINOLINE HEMISULFATE

OXYTETRACYCLINE PACLITAXEL PALIPERIDONE

PAPAVERINE HYDROCHLORIDE PARACHLOROPHENOL PARAROSANILINE PAMOATE PARGYLINE HYDROCHLORIDE PAROMOMYCIN SULFATE PAROXETINE HYDROCHLORIDE

PEMETREXED PENCICLOVIR PENICILLAMINE

PENICILLIN G POTASSIUM PENICILLIN V POTASSIUM PENTOLINIUM TARTRATE PENTOXIFYLLINE PERGOLIDE MESYLATE PERHEXILINE MALEATE

PERICIAZINE

PERINDOPRIL ERBUMINE

PERPHENAZINE PHENACEMIDE

PHENAZOPYRIDINE HYDROCHLORIDE

PHENELZINE SULFATE

PHENINDIONE

PHENIRAMINE MALEATE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

PHENOLPHTHALEIN

PHENTOLAMINE HYDROCHLORIDE PHENYL AMINOSALICYLATE

PHENYLBUTAZONE

PHENYLEPHRINE HYDROCHLORIDE

PHENYLMERCURIC ACETATE

PHENYLPROPANOLAMINE HYDROCHLORIDE

PHENYTOIN SODIUM **PHTHALYLSULFATHIAZOLE** PHYSOSTIGMINE SALICYLATE PILOCARPINE NITRATE

PIMOZIDE PINDOLOL

PIOGLITAZONE HYDROCHLORIDE

PIPERACETAZINE PIPERACILLIN SODIUM

PIPERAZINE

PIPERIDOLATE HYDROCHLORIDE

PIPERINE PIPOBROMAN PIRACETAM PIRENPERONE

PIRENZEPINE HYDROCHLORIDE

PIROCTONE OLAMINE

PIROXICAM

PITAVASTATIN CALCIUM PIZOTYLINE MALATE POLYMYXIN B SULFATE

POTASSIUM p-AMINOBENZOATE PRAMIPEXOLE DIHYDROCHLORIDE PRAMOXINE HYDROCHLORIDE

PRASUGREL PRAZIQUANTEL

PRAZOSIN HYDROCHLORIDE

PREDNICARBATE **PREDNISOLONE**

PREDNISOLONE ACETATE

PREDNISONE

PRILOCAINE HYDROCHLORIDE PRIMAQUINE DIPHOSPHATE **PRIMIDONE**

PROADIFEN HYDROCHLORIDE

PROBENECID PROBLICOL

PROCAINAMIDE HYDROCHLORIDE PROCAINE HYDROCHLORIDE PROCARBAZINE HYDROCHLORIDE PROCHLORPERAZINE EDISYLATE PROCYCLIDINE HYDROCHLORIDE

PROGESTERONE PROGLUMIDE

PROMAZINE HYDROCHLORIDE PROMETHAZINE HYDROCHLORIDE PRONETALOL HYDROCHLORIDE PROPAFENONE HYDROCHLORIDE PROPANTHELINE BROMIDE

PROPIOLACTONE PROPOFOL

PROPYLTHIOURACIL

PSEUDOEPHEDRINE HYDROCHLORIDE

(Continued)

PUROMYCIN HYDROCHLORIDE

PYRANTEL PAMOATE **PYRAZINAMIDE PYRETHRINS**

PYRIDOSTIGMINE BROMIDE PYRILAMINE MALEATE **PYRIMETHAMINE PYRITHIONE ZINC**

PYRONARIDINE TETRAPHOSPHATE

PYRVINIUM PAMOATE

QUETIAPINE

QUINACRINE HYDROCHLORIDE QUINAPRIL HYDROCHLORIDE

QUINESTROL QUINETHAZONE QUINIDINE GLUCONATE **QUININE SULFATE** QUIPAZINE MALEATE

RACEPHEDRINE HYDROCHLORIDE RACTOPAMINE HYDROCHLORIDE

RAMIPRIL

RAMOPLANIN [A2 shown; 2mm]

RANITIDINE RASAGILINE RESERPINE RESORCINOL

RESORCINOL MONOACETATE

RETAPAMULIN

RETINOL RETINYL PALMITATE

RIBAVIRIN

RIFAMPIN RITANSERIN

RITODRINE HYDROCHLORIDE

RITONAVIR

RIZATRIPTAN BENZOATE

ROFECOXIB RONIDAZOLE ROPINIROLE ROSIGLITAZONE

ROSUVASTATIN CALCIUM

ROXARSONE

ROXATIDINE ACETATE HYDROCHLORIDE

ROXITHROMYCIN

RUFLOXACIN HYDROCHLORIDE

SACCHARIN SALICIN SALICYL ALCOHOL

SALICYLAMIDE SALICYLANILIDE SALINOMYCIN, SODIUM

SALSALATE

SANGUINARINE SULFATE SCOPOLAMINE HYDROBROMIDE

SELAMECTIN SEMUSTINE SENNOSIDE A **SERATRODAST**

SERTRALINE HYDROCHLORIDE

SEVOFLURANE

SIBUTRAMINE HYDROCHLORIDE

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

SILDENAFIL CITRATE **TERCONAZOLE** SIMVASTATIN **TERFENADINE SIROLIMUS TESTOSTERONE** SISOMICIN SULFATE **TESTOSTERONE PROPIONATE**

