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Abstract
The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed
throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now
known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles
originate from the receptor’s constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide
array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the
melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1
receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation,
inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the
absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur,
in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad
array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped
that improved treatments for a variety of disorders, including Parkinson’s disease, schizophrenia, addiction,
obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge
surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments.
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Introduction
It has been 15 years since the discovery of ghrelin, a
peptide hormone related to, among others, energy bal-

ance, feeding, stress, anxiety, and reward. Since its dis-
covery, this hormone has led to a staggering number of
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Significance Statement

The growth hormone secretagogue receptor, a key component of the ghrelin system, is important in many
processes, including feeding behavior, stress, and reward. Recent data have revealed a variety of receptors
that show the ability to dimerize with the ghrelin receptor, resulting in signal modulation, alterations in
signaling cascades, and changes in trafficking and internalization of both protomers of the dimer complex.
Here, we summarize the state of knowledge surrounding ghrelin receptor dimerization, along with potential
treatments that arise from this knowledge for a variety of disorders, demonstrating the importance of
understanding these dimer complexes.
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studies, particularly in response to the current obesity
epidemic found throughout modern society. These stud-
ies have been prompted by ghrelin’s role as an orexigenic
peptide, leading to increased feeding and adiposity, along
with its role in diabetes. In general, three components of
the ghrelin system have been targeted in the search for an
elusive pharmacological compound that will contribute to
weight loss. These are: (1) ghrelin itself, particularly its ac-
tive esterified form: acylated ghrelin; (2) ghrelin O-acyl-
transferase (GOAT), the enzyme that acylates ghrelin, thus
allowing it to bind to its receptor; and finally (3) the ghrelin
receptor: GHSR1a.

While these three components are all directly related to
ghrelin, one cannot deny the complex interrelationships
between ghrelin and the multitude of other systems be-
yond simply the typical endocrine and feeding effects of
this peptide. In line with this is an important concept in the
study of G protein-coupled receptors (GPCRs): the idea of
receptor oligomerization, in which GPCRs interact with
other GPCRs in close proximity, resulting in physical as-
sociation with possible conformational changes as well as
changes in intracellular signaling and/or ligand binding.
On top of this, dimerization may result in facilitation or
inhibition of the protomers involved, as well as changes in
surface expression, internalization, and trafficking.

Not only is ghrelin linked to obesity and diabetes, but
studies have also shown a role in stress, anxiety, depres-
sion, and more (Lutter et al., 2008; Zheng et al., 2009;
Patterson et al., 2010). Due to its roles in such a broad
array of systems, targeting the ghrelin receptor with ago-
nists or antagonists will not only affect the phenomenon of
interest, such as feeding, but will also affect the other
systems in which ghrelin is involved, leading to unwanted
side effects. The ability to target only a subset of ghrelin
receptors is a desirable goal that would hopefully mini-
mize side effects and maximize treatment. By under-
standing the roles of receptor dimers, one would hope
that designed drugs that target a specific dimer would be
beneficial in pharmacological treatment. Such a dimer
involving GHSR would be expected to have a more spe-
cific role than that of the ghrelin receptor in general. In
addition to this, understanding how receptors are modi-
fied with dimerization can help us better understand how
to treat certain disorders, providing hints for combinations
of drugs that may synergistically amplify the desired effect
or allow for a reduced dosage of certain medications with
the goal of reducing intensity of side-effects.

In this review, we will examine the phenomenon of
receptor dimerization with a focus on the role of the
ghrelin receptor in such dimers and how this knowledge
can aid in devising improved treatments for such disor-

ders as Parkinson’s disease, schizophrenia, obesity, de-
pression, and diabetes. At present, dimers between the
GHSR1a and the D1R, D2R, 5-HT2C, MC3R, and possibly
the CB1 receptors have been identified, and no doubt
more interactions will be found further down the road.

A Short History of GPCR Oligomerization
It has been known for over three decades that many

membrane proteins exist as dimers or higher-order oligo-
meric structures (Klingenberg, 1981). Despite this, it was
debated whether GPCRs in particular act solely as mo-
nomeric structures or if they oligomerize to form com-
plexes with different characteristics from its constituent
parts. While crosstalk between signaling cascades was
acknowledged, actual allosteric interactions remained an
area of debate. Some data suggests that the area acces-
sible to G-proteins on the receptor is insufficient for trans-
duction of the receptor signal to the relatively large
trimeric G-protein complex (Park et al., 2004). Similarly,
many non-GPCR membrane proteins also appear too
small to interact with their proper ligands. Such proteins
include the Na�-K� ATPase, the ADP/ATP carrier, and the
glucose carrier (Klingenberg, 1981). While dimerization
and oligomerization of integral membrane proteins re-
mained a generally accepted concept, translating this to
GPCRs remained elusive (Klingenberg, 1981).