SODIUM DEHYDROCHOLATE TETRACAINE HYDROCHLORIDE SODIUM NITROPRUSSIDE TETRACYCLINE HYDROCHLORIDE SODIUM OXYBATE TETRAHYDROZOLINE HYDROCHLORIDE SODIUM PHENYLACETATE **TETROQUINONE**

SODIUM PHENYLBUTYRATE **THALIDOMIDE THEOBROMINE** SODIUM SALICYLATE **SPARFLOXACIN THEOPHYLLINE** SPARTEINE SULFATE **THIABENDAZOLE** SPECTINOMYCIN HYDROCHLORIDE **THIAMPHENICOL THIMEROSAL**

SPIRAMYCIN THIOGUANINE

SPIPERONE

SPIRAPRIL HYDROCHLORIDE THIORIDAZINE HYDROCHLORIDE

SPIRONOLACTONE THIOSTREPTON **STAVUDINE THIOTEPA** STREPTOMYCIN SULFATE **THIOTHIXENE STREPTOZOSIN THIRAM**

SUCCINYLSULFATHIAZOLE THONZONIUM BROMIDE

SULBACTAM THONZYLAMINE HYDROCHLORIDE SULCONAZOLE NITRATE TIAPRIDE HYDROCHLORIDE

SULFABENZAMIDE TIBOLONE SULFACETAMIDE **TIGECYCLINE**

SULFACHLORPYRIDAZINE TILARGININE HYDROCHLORIDE TILETAMINE HYDROCHLORIDE **SULFADIAZINE**

SULFADIMETHOXINE **TILMICOSIN SULFAMERAZINE** TIMOLOL MALEATE **SULFAMETER TINIDAZOLE SULFAMETHAZINE TOBRAMYCIN**

SULFAMETHIZOLE TODRALAZINE HYDROCHLORIDE SULFAMETHOXAZOLE **TOLAZAMIDE**

SULFAMETHOXYPYRIDAZINE TOLAZOLINE HYDROCHLORIDE

SULFAMONOMETHOXINE **TOLBUTAMIDE**

SULFANILATE ZINC **TOLMETIN SODIUM** SULFANITRAN **TOLNAFTATE**

SULFAPYRIDINE TOLPERISONE HYDROCHLORIDE

SULFAQUINOXALINE SODIUM TOSYLCHLORAMIDE SODIUM TRANEXAMIC ACID SULFASALAZINE

TRANYLCYPROMINE SULFATE SULFATHIAZOLE

SULFINPYRAZONE TRAZODONE HYDROCHLORIDE **SULFISOXAZOLE TRETINOIN SULINDAC TRIACETIN**

SULMAZOLE TRIAMCINOLONE SULOCTIDIL TRIAMCINOLONE ACETONIDE

SULPIRIDE TRIAMCINOLONE DIACETATE SUPROFEN TRIAMTERENE

SURAMIN TRICHLORMETHIAZIDE

TACROLIMUS TRIFLUOPERAZINE HYDROCHLORIDE TAMOXIFEN CITRATE TRIFLUPROMAZINE HYDROCHLORIDE

TANDUTINIB TRIFLURIDINE TANNIC ACID TRIHEXYPHENIDYL HYDROCHLORIDE

TAZOBACTAM TRILOSTANE

TEGASEROD MALEATE TRIMEPRAZINE TARTRATE **TELMISARTAN** TRIMETHOBENZAMIDE HYDROCHLORIDE

TEMEFOS TRIMETHOPRIM TEMOZOLAMIDE TRIMETOZINE

TRIMIPRAMINE MALEATE **TENIPOSIDE TENOXICAM** TRIOXSALEN

TERBUTALINE HEMISULFATE TRIPELENNAMINE CITRATE

> (Continued) (Continued)

Table 1. List of compounds from the PHARMAKON 1600 library used in this screen. (continued)

TRIPROLIDINE HYDROCHLORIDE TRISODIUM ETHYLENEDIAMINE TETRACETATE **TROLEANDOMYCIN TROPICAMIDE** TROPISETRON HYDROCHLORIDE **TRYPTOPHAN** TUAMINOHEPTANE SULFATE TUBOCURARINE CHLORIDE **TYROTHRICIN URACIL** URAPIDIL HYDROCHLORIDE **UREA URETHANE URSODIOL VALDECOXIB** VALGANCICLOVIR HYDROCHLORIDE VALPROATE SODIUM VALSARTAN VANCOMYCIN HYDROCHLORIDE **VENLAFAXINE VIDARABINE** VINBLASTINE SULFATE **VINORELBINE** VINPOCETINE VIOMYCIN SULFATE **VORICONAZOLE** VORINOSTAT WARFARIN **XYLAZINE** XYLOMETAZOLINE HYDROCHLORIDE YOHIMBINE HYDROCHLORIDE ZALCITABINE ZAPRINAST ZIDOVUDINE [AZT] ZIPRASIDONE MESYLATE ZOMEPIRAC SODIUM