The first identified dimerization of GPCRs involved ho-
modimers. These included the �-opioid (Cvejic and Devi,
1997), metabotropic glutamate (Romano et al., 1996), and
�2 adrenergic (Hebert et al., 1996) receptors. Shortly after
the discovery of these homodimers, Jones et al. (1998)
identified the first GPCR heterodimer and described it as
an obligate heterodimer, consisting of the complex
formed by a GABABR1 and a GABABR2 protomer (Jones
et al., 1998; Kaupmann et al., 1998; White et al., 1998).
These two receptors were believed to interact through
conserved coiled-coil domains in the intracellular
C-termini, a phenomena that was later verified (Kammerer
et al., 1999; Kuner et al., 1999). Margeta-Mitrovic et al.
(2000) identified a C-terminal RSRR retention motif in
GABABR1 that retains the receptor on the endoplasmic
reticulum, thus preventing surface expression. Interaction
with a GABABR2 through each partners’ C-terminal
coiled-coils masks the retention motif, thus allowing sur-
face expression of the heterodimer. In addition, interac-
tion with the intracellular G-protein for signal transduction
appeared to be reliant on the GABABR2 protomer, with
ligand binding reliant on the GABABR1 protomer (Margeta-
Mitrovic et al., 2000; Robbins et al., 2001). These data demon-
strate the obligate heterodimer nature of the GABAB receptor.

Detecting Oligomerization
There is some ambiguity when it comes to defining and

identifying oligomerization. Often, receptors are coex-
pressed on the same neuron but do not form a multimeric
complex with unique characteristics. While signaling may
overlap and receptors may be in close proximity, the
group of receptors might not necessarily generate a func-
tional receptor complex. In order to remove ambiguity, the
International Union of Basic and Clinical Pharmacology
suggested a set of requirements in order for a group of
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receptors to be considered as part of an oligomeric com-
plex. We refer the reader to Pin et al. (2007) for a detailed
description of these requirements.

One of the most common techniques in detecting oli-
gomerization is coimmunoprecipitation, where pulling
down one protomer also pulls down its dimer partner.
There are, however, drawbacks to this technique. For
instance, coimmunoprecipitation cannot be used to ex-
amine interactions in living cells in real time. In addition,
aggregation as a result of the solubilization step is a
common problem, resulting in false positives (Szidonya
et al., 2008). Another source of false positives is the high
levels of receptor expression typically used with this tech-
nique, which can lead to nonphysiological dimerization
simply as a result of overexpression and crowding (Szid-
onya et al., 2008). In contrast, dimers may be disrupted
during preparation of the samples and give false nega-
tives (Szidonya et al., 2008). Finally, raising antibodies
directly against GPCRs is a task that has proven to be
quite difficult (Fredholm et al., 2007), although tagging
alternatives are available.

A technique that avoids many of the problems of coim-
munoprecipitation is resonance energy transfer (RET) and
its derivative techniques (Fig. 1). Perhaps one of its most
powerful advantages is its ability to measure dimerization
in real-time in living cells. While there are many techniques
related to RET, they all involve the nonradiative transfer of
energy (on the nanoscale range) between a donor and a
nearby acceptor, which have been fused to the two re-

ceptors of interest. This transfer is measured by examin-
ing the emission of energy from the acceptor after it has
accepted the transfer from the donor. For example, in the
case of fluorescence resonance energy transfer (FRET),
the donor is excited by light of a certain wavelength. If the
donor is in close proximity to the acceptor, this energy is
transferred and then emitted at a characteristic wave-
length by the acceptor, which can be measured by scan-
ning spectroscopy, a microplate reader, or microscopy. In
the case of bioluminescence resonance energy transfer
(BRET), a donor such as the enzyme Renilla luciferase is
used.

While RET-based techniques are considerably more
powerful than coimmunoprecipitation, there are some dis-
advantages to this technique. Of particular importance is
the requirement for a proper orientation of the dipoles in
order for the energy transfer to occur (Szidonya et al.,
2008). Along with this, the efficiency of the transfer is
inversely proportional to the sixth power of the distance
between the dipoles, demonstrating extreme sensitivity of
the technique to distance (Esen-Danaci et al., 2008).
These restrictions require that the donor and acceptor
have considerable flexibility in movement in order to ac-
quire the correct orientation and distance.

Along with FRET and BRET, there are other derivatives
of RET. For a more detailed discussion of coimmunopre-
cipitation and RET as they relate to GPCR oligomeriza-
tion, we refer the reader to Szidonya et al. (2008).

Figure 1 Fluorescence resonance energy transfer. In this FRET example, cyan fluorescent protein (CFP) acts as the donor and yellow
fluorescent protein (YFP) as the acceptor. When the two fluorophores are separated by a considerable distance, exposing the sample
to light with the excitation frequency for CFP results in an emission spectrum corresponding to CFP only, with no contribution from
the acceptor (top). When the two fluorophores are nearby (typically in the range of 10 to 100 Å), exposing the sample to the same light
results in a nonradiative energy transfer from CFP to the nearby YFP acceptor, causing YFP to emit at its emission frequency (bottom).
At the same time, due to the transfer of energy, emission from CFP is considerably reduced. Detection of YFP emission indicates that
fluorescence resonance energy transfer has occurred between the two fluorophores as a result of their close proximity. By fusing
these fluorophores to the receptors of interest, dimerization can be implied if fluorescence resonance energy transfer is observed.
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Signaling and distribution of the GHSR1a
The GHSR1a was first identified in 1996 by a team of
researchers who were looking for a way to improve
growth hormone release (Howard et al., 1996), and this
discovery was followed by the identification of its nat-
ural ligand, ghrelin, a peptide hormone produced by the
stomach (Kojima et al., 1999). Interestingly, ghrelin re-
quires acylation on its serine-3 residue by the enzyme
GOAT in order for the peptide to bind to GHSR1a
(Kojima et al., 1999; Gutierrez et al., 2008; Yang et al.,
2008).

Signal transduction of GHSR1a primarily occurs through the
Gq/11 pathway (Camiña et al., 2007). This pathway involves
activation of phosphatidylinositol phospholipase C (PI-
PLC), phosphatidylinositol 4,5-bisphosphate (PIP2) and
inositol trisphosphate (IP3), ultimately resulting in mobili-
zation of intracellular Ca2� stores (Camiña et al., 2007). In
addition to the Gq/11 pathway, the Gi/o pathway has also
been shown to be recruited by the ghrelin receptor. In rat
and human tissue, high signals for GHSR1a mRNA are
found expressed in several hypothalamic nuclei, the pitu-
itary, and the dentate gyrus of the hippocampus, with
additional yet reduced signals in CA2 and CA3 of the
hippocampus, the substantia nigra, the ventral tegmental
area, and the median raphe nuclei (Guan et al., 1997;
Willesen et al., 1999; Gnanapavan et al., 2002; Zigman
et al., 2006). Of particular interest is the arcuate nucleus,
an area more open to peripheral signals due to the re-
duced blood�brain barrier at the median eminence. In-
deed, many labs have measured high levels of GHSR1a
mRNA in the arcuate nucleus (Howard et al., 1996; Guan
et al., 1997; Tannenbaum et al., 1998; Willesen et al.,
1999; Mitchell et al., 2001; Zigman et al., 2006). This
area’s important role in feeding is undeniable, with exten-
sive connections to all other areas of the hypothalamus.
While GHSR1a activity in the hypothalamus is likely heav-
ily involved in homeostatic mechanisms, its presence in
extra hypothalamic regions, including a number of lim-
bic and midbrain structures like the ventral tegmental
area (VTA), suggest that this receptor is associated in
processes associated with learning and motivation
(Abizaid et al., 2006; Abizaid and Horvath, 2008). Nev-
ertheless, the entry of peripheral ghrelin into the brain is
limited and potentially binds only to areas of the brain
that are less protected by the blood�brain barrier like
the arcuate and the area postrema in the brain stem
(Banks et al., 2002; Cabral et al., 2013). Furthermore,
evidence for a central source of ghrelin remain ques-
tionable, with only very low levels being found in the
hypothalamus (Hosoda et al., 2000; Cowley et al.,
2003). Without the natural ligand for the GHSR1a in
many parts of the brain, the various roles of this recep-
tor centrally remain uncertain.

Studies identifying a high constitutive activity of the
ghrelin receptor (Holst et al., 2003; Damian et al., 2011)
suggested that expression of GHSR1a itself, without the
need for binding, could have physiological significance.
Regulation of this constitutive activity, either through al-
losteric interactions with other proteins, regulation of re-
ceptor internalization and trafficking, or modulation of

transcription and translation, became an important area of
research. In the absence of ghrelin, GHSR1a shows 50%
of its maximal ligand-stimulated activity through the Gq/11

pathway (Holst et al., 2003). It is likely that overall changes
in constitutive activity, in the absence of ghrelin, provide
sufficient modulation of signaling pathways to demon-
strate an important physiological effect. In line with this
idea is a genetic study identifying a missense mutation,
A240E located in the second extracellular loop, resulting
in reduced constitutive activity and leading to familial
short stature (Pantel et al., 2006). Importantly, this muta-
tion did not display reduced ghrelin binding. While the
phenotype of this mutation may be due to both peripheral
and central actions, it demonstrates the importance of
GHSR1a’s constitutive activity. Furthermore, GHSR1a’s
constitutive activity has opened the door for investigation
into the effects of inverse agonists, in particular [D-Arg1,
D-Phe5, D-Trp7,9, Leu11]-substance P (SP-analog), which
has in turn provided hints to the structure and epitopes of
the ghrelin receptor.

Despite these findings, the high levels of GHSR1a ex-
pression used in experiments identifying GHSR1a’s con-
stitutive activity may be the source of this unusually high
basal activity. When expressed at the low levels represen-
tative of in vivo amounts, at least one laboratory has found
that basal activity was not detectable (Kern et al., 2012).
Furthermore, at the high expression levels used, GHSR1a
homodimerization may be artificially enhanced. Whether
homodimerization is required for constitutive activity is
unknown, although GHSR1a homodimers have been de-
tected. Indeed, while examining dimerization between the
D2 receptor and GHSR1a, Kern et al. (2012) observed a
FRET signal when CLIP-GHSR1a and SNAP-GHSR1a
are overexpressed. Additionally, Jiang et al. (2006) ob-
served GHSR1a homodimers in a HEK293-derived cell
line by examining the BRET signal for GHSR1a-GFP/
GHSR1a-Rluc, with the ratio displaying a hyperbolic
shape, suggesting dimerization rather than crowding.
As Schellekens et al. (2013) put it, the GHSR1a is quite
a “promiscuous” receptor, not only with other receptors
but also with itself.