were obtained from mutants bathed in embryo media, as described above; a second locomotion plot was then obtained following a solution change to a test compound and an equilibration period of 15-30 min. Criteria for a positive hit designation were as follows: (1) a decrease in mean velocity of ≥44% (e.g., a value based on the trialto-trial variability measured in control tracking studies; Fig. 1c); and (2) a reduction to Stage 0 or Stage I seizure behavior in the locomotion plot for at least 50% of the test fish. Each test compound classified as a "positive hit" in the locomotion assay was confirmed, under direct visualization on a stereomicroscope, as the fish being alive based on movement in response to external stimulation and a visible heartbeat following a 60 min drug exposure. Toxicity (or mortality) was defined as no visible heartbeat or movement in response to external stimulation in at least 50% of the test fish. Hyperexcitability was defined as a compound causing a ≥44% increase in swim velocity and/or Stage III seizure activity in at least 50% of the test fish. Hits identified in the primary locomotion screen were selected from the PHARMAKON 1600 library and rescreened using the method described above. Select compound stocks that were successful in two primary locomotion assays, and were not classified as toxic in two independent clutches of zebrafish, were then purchased separately from Sigma-Aldrich for further testing. Drug concentrations between 0.5 and 1 mm were used for electrophysiology assays to account for more limited diffusion in agar-embedded larvae.

Data analysis

Data are presented as the mean and SEM, unless stated otherwise. Pairwise statistical significance was determined with a Student's two-tailed unpaired t test, ANOVA, or Mann–Whitney rank sum test, as appropriate, unless stated otherwise. Results were considered significant at p < 0.05, unless otherwise indicated.

Results

A first-stage behavioral screen for antiepileptic activity

Locomotion tracking is a reliable and rapid strategy with which to monitor behavioral seizures in freely swimming larval zebrafish (Baraban et al., 2005, 2013; Winter et al., 2008). In these locomotion plots, high-velocity movements of ≥20 mm/s correspond to paroxysmal wholebody convulsions, referred to as Stage III, and are consistently observed in unprovoked scn1Lab mutant larvae but not in age-matched wild-type siblings. Using automated locomotion tracking, we performed a phenotype-based screen to identify compounds that significantly reduce mutant swim behavior to levels associated with Stage 0 or Stage I (e.g., activity equivalent to that seen in normal untreated WT zebrafish). In a 96-well format, we tracked mutant swim activity at baseline, and then again after addition of a test compound (100 μ M); each compound was tested on six individual mutant larvae (Fig. 1a), and larvae were sorted based on pigmentation differences (Fig. 1b). Mutant swim activity between two consecutive recording epochs in embryo media is tracked on every plate as an internal control. A box plot showing the change in swim velocity in untreated mutants is shown in Figure 1c (n = 112) and defined as the control. Based on an SD of 21.8 for these data, we set the detection threshold as any compound that inhibits movement (measured as a change in mean velocity) by >2 SDs (or ≥44%). This approach was previously validated using standard antiepileptic drugs in this model (Baraban et al., 2013). Next, we screened a repurposed library in which all compounds have reached the clinical evaluation stage (PHARMAKON 1600 Collection; http://www.msdiscovery-.com/pharma.html). Among the 1012 compounds screened (Fig. 1a) only 20 (or 1.97%) were found to significantly inhibit spontaneous seizure behavior in scn1Lab mutants. All 20 compounds were subsequently retested in a separate clutch of scn1Lab mutants at a concentration of 100 μ M (Fig. 2a, trial 2; N=6 fish/ compound). A total of 154 compounds were classified as "toxic" (Table 2); 55 compounds were classified as "hyperexcitable" (Table 3). Representative locomotion tracking raw data plots for gemfibrozil, a toxic nonsteroid

ZOPICLONE

Figure 2. Positive hits identified in the locomotion assay. a, Heat map showing the results of individual zebrafish trials (1-6) for compounds tested at a concentration of $100~\mu\text{M}$ in the locomotion-tracking assay. Raw data values for individual fish are shown within the color-coded boxes for one sample trial. Mean velocity data are shown at right for "trial 1" and "trial 2"; six fish per trial. Note: only drugs highlighted in bold type were classified as positive nontoxic hits in two independent trials and moved on to further testing. b, Representative raw locomotion data plots for six individual scn1Lab mutant larvae at baseline (top) and following the addition of a compound resulting in fatality (bottom, gemfibrozil) or hyperactivity (bottom, mepivacaine). Movement is color coded, with low-velocity movements shown in yellow, and high velocity movements shown in red.

nuclear receptor ligand, and mepivacaine, a hyperexcitable proconvulsant anesthetic, are shown in Figure 2b.