Data from Rediger et al. (2011), however, suggest that
the constitutive activity of GHSR1a is not the result of
dimerization. Using two naturally occurring mutations of
GHSR1a that demonstrate reduced constitutive activity,
Rediger et al. (2011) were still able to detect ho-
modimerization. Furthermore, data from Holst et al. (2004)
suggest that constitutive activity depends on several res-
idues on the inner face of GHSR1a, which seem unlikely
to be locations important for the dimerization interface.
While this constitutive activity alone gives support to a
role of GHSR1a centrally where only extremely low levels
of ghrelin have been found (Hosoda et al., 2000; Cowley
et al., 2003), more recent findings of GHSR1a het-
erodimerization reveal a whole slew of roles that the re-
ceptor plays in the brain, some of which do not require the
presence of the ghrelin peptide. Understanding these
dimers will provide insight into possible pharmacological
interventions.
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GHSR1a dimerization with D1- and D2-like dopamine
receptors
The interaction between GHSR and dopamine receptors
was first hypothesized given the coexpression of these
receptors at a number of sites, including a number of
brain regions associated with food intake and reward-
seeking behaviors (Guan et al., 1997). The dopamine
system is one of the most studied neurotransmitter sys-
tems, with dopamine being one of the earliest identified
neurotransmitters due in large part to its pivotal role in the
reward system, a system often described as being essen-
tial to all forms of life. In feeding behavior, enhanced
dopaminergic activity induces rewarding effects and also
enhances memory formation for events associated with
reward (White, 1988, 1989; Centonze et al., 2001; Wise,
2006; Wise, 2008). One would intuitively suspect that
ghrelin and dopamine interact with each other.

The group of dopamine receptors has two families:
D1-like, which includes D1R and D5R, and D2-like, which
includes D2R, D3R, and D4R. Jiang et al. (2006) demon-
strated that, in the presence of both dopamine and ghre-
lin, the ghrelin receptor amplifies dopamine-induced
cAMP accumulation via D1R. Subsequently, Kern et al.
(2012) demonstrated that in the absence of ghrelin,
GHSR1a oligomerizes with D2R and that this oligomeriza-
tion is required for D2R’s anorexigenic effects.

GHSR1a dimerization with the D1R amplifies D1R
signaling
The D1 receptor has been localized to various regions of
the brain, with an array of different functions, including but

not limited to the substantia nigra and caudate-putamen
(motor activity) (Double and Crocker, 1995; Centonze
et al., 2003), prefrontal cortex and hippocampus (cogni-
tion, learning, and memory) (Sawaguchi et al., 1990;
Sawaguchi and Goldman-Rakic, 1994; Williams and
Goldman-Rakic, 1995; Otmakhova and Lisman, 1996;
Matthies et al., 1997; Seamans et al., 1998; Granado
et al., 2008), nucleus accumbens and olfactory tubercle
(reward) (Kurumiya and Nakajima, 1988; Nakajima, 1989;
Ikemoto et al., 1997; Ikemoto, 2003), and hypothalamus
(feeding and reward) (Nakajima and McKenzie, 1986;
Chen et al., 2014).

Coexpression of GHSR1a and D1R has been reported
in the cortex, hippocampal structures, substantia nigra,
midbrain, and ventral tegmental areas (Jiang et al., 2006).
In HEK293 cells expressing D1R and GHSR1a, both a
BRET signal and coimmunoprecipitation indicate dimerization
between the two receptors (Jiang et al., 2006). As summa-
rized in Figure 2, coadministration of dopamine and
ghrelin to these cells show a fourfold amplification of
D1R-associated cAMP signaling, with this amplification
requiring both receptors and both ligands (Jiang et al.,
2006). These data demonstrate dimerization in areas as-
sociated with mood, learning, and memory. Interestingly,
when ghrelin is administered alone to cells coexpressing
D1R and GHSR1a, no increase in cAMP accumulation is
observed, while typical levels of Ca2� accumulation as-
sociated with GHSR1a activation occur (Jiang et al.,
2006). Despite this, the PKC inhibitor bisindolylmaleimide
I (Bis) does not affect cAMP augmentation within the
D1/GHSR1a dimer, while pertussis toxin, an inhibitor of