A second-stage electrophysiology assay for antiepileptic activity

Extracellular recording electrodes are a reliable, reproducible, and sensitive approach to monitor electroencephalographic activity in agar-immobilized larval zebrafish (Baraban et al., 2005; Baraban, 2013). Field electrodes offer high a signal-to-noise ratio and can be placed, using direct visualization in transparent larvae, into specific CNS structures (i.e., telencephalon or optic tectum). Using a local field electrode, we can efficiently monitor the occurrence of electrographic seizure events in the same zebrafish that were previously tested in the locomotion assay. Based on a positive nontoxic result in two independent locomotion assays, four drugs moved

on to electrophysiology testing at concentrations between 500 μ M and 1 mM (Fig. 3). Consistent with a "falsepositive" classification, spontaneous epileptiform discharge activity was observed for three of these drugs: norfloxacin, theobromine, and cytarabine. Dimethadione, previously shown to inhibit spontaneous epileptiform discharges in thalamocortical slices at concentrations between 1 and 10 mm (Zhang et al., 1996), suppressed burst discharge activity in scn1Lab mutant larvae (Fig. 3a,b). To identify whether any of these four compounds exert nonspecific effects on behavior, they were also tested on freely swimming WT zebrafish larvae (5 dpf) at a concentration of 500 μ M. Comparing the total distance moved during a 10 min recording epoch before, and after, the application of a test compound failed to reveal any significant changes in locomotor activity (Fig. 3c).

Table 2: List of compounds exhibiting toxicity.

ABACAVIR SULFATE

ACIPIMOX

ADENOSINE PHOSPHATE

ALAPROCLATE

AMLEXANOX

AMOROLFINE HYDROCHLORIDE

ANTAZOLINE PHOSPHATE

ARTEMETHER ASCORBIC ACID

ATORVASTATIN CALCIUM AUROTHIOGLUCOSE

AZELAIC ACID BENORILATE BENZONATATE

BETAINE HYDROCHLORIDE

BETAMIPRON

BROMHEXINE HYDROCHLORIDE

BUDESONIDE

BUPIVACAINE HYDROCHLORIDE

BUSULFAN BUTOCONAZOLE CAPSAICIN CARPROFEN CEFORANIDE

CEFOTAXIME SODIUM CEFOXITIN SODIUM

CEPHALEXIN CHLORAMBUCIL

CHLORAMPHENICOL HEMISUCCINATE CHLOROGUANIDE HYDROCHLORIDE CHLORPHENIRAMINE (S) MALEATE

CINCHOPHEN
CINNARAZINE
CINTRIAMIDE
CIPROFLOXACIN
CLIDINIUM BROMIDE

CLOZAPINE

COLISTIMETHATE SODIUM

CRYOFLURANE

CYCLOPHOSPHAMIDE HYDRATE

CYCLOTHIAZIDE CYPERMETHRIN DAUNORUBICIN DECIMEMIDE

DEXTROMETHORPHAN HYDROBROMIDE

DICHLOROPHENE

DIETHYLCARBAMAZINE CITRATE

DIOXYBENZONE DIRITHROMYCIN

DISOPYRAMIDE PHOSPHATE

DISULFIRAM

ECONAZOLE NITRATE EDETATE DISODIUM

EMETINE
ENALAPRILAT
ERYTHROMYCIN
ETHINYL ESTRADIOL
ETHIONAMIDE

ETHOPROPAZINE HYDROCHLORIDE

ETHYL PARABEN

EUGENOL

FIPEXIDE HYDROCHLORIDE

(Continued)

Table 2: List of compounds exhibiting toxicity.

FLUMETHASONE FLUNISOLIDE FLUVASTATIN GEMFIBROZIL

GENTAMICIN SULFATE GLUCONOLACTONE HAI AZONE

HALAZONE HALCINONIDE

HETACILLIN POTASSIUM HEXACHLOROPHENE

HOMATROPINE METHYLBROMIDE

HYDRASTINE (1R, 9S)

HYDROXYAMPHETAMINE HYDROBROMIDE

HYDROXYCHLOROQUINE SULFATE

IODIXANOL IOHEXOL IRBESARTAN LEVOSIMENDAN LISINOPRIL

LOMERIZINE HYDROCHLORIDE MANGAFODIPIR TRISODIUM

MECLOFENOXATE HYDROCHLORIDE

MESTRANOL

METHACHOLINE CHLORIDE
METHYLERGONOVINE MALEATE

METRONIDAZOLE

MIGLITOL

MONENSIN SODIUM (monensin A is shown)

MONOBENZONE

MOXALACTAM DISODIUM

NADOLOL

NALBUPHINE HYDROCHLORIDE NALTREXONE HYDROCHLORIDE NAPHAZOLINE HYDROCHLORIDE

NAPROXEN(+)
NEOMYCIN SULFATE
NIFEDIPINE
NITAZOXANIDE
NITROMIDE

NORETHINDRONE OLMESARTAN MEDOXOMIL

OXYMETAZOLINE HYDROCHLORIDE

PARACHLOROPHENOL PAROMOMYCIN SULFATE PERHEXILINE MALEATE

PHENTOLAMINE HYDROCHLORIDE

PHENYLBUTAZONE

PHENYLMERCURIC ACETATE PHYSOSTIGMINE SALICYLATE

PIMOZIDE

PIPERACILLIN SODIUM

PIPERAZINE PIRACETAM

PIRENZEPINE HYDROCHLORIDE

PIROCTONE OLAMINE
PITAVASTATIN CALCIUM
PRIMAQUINE DIPHOSPHATE

PROBENECID

PROCARBAZINE HYDROCHLORIDE

PROGLUMIDE

PROMETHAZINE HYDROCHLORIDE PUROMYCIN HYDROCHLORIDE

Table 2: List of compounds exhibiting toxicity.

QUININE SULFATE

RETINYL PALMITATE

RIFAMPIN

RITONAVIR ROFECOXIB

RUFLOXACIN HYDROCHLORIDE

SACCHARIN

SALICIN

SENNOSIDE A

STAVUDINE

STREPTOMYCIN SULFATE

SULFADIAZINE SULINDAC

SULOCTIDIL

TANNIC ACID

TELMISARTAN

TENOXICAM

THEOPHYLLINE

TILETAMINE HYDROCHLORIDE

TILMICOSIN

TIMOLOL MALEATE

TOLBUTAMIDE

TOLNAFTATE

TRAZODONE HYDROCHLORIDE

TRETINOIN

TRIFLUPROMAZINE HYDROCHLORIDE

TROPISETRON HYDROCHLORIDE

VALDECOXIB VORINOSTAT

ZALCITABINE

Assessment of huperzine A and fenfluramine for antiepileptic activity

Next, we tested two additional compounds that were not in our drug library, but have recently been described as potential antiepileptic treatments for DS. Huperzine A, a small-molecule alkaloid isolated from Chinese club moss with NMDA-type receptor blocking and anticholinesterase activity, has purported antiepileptic actions against NMDA- or soman-induced seizures (Tonduli et al., 2001; Coleman et al., 2008). In the locomotion assay, huperzine A failed to significantly alter scn1Lab seizure behavior at any concentration tested (Fig. 4a,b). In contrast, huperzine A was effective at 1 mm in the acute pentylenetetrazole (PTZ) assay (Fig. 4b). Fenfluramine is an amphetamine-like compound that has been reported to successfully reduce seizure occurrence in children with DS as a low-dose add-on therapy (Ceulemans et al., 2012). In the locomotion assay, fenfluramine significantly reduced mutant mean swim velocity at concentrations between 100 and 500 μ M (Fig. 4c,d); 1 mM fenfluramine was toxic in the scn1Lab and PTZ assays (Fig. 4d). The fenfluramine-treated scn1Lab mutant exhibited a suppression of spontaneous electrographic seizure discharge to levels similar to controls at 500 μ M, but only a partial reduction in electrographic activity at 250 μ M (Fig. 4e).

Discussion

Zebrafish and humans share extensive genomic similarity. With regard to disease, 84% of genes known to be associated with disease states in humans have a zebrafish

Table 3: List of compounds exhibiting hyperexcitable or proconvulsant activity.

ADENOSINE PHOSPHATE

ALBUTEROL (+/-)

ALEXIDINE HYDROCHLORIDE

AMANTADINE HYDROCHLORIDE

AMINOHIPPURIC ACID

AMINOLEVULINIC ACID HYDROCHLORIDE

AUROTHIOGLUCOSE

AZACITIDINE

BENZOYL PEROXIDE

BETAZOLE HYDROCHLORIDE

BROMHEXINE HYDROCHLORIDE

BUSULFAN

CEFSULODIN SODIUM

CEFUROXIME AXETIL

CHLOROGUANIDE HYDROCHLORIDE CYSTEAMINE HYDROCHLORIDE

ECAMSULE TRIETHANOLAMINE

ECONAZOLE NITRATE

EDOXUDINE

ENROFLOXACIN

ESTRADIOL CYPIONATE

ETHINYL ESTRADIOL

ETHOPROPAZINE HYDROCHLORIDE

ETOPOSIDE

FASUDIL HYDROCHLORIDE

FEBUXOSTAT FLUMETHASONE

FLUOROMETHOLONE

FURAZOLIDONE GANCICLOVIR

GLUCONOLACTONE

GRANISETRON HYDROCHLORIDE

HALAZONE

HEXACHLOROPHENE

IODIPAMIDE

LABETALOL HYDROCHLORIDE

MEPIVACAINE HYDROCHLORIDE MITOXANTRONE HYDROCHLORIDE

MORANTEL CITRATE

NOCODAZOLE

OFLOXACIN

PENTOLINIUM TARTRATE

PERINDOPRIL ERBUMINE

PIOGLITAZONE HYDROCHLORIDE

PRAMIPEXOLE DIHYDROCHLORIDE

PROGLUMIDE RIFAMPIN

SERATRODAST

SERTRALINE HYDROCHLORIDE

SIBUTRAMINE HYDROCHLORIDE

SUCCINYLSULFATHIAZOLE

TACROLIMUS

TETROQUINONE

TIMOLOL MALEATE

URACIL

homolog (Howe et al., 2013). This genetic similarity and the characteristic of zebrafish larvae to exhibit quantifiable seizure behaviors or electrographic seizure discharge that is fundamentally similar to that recorded in humans (Jirsa et al., 2014) make this an ideal system for drug discovery. Behavioral assays customized for auto-

Figure 3. Electrophysiology assay to identify drugs that rescue the scn1Lab mutant epilepsy phenotype. a, Representative field electrode recording epochs (5 min in duration) are shown for the "positive" compounds identified in the locomotion assay. All recordings were obtained with an electrode placed in the forebrain of agar-immobilized scn1Lab larvae that was previously tested in the locomotion assay. A suppression of epileptiform electrographic discharge activity was noted in mutants exposed to dimethadione. b, Bar plot showing the mean number of epileptiform events in a 10 min recording epoch for scn1Lab larvae exposed to cytarabine (N = 6), dimethadione (N = 6), theobromine (N = 6), and norfloxacin (N = 6). The mean \pm SEM is shown. The fish shown were tested in the locomotion assay first. c, Bar plot showing the total distance traveled before (black bars) and after (white bars) exposure to a test compound; 10 min recording epoch and six fish per drug. The mean \pm SEM is shown.