Figure 2 Dimerization between D1R and GHSR1a. When dimerized with D1R, GHSR1a switches G-protein coupling from Gq/11 to Gi/o.
Coadministration of a D1R agonist with a GHSR1a agonist leads to a fourfold amplification of D1R-associated cAMP accumulation.
It is believed that the G�� subunit associated with GHSR1a adopts a stimulatory role on adenylyl cyclase activity due to the proximity
of the �S subunit derived from D1R’s trimeric G-protein.
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the Gi/o pathway, eliminates cAMP augmentation (Jiang
et al., 2006). In addition to this, pertussis toxin adminis-
tration in the absence of ghrelin does not affect
dopamine-associated cAMP accumulation, which typi-
cally signals through G�s and G�olf (Missale et al., 1998;
Neve et al., 2004). These data suggest that the synergy
between GHSR1a and D1R is due to GHSR1a switching
from G�q/11 coupling to G�i/o coupling, a G-protein that is
not associated with D1R or GHSR1a when expressed
alone. In addition to this synergistic effect, cointernaliza-
tion of D1R-GHSR1a is induced after stimulation by the D1

agonist 6,7-ADTN hydrobromide or GHSR1a agonists
(Schellekens et al., 2013). In effect, GHSR1a as well as
D1R agonists can terminate the effect of the dimer part-
ner’s natural ligands through cointernalization.

An effective way to test the role of the D1R-GHSR1a
dimer in behaviors associated with ghrelin would be by
way of mutations in GHSR1a or D1R that may negatively
affect heterodimerization. For example, in the GABAB re-
ceptor, heterodimers associate through C-terminal paral-
lel coiled-coil �-helices, and mutations in their primary
structure can eliminate dimerization (White et al., 1998;
Kammerer et al., 1999). A bioinformatics approach may
help reveal more data regarding amino acid sequences
involved in dimerization associated with GHSR1a, which
may eventually lead to identification of polymorphisms
that affect dimerization.

Jiang et al. (2006) proposed a molecular mechanism for
the synergistic effect of D1R-GHSR1a dimerization on
cAMP accumulation. In the case of D1R, G-protein acti-
vation involves dissociation of the G�s and G�� subunits.
G�s stimulates membrane-associated adenylyl cyclase
(AC) activity. The G�� subunit is believed to play a mod-
ulatory role, with a stimulating effect for AC2, AC4, and
AC7, and an inhibiting effect for AC1 and AC8 (Jiang et al.,
2006). Interestingly, the G�� subunit can only play a
stimulatory role when associated with G�S. In the case of
the D1R-GHSR1a heterodimer, it is believed that GHSR1a
switches G-proteins from G�q/11 to G�i. Dissociation of
the G�� subunit from G�i, which would normally inhibit
cAMP accumulation through adenylyl cyclase, switches
to a stimulatory role due to the activation induced by the
nearby G�S activity.

GHSR1a dimerization with the D2 receptor:
molecular and behavioral effects
Like the D1 receptor, the D2 receptor has a broad distri-
bution, with the two showing considerable overlap. This
includes high levels of expression in the neostriatum,
olfactory tubercle, substantia nigra, ventral tegmental
area, and the nucleus accumbens (Meador-Woodruff
et al., 1989). While the D1 receptor stimulates adenylyl
cyclase activity, the D2 receptor inhibits it through a G�i

pathway (Missale et al., 1998; Neve et al., 2004).
Dimerization between D2R and GHSR1a has been

demonstrated using FRET, with strong signals originating
in hypothalamic cultures (Kern et al., 2012). This dimeriza-
tion appears to induce a switch in intracellular signaling
cascades in which administration of a dopamine agonist
(quinpirole) alone leads to a rapid increase in Ca2� levels,

an effect not observed in preparations expressing D2R in
the absence of GHSR1a (Kern et al., 2012). This effect can
be attenuated by administering the D2R-specific antago-
nist raclopride or the GHSR1a inverse agonist SP-analog
(Kern et al., 2012).

Using a variety of inhibitors of second messenger sig-
naling molecules, Kern and colleagues (2012) identified
the pathway responsible for D2R-induced Ca2� mobiliza-
tion when dimerized with GHSR1a. This pathway included
PLC-dependent activation through G�i coupling, ulti-
mately leading to release of Ca2� from the endoplasmic
reticulum via IP3 receptors (Fig. 3). Interestingly, by simi-
larly inhibiting specific pathway components, it was
shown that this signaling was dependent on G�� subunits
derived from D2R’s G�i/o, stimulating PLC activity. Fur-
thermore, dimerization of D2R with a GHSR1a mutant
lacking constitutive activity still displayed dopamine-
induced Ca2� mobilization, albeit considerably reduced,
while two constitutively active mutants were absent in
Ca2� mobilization, suggesting that Ca2� mobilization is
independent of GHSR1a constitutive activity. In addition,
inhibiting GHSR1a’s G�q using siRNA did not result in loss
of dopamine-induced Ca2� mobilization, but did signifi-
cantly reduce ghrelin-induced Ca2� mobilization. Overall,
evidence suggests that GHSR1a’s constitutive activity is
not required for the alteration in D2R-mediated signaling.
Perhaps the most striking results obtained by Kern et al.
are the behavioral data examining the interaction between
D2R and the GHSR1a in mice (Vucetic and Reyes, 2010;
Kern et al., 2012). Cabergoline, a D2R-selective agonist,
produces a dose-dependent suppression of food intake in
wild-type mice and in ghrelin KO mice, but has no effect
on food intake in GHSR KO mice (Kern et al., 2012). These
data clearly show that the anorexigenic effects of caber-
goline depend on GHSR1a and not on ghrelin, providing
more evidence that GHSR1a has a central role even in the
absence of the ghrelin peptide.