mated evaluation of locomotion (Winter et al., 2008; Creton, 2009; Baxendale et al., 2012; Baraban et al., 2013; Raftery et al., 2014) make moderate-to-high-throughput phenotype-based drug screening in zebrafish possible. Using this approach and a zebrafish *scn1* mutant (Baraban et al., 2013), we successfully identified antiepileptic compounds. Here we report results from screening ~1000 compounds from a repurposed drug library and present data that will be periodically updated on-line using this open-access publishing mechanism.

As a model system, the *scn1Lab* mutant zebrafish has many advantages. First, in contrast to transient and variable knockdown of gene expression using antisense morpholino oligonucleotides (Teng et al., 2010; Finckbeiner et al., 2011; Mahmood et al., 2013), *scn1Lab* mutants carry a stable and heritable amino acid substitution at position 1208 in the third domain of *SCN1A* that shares 76% homology with humans (Schoonheim et al., 2010; Baraban et al., 2013). Mutations in this channel are one of

the primary genetic causes underlying DS (Claes et al., 2003; Escayg and Goldin, 2010; De Jonghe, 2011; Saitoh et al., 2012). As zebrafish possess two scn1 genes (Novak et al., 2006), homozygous mutants for scn1Lab are comparable to the haploinsufficient clinical condition, and there is no variability from larvae to larvae, or clutch to clutch, with respect to gene inactivation, as is commonly observed with morpholino injections (Kok et al., 2015). Although crosses of heterozygotes produce only onequarter homozygous scn1Lab mutants per mating, there are virtually no limitations on maintaining a large colony of healthy, adult breeders for these types of large-scale screens. Second, it is possible to observe and monitor seizure-like behavior consisting of rapid movements and whole-body convulsions in freely swimming scn1Lab mutants as early as 4 dpf that persist for the life of the larvae (\sim 12 dpf). These behaviors are comparable to those observed with exposure to a common convulsant agent (PTZ) and classified as Stage III (Baraban et al., 2005). In

Figure 4. Evaluation of putative antiepileptic drugs in scn1Lab mutants. a, Locomotion tracking plots for scn1Lab zebrafish at baseline and following huperzine A administration. Total movement is shown for a 10 min recording epoch. b, Plot showing the change in mean velocity for three different huperzine A concentrations (blue bars). Each bar is the mean change for six fish. The threshold for a positive hit is shown as a dashed line. WT fish exposed to PTZ and huperzine A are shown in red (N = 7). c, d, Same for fenfluramine. Note that 1 mm fenfluramine was toxic, as indicated. e, Representative field recordings from scn1Lab mutant larvae at 5 dpf. Electrographic activity is shown for a 5 min recording epoch (top traces); high-resolution traces are shown below, as indicated. Note that abnormal burst discharge activity persists in scn1Lab mutants exposed to 250 μ M fenfluramine. The fish shown were tested in the locomotion assay first.

addition, clear evidence for epileptiform discharge generated in the CNS of immobilized *scn1Lab* mutant larvae has been obtained at ages between 4 and 8 dpf (Baraban et al., 2013). Both zebrafish measures of seizure activity are sensitive to inhibition by AEDs commonly prescribed to children with DS (e.g., valproate, benzodiazepines, and

stiripentol), but are resistant to many antiepileptic compounds (e.g., phenytoin, carbamazepine, ethosuximide, decimemide, tiletamine, primidone, phenacemide, and vigabatrin). Pharmacoresistance is defined as the inability to control seizure activity with at least two different AEDs (Berg, 2009), and, with demonstrated resistance to eight

AEDs, our model clearly fits this definition. This level of model validation has not been possible with morpholinos probably owing to the high degree of variability, or off-target effects, associated with this technique (Kok et al., 2015).

Our screening results highlight the stringency of our approach with a positive hit rate of only 1.97% on the first-stage locomotion assay, and successful identification of 1 compound (of 1012 compounds) with known antiepileptic activity (i.e., dimethadione, a T-type channel antagonist). In additional testing, we confirmed an antiepileptic action for fenfluramine (serotonin uptake inhibitor). Similar to ethosuximide, a reduction in regenerative burst discharges associated with neuronal T-type calcium currents could be the underlying mechanism for dimethadione in DS mutants; however, it is worth noting that T-type channel blockers ethosuximide and flunarizine were not similarly effective (Baraban et al. 2013; this article), and that dimethadione can cause arrhythmia owing to blockade of cardiac human ether-a-go-go-related gene potassium channels (Azarbayjani and Danielsson, 2002; Danielsson et al., 2007). Modulation of serotonin [5-hydroxytryptamine (5-HT)] signaling by blocking uptake or increasing release from neurons by acting as substrates for 5-HT transporter (sertraline) proteins (Fuller et al., 1988; Gobbi and Mennini, 1999; Baumann et al., 2000; Rothman et al., 2010) may be the mechanism of action for fenfluramine in patients with DS, though a detailed analysis of precisely how fenfluramine modulates excitability via this signaling pathway has not been performed. Nonetheless, both drugs probably exert a direct effect on network excitability (at neuronal or synaptic levels, respectively) to suppress electrographic discharge and the associated high-velocity seizure behavior seen in scn1Lab mutants, and may be potential targets for clinical use. In contrast, three other drugs identified in the primary locomotion assay were not effective in suppressing electrical events and were designated as false positives. This is not altogether surprising given that the xanthine alkaloid (theobromine), chemotherapeutic (cytarabine), and antibiotic (norfloxacin) mechanisms for these compounds would not be consistent with seizure inhibition. Moreover, the variability inherent in behavioral experiments performed on different zebrafish larvae, in different microplates, and on different days may contribute to these false-positive designations in locomotion assays, and is evident in the range of mean velocity values seen during tracking episodes from control studies (Fig. 1c) or in the failure of many of the initial 20 lead compounds to be confirmed on subsequent retesting (see Fig. 2a). This is a limitation of locomotion-based screening assays and is another reason why a secondary electrophysiology assay on the same zebrafish is a critical advantage of our approach.

An additional advantage of *in vivo* screening with zebrafish larvae is the simultaneous identification of compounds resulting in toxicity. Zebrafish-based anticonvulsant drug-screening assays based primarily on *in situ* hybridization detection of early gene expression at 2 dpf (Baxendale et al., 2012) do not routinely monitor sponta-

neous swim behavior, heart rate, or response to external stimuli. Lacking these real-time measures of toxicity, compounds observed to induce fatality in a freely swimming scn1Lab-based behavioral assay (e.g., gemfibrozil, suloctidil, pimozide, or dioxybenzone) were mistakenly classified as seizure-suppressing compounds in the PTZbased c-Fos in situ hybridization assay. Indeed, 41% of the "anticonvulsant" compounds positively identified at 2 dpf in Baxendale et al. (2012) were toxic, proconvulsant, or simply not effective in scn1Lab mutant assays at 5-6 dpf. Similarly, it is critical to monitor blood flow and heart activity even in the agar-immobilized electrophysiology assay as compounds effective in suppressing electrical activity can also be toxic. These discrepancies highlight the potential problems associated with zebrafish drugscreening strategies that do not encompass multiple readouts and suggest the need for a note of caution when comparing screening results from different laboratory groups. While any lead compound identified in a zebrafish-based screening assay will, ultimately, need to be independently replicated and/or validated in additional mammalian model systems, the ability to rapidly identify such compounds, while simultaneously identifying potential negative side effects, makes genetically modified zebrafish a unique resource for drug discovery in an age of personalized medicine.

References

Ali S, Champagne DL, Spaink HP, Richardson MK (2011) Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C Embryo Today 93:115-133. CrossRef Medline

Azarbayjani F, Danielsson BR (2002) Embryonic arrhythmia by inhibition of HERG channels: a common hypoxia-related teratogenic mechanism for antiepileptic drugs? Epilepsia 43:457-468. Medline Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410. CrossRef Medline

Baraban SC, Taylor MR, Castro PA, Baier H (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759-768. CrossRef Medline

Baumann MH, Ayestas MA, Dersch CM, Brockington A, Rice KC, Rothman RB (2000) Effects of phentermine and fenfluramine on extracellular dopamine and serotonin in rat nucleus accumbens: therapeutic implications. Synapse 36:102-113. CrossRef Medline

Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MR, Fox J, Parkin CA, Ingham PW, Cunliffe VT (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5:773-784. CrossRef Medline Berg AT (2009) Identification of pharmacoresistant epilepsy. Neurol

Clin 27:1003-1013. CrossRef Medline

Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2015) Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 111:85-141. CrossRef Medline

Boel M, Casaer P (1996) Add-on therapy of fenfluramine in intractable self-induced epilepsy. Neuropediatrics 27:171-173. CrossRef Medline

Caraballo RH, Cersosimo RO, Sakr D, Cresta A, Escobal N, Fejerman N (2005) Ketogenic diet in patients with Dravet syndrome. Epilepsia 46:1539-1544. CrossRef Medline

Ceulemans B, Boel M, Leyssens K, Van Rossem C, Neels P, Jorens PG, Lagae L (2012) Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 53:1131-1139. CrossRef Medline