While these data are fascinating, a natural question that
arises is what happens if ghrelin levels are allowed to
increase? This examination may be subject to debate in
the face of extremely low central ghrelin levels. There is a
possibility, however, that certain manipulations such as
stress or food restriction/deprivation may cause an in-
crease in central ghrelin levels. If one were to examine the
effects of elevated ghrelin levels, some interesting ques-
tions may be posed. As discussed, it appears that the
D2R-induced anorexigenic effect of dopamine depends
on the presence of GHSR1a. Kern et al. (2012) found
cross-desensitization within the D2R-GHSR1a heteromer.
Specifically, pretreatment with the GHSR1a agonist MK-
0677 or ghrelin for 30 min resulted in an attenuated re-
sponse to dopamine, with 60-75% reduction in calcium
mobilization. One way that this reduction might occur is
through desensitization, disassociation, or cointernaliza-
tion of the dimer. If ghrelin were to be present in the brain
for a prolonged period of time, it would eventually
attenuate the anorexigenic effect of D2 receptor through
cross-desensitization. Interestingly, administration of the
GHSR1a antagonist JMV2959 or the inverse agonist SP-
analog also attenuate the anorexigenic effect caused by
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D2 agonists, but in this case, the attenuation appeared
immediately. The more immediate effects of GHSR recep-
tor antagonist administration on dopamine’s anorectic
signaling deserves examination. During the period over
which desensitization is being established, other signaling
molecules and pathways may contribute to behavioral
changes and examining the time frame of changes in the
levels of relevant neurotransmitters may help tease apart
the complexities associated with feeding regulatory sys-
tems.

GHSR1a dimerization with the melanocortin-3
receptor amplifies MC3R and inhibits GHSR1a
signaling
Within the arcuate nucleus, most GHSR1a-expressing
neurons coexpress MC3R, while a much smaller propor-
tion of MC3R-expressing neurons coexpress GHSR1a
(Rediger et al., 2009). Within this overlapping expression,
Rediger et al. (2009) have identified MC3R-GHSR1a
dimers using FRET. Typical signaling through MC3R in-
volves a G�s pathway leading to cAMP accumulation.
Within this dimer, MC3R-associated cAMP accumulation
is increased twofold while GHSR1a constitutive activity
and ghrelin-induced activity, as measured by intracellular
Ca2� levels, are reduced by 40% (Fig. 4) (Rediger et al.,
2009). Coadministration of �-melanocyte-stimulating hor-
mone (�-MSH) with ghrelin does not affect these changes
in signaling (Rediger et al., 2009).

Much of our knowledge surrounding the MC3R derives
from studies involving MC3R KO animals, which demon-
strate increased adiposity, reduced lean mass, and in-

creased feed efficiency, with mildly reduced or absent
changes in caloric intake and normal metabolic rates
(Butler et al., 2000; Chen et al., 2000). In wild-type ani-
mals, MC3R activation has been associated with anorec-
tic effects (Fan et al., 1997; Thiele et al., 1998; Cowley
et al., 1999).

In the absence of MC3R, the inhibition on GHSR1a is
absent, resulting in an increase in GHSR1a signaling.
While this may explain in part the increase in fat mass in
MC3R�/� animals, it does not explain the hypophagia
sometimes found in these animals (Chen et al., 2000). If
one ignores the traditional caveats of developmental
adaptions in knock-out animals, this suggests that ghre-
lin’s ability to increase feeding, particularly of food with
high fat content, might be dependent on MC3R, with the
possibility that ghrelin-induced, feeding-independent ad-
iposity does not. Indeed, it has been shown that MC3R
KO animals do not display ghrelin-induced hyperphagia
(Shaw et al., 2005). Complicating matters, signaling
downstream of GHSR1a involves amplification of agouti-
related peptide (AgRP), which is an inverse agonist of
MC3R (Breit et al., 2006; Tao et al., 2010). To the best of
our knowledge, no study has examined how AgRP affects
the MC3R-GHSR1a heterodimer.

Additionally, when HEK293 cells are cotransfected with
MC3R and a GHSR1a mutant showing impaired or absent
constitutive activity, heterodimerization still occurs but
amplification of �-MSH-induced cAMP accumulation is
lost, suggesting that the twofold increase in cAMP accu-
mulation depends on GHSR1a basal activity (Rediger

Figure 3 Dimerization between D2R and GHSR1a. Proposed signaling through D2R involves coupling to a Gi pathway, which typically
does not involve intracellular Ca2� accumulation from the endoplasmic reticulum. Dimerization with GHSR1a, in the absence of a
ghrelin ligand leads to a PLC-dependent accumulation of Ca2�. D2R’s G�� subunit acts to stimulate PLC activity, and �i coupling by
D2R is also required for Ca2� accumulation. In contrast, G�q activity associated with GHSR1a is not required for D2R-induced Ca2�

accumulation. It is believed that the D2R-GHSR1a dimer is responsible for the anorectic effects of D2R agonists such as cabergoline.
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et al., 2011). This effect of GHSR1a’s constitutive activity
again demonstrates that the receptor’s basal activity may
show physiological consequences without the need for
the ghrelin peptide.