- Chiron C, Dulac O (2011) The pharmacologic treatment of Dravet syndrome. Epilepsia 52 Suppl 2:72-75. CrossRef Medline
- Claes L, Ceulemans B, Audenaert D, Smets K, Löfgren A, Del-Favero J, Ala-Mello S, Basel-Vanagaite L, Plecko B, Raskin S, Thiry P, Wolf NI, Van Broeckhoven C, De Jonghe P (2003) De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 21:615-621. CrossRef Medline
- Coleman BR, Ratcliffe RH, Oguntayo SA, Shi X, Doctor BP, Gordon RK, Nambiar MP (2008) [+]-Huperzine A treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chem Biol Interact 175:387-395. CrossRef Medline
- Creton R (2009) Automated analysis of behavior in zebrafish larvae. Behav Brain Res 203:127-136. CrossRef Medline
- Danielsson BR, Danielsson C, Nilsson MF (2007) Embryonic cardiac arrhythmia and generation of reactive oxygen species: common teratogenic mechanism for IKr blocking drugs. Reprod Toxicol 24:42-56. CrossRef Medline
- De Jonghe P (2011) Molecular genetics of Dravet syndrome. Dev Med Child Neurol 53 Suppl 2:7-10. CrossRef Medline
- Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O (2005) Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95: 71-102. Medline
- Dressler A, Trimmel-Schwahofer P, Reithofer E, Mühlebner A, Gröppel G, Reiter-Fink E, Benninger F, Grassl R, Feucht M (2015) Efficacy and tolerability of the ketogenic diet in Dravet syndrome Comparison with various standard antiepileptic drug regimen. Epilepsy Res 109:81-89. CrossRef Medline
- ebrary Inc. (2011) Guide for the care and use of laboratory animals. Washington, DC: National Academy Press.
- Epi4K Consortium (2012) Epi4K: gene discovery in 4,000 genomes. Epilepsia 53:1457-1467. CrossRef
- Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51:1650-1658. CrossRef Medline
- Finckbeiner S, Ko PJ, Carrington B, Sood R, Gross K, Dolnick B, Sufrin J, Liu P (2011) Transient knockdown and overexpression reveal a developmental role for the zebrafish enosf1b gene. Cell Biosci 1:32. CrossRef Medline
- Fuller RW, Snoddy HD, Robertson DW (1988) Mechanisms of effects of d-fenfluramine on brain serotonin metabolism in rats: uptake inhibition versus release. Pharmacol Biochem Behav 30:715-721. Medline
- Gobbi M, Mennini T (1999) Release studies with rat brain cortical synaptosomes indicate that tramadol is a 5-hydroxytryptamine uptake blocker and not a 5-hydroxytryptamine releaser. Eur J Pharmacol 370:23-26. Medline
- Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498-503.
- Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137:2210-2230. CrossRef Medline
- Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3:500-509. CrossRef Medline
- Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND (2015) Reverse genetic screening reveals

- poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32:97-108. CrossRef Medline
- Leppert MF (1990) Gene mapping and other tools for discovery. Epilepsia 31 [Suppl 3]:S11–S18. Medline
- Lotte J, Haberlandt E, Neubauer B, Staudt M, Kluger GJ (2012) Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics 43:17-21. CrossRef Medline
- Lowson S, Gent JP, Goodchild CS (1990) Anticonvulsant properties of propofol and thiopentone: comparison using two tests in laboratory mice. Br J Anaesth 64:59-63. Medline
- Mahmood F, Mozere M, Zdebik AA, Stanescu HC, Tobin J, Beales PL, Kleta R, Bockenhauer D, Russell C (2013) Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis Model Mech 6:652-660. CrossRef Medline
- Masimirembwa CM, Thompson R, Andersson TB (2001) In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery. Comb Chem High Throughput Screen 4:245-263. Medline
- Novak AE, Jost MC, Lu Y, Taylor AD, Zakon HH, Ribera AB (2006) Gene duplications and evolution of vertebrate voltage-gated sodium channels. J Mol Evol 63:208-221. CrossRef Medline
- Ottman R, Risch N (2012) Genetic epidemiology and gene discovery in epilepsy. In: Jasper's basic mechanisms of the epilepsies (Noebels JL, Avoli M, Rogawski M, Olsen R, Delgado-Escueta A, eds). New York: Oxford UP. pp. 651–658.
- Raftery TD, Isales GM, Yozzo KL, Volz DC (2014) High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environ Sci Technol 48:804-810. CrossRef Medline
- Rothman RB, Baumann MH, Blough BE, Jacobson AE, Rice KC, Partilla JS (2010) Evidence for noncompetitive modulation of substrate-induced serotonin release. Synapse 64:862-869. Cross-Ref Medline
- Saitoh M, Shinohara M, Hoshino H, Kubota M, Amemiya K, Takanashi JL, Hwang SK, Hirose S, Mizuguchi M (2012) Mutations of the SCN1A gene in acute encephalopathy. Epilepsia 53:558-564. CrossRef Medline
- Schoonheim PJ, Arrenberg AB, Del Bene F, Baier H (2010) Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30:7111-7120. CrossRef Medline
- Snowden M, Green DV (2008) The impact of diversity-based, high-throughput screening on drug discovery: "chance favours the prepared mind". Curr Opin Drug Discov Devel 11:553-558. Med-line
- Teng Y, Xie X, Walker S, Rempala G, Kozlowski DJ, Mumm JS, Cowell JK (2010) Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum Mol Genet 19:4409-4420. CrossRef Medline
- Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P (2001) Effects of Huperzine used as pre-treatment against soman-induced seizures. Neurotoxicology 22:29-37. Medline
- Wilmshurst JM, Berg AT, Lagae L, Newton CR, Cross JH (2014) The challenges and innovations for therapy in children with epilepsy. Nat Rev Neurol 10:249-260. CrossRef Medline
- Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin JP, Hutchinson TH (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57:176-187. CrossRef Medline
- Zhang YF, Gibbs JW 3rd, Coulter DA (1996) Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: ethosux-imide, trimethadione, and dimethadione. Epilepsy Res 23:15-36. CrossRef