In examining the GHSR1a-MC3R dimer, Schellekens
et al. (2013) demonstrated that activation by ghrelin or the
synthetic ghrelin agonist MK-0677 causes an increase in
internalized dimers, yet no significant changes are ob-
served when treated with the MC3R agonist [Nle4,D-
Phe7]-�-MSH. Interestingly, under basal conditions when

expressed with MC3R, a higher level of GHSR1a internal-
ization is found (Schellekens et al., 2013). These addition-
ally internalized receptors are for the most part dimerized
with MC3R (Schellekens et al., 2013), suggesting that
dimerization with MC3R may not only lead to reduced
efficiency of GHSR1a signaling, but also to reduced sur-
face expression of the receptor.

While GHSR1a constitutive activity is required for am-
plification of MC3R signaling, it has minimal effect on
GHSR1a-MC3R dimer internalization, as treatment with

Figure 4 Dimerization between MC3R and GHSR1a results in amplification of MC3R signaling and attenuation of GHSR1a signaling.
While it is believed that the pathways involved are not changed, changes in the amplitude of the signals occur. Dimerization with
stimulation of MC3R leads to a twofold amplification of MC3R-induced cAMP accumulation (top), while the GHSR1a protomer shows
a ligand-dependent as well as ligand-independent 40% reduction in Ca2� accumulation when dimerized with MC3R (bottom).
Amplification of MC3R signaling appears to be dependent on GHSR1a’s constitutive activity.
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the GHSR1a inverse agonist SP-analog only results in a
small, nonsignificant reduction in internalization (Schellek-
ens et al., 2013). However, this mild reduction is enough
to demonstrate a significant increase in cointernalization
in response to [Nle4,D-Phe7]-�-MSH when compared to
the SP-analog treatment (Schellekens et al., 2013). In
contrast, treatment with [Nle4,D-Phe7]-�-MSH does not
result in a significant increase in cointernalization when
compared to controls (Schellekens et al., 2013).

Nevertheless, both Schellekens et al.’s (2013) and Re-
diger et al.’s (2009) studies demonstrate a significant
loss of both ligand-independent and ligand-dependent
GHSR1a-mediated Ca2� accumulation when the GHSR1a is
dimerized with the MC3R. These data suggest that
GHSR1a signaling may be compromised in areas such as
the arcuate nucleus, where high levels of both MC3R and
GHSR1a expression are reported (Rediger et al., 2009).
The conditions that lead to this dimerization, as well as the
specific cell groups showing coexpression of both
GHSR1a and MC3R, remain to be fully characterized and
should be examined in detail. In particular, looking at the
melanocortin system by way of examining which neurons
show dimerization between MC3R and GHSR1a may add
a new level of complexity in the mechanisms underlying
the melanocortin feeding system.

GHSR1a dimerization with 5-HT2C results in reduced
GHSR1a signaling
Recently, the 5-HT2C receptor has also been identified as
a dimerization partner of GHSR1a (Fig. 5). Like the
GHSR1a, the 5-HT2C serotonin receptor signals through a

G�q pathway, leading to Ca2� accumulation (Schellekens
et al., 2013). Paradoxically, stimulation of the 5-HT2C

receptor results in decreased food intake and adiposity,
while mutations to the gene encoding for this receptor
result in obesity (Sargent et al., 1997; Martin et al., 1998;
Nonogaki et al., 1998; Somerville et al., 2007; Garfield and
Heisler, 2009). One proposed mechanism of action is that
stimulation of 5-HT2C receptors in pro-opiomelanocortin
(POMC) neurons within the arcuate nucleus of the hypo-
thalamus leads to increased release of �-MSH (Garfield
and Heisler, 2009).

Recently, Schellekens et al. (2013) examined the pos-
sibility of a 5-HT2C-GHSR1a heterodimer that explained
the interaction between serotonin and ghrelin reported in
the literature. This included, for instance, negative feed-
back from 5-HT2C receptor agonism onto ghrelin levels in
overnight fasted mice (Nonogaki et al., 2006); the inhibi-
tion of serotonin release by ghrelin in rat hypothalamic
synaptosomes (Brunetti et al., 2002); the effects of sero-
tonin on reward-related behaviors (Higgins and Fletcher,
2003; Alex and Pehek, 2007); the ability of serotonin to
block ghrelin’s orexigenic effects (Currie et al., 2010); and
some of the overlapping expression profiles of 5-HT2C

and GHSR1a (Abramowski et al., 1995; Guan et al., 1997;
Cowley et al., 2003; Zigman et al., 2006). This group
demonstrated that dimerization occurs between 5-HT2C

and GHSR1a. In particular, pretreatment with the
GHSR1a inverse agonist SP-analog results in cross-
sensitization to the 5-HT2C response in cells coexpressing
GHSR1a and 5-HT2C (Schellekens et al., 2013). Typically,
in cells expressing GHSR1a alone, pretreatment with SP-

Figure 5 Dimerization between 5-HT2C and GHSR1a. When dimerized with 5-HT2C. GHSR1a displays a 65% reduction in ghrelin-
induced Ca2� accumulation, with this effect not requiring the presence of a 5-HT2C ligand. While changes in serotonergic signaling
associated with the dimer through 5-HT2C have not yet been observed, cross-desensitization, cross-sensitization, and cointernal-
ization do occur.
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analog results in increased surface expression of GHSR1a
and increased sensitivity. Additionally, cells expressing
both receptors show a 65% attenuation of Ca2� accumu-
lation in response to ghrelin or the ghrelin agonist MK-
0677, with this attenuation being mostly restored by the
5-HT2C specific antagonist RS102221. Interestingly, be-
yond sensitivity and internalization effects, no immediate
modification of 5-HT2C signaling occurs in any of these
situations (Schellekens et al., 2013).

When exposed to ghrelin, an increase in 5-HT2C-
GHSR1a dimer cointernalization occurs (Schellekens
et al., 2013). While exposure to the synthetic GHSR1a
agonist MK-0677 results in an increase in internalization,
this increase does not reach significance when compared
to control, whereas it does reach significance compared
to SP-analog (Schellekens et al., 2013). Schellekens et al.
(2013) suggest that the lack of significance is likely due to
the high levels of cointernalization under control condi-
tions. Overall, it appears that GHSR1a dimerization with
5-HT2C reduces overall ghrelin signaling, and hence may
reduce feeding behavior.

Possible Dimerization with the
Cannabinoid Receptor Type 1
While dimerization between the endocannabinoid recep-
tor CB1 and GHSR1a has not been examined directly,
there is evidence suggesting that such dimerization may
occur. It has been previously shown that both ghrelin (via
GHSR1a) and the cannabinoids (via CB1) have orexigenic
effects (Williams et al., 1998; Inui, 2001), with both in-
creasing AMP-activated protein kinase (AMPK) activity in
the hypothalamus and reducing it in the liver and adipose
tissue (Kola et al., 2005). Interestingly, Kola and col-
leagues (2008) demonstrated that ghrelin’s orexigenic and
stimulating AMPK effects in the hypothalamus are lost in
CB1 KO or mice treated with the CB1 antagonist Rimon-
abant. Patch-clamp electrophysiology of parvocellular
neurons of the paraventricular nucleus also indicated that
application of the CB1 antagonist AM251 eliminated ghre-
lin’s electrophysiological effects (Kola et al., 2008). In
addition to this, ghrelin increases endocannabinoids in
the hypothalamus of wild-type but not CB1 KO mice (Kola
et al., 2008). Conversely, administration of HU210 (a CB1
agonist) significantly stimulated hypothalamic AMPK ac-
tivity and inhibited visceral fat and liver AMPK activity in
wild-type mice, but these effects were lost in GHSR KO
animals (Lim et al., 2013). Additionally, while no signifi-
cance was found, a trend to an increase in food intake
with intraperitoneal injection of HU210 was observed; this
trend was not visible in GHSR KO mice (Lim et al., 2013).

These data provide preliminary evidence of the possible
dimerization between CB1 and GHSR1a, as suggested by
Lim et al. (2013). Despite this, one must also consider the
possibility that this dependence is not due to dimerization.
In one model suggested by Kola and Korbonits (2009),
endocannabinoid synthesis is placed downstream of
GHSR1a activation, with GHSR KO animals having no
endocannabinoid-associated response to ghrelin admin-
istration. However, the bidirectional dependency between
CB1 and GHSR1a presented in the study is suggestive of

a receptor interaction. Nevertheless, it is possible that
positive feedback between the two systems is required
for ample Ca2� accumulation to occur to induce increases
in AMPK and affect feeding. In addition to ghrelin losing
its feeding effect in CB1�/� animals, neuropeptide Y
(NPY) has also been shown to lose its feeding effect in
CB1�/� animals (Poncelet et al., 2003). In Kola’s model,
NPY signaling occurs downstream of both GHSR1a and
CB1. Whether a possible positive feedback loop includes
NPY as well is not known, but the system is no doubt
more complicated than presented here.

General treatment approaches
As summarized in Figure 6, the dimer partners dis-
cussed in this review provide hints as to possible treat-
ment targets for various disorders and conditions. In
some cases, these treatments could involve the use of
multiple drugs to provide a synergistic effect, amplifying
the effect seen when only one drug is administered. In
others, supplementing a treatment with an amplifying
agent may have beneficial off-target effects beyond syn-
ergy. In such cases, not only do these treatments amplify
neurotransmitter receptor signaling, but they may have
other possible effects such as reduction in depression,
neuroprotection, and stimulation of appetite—all effects
that may relate to the effects on GHSR alone and not the
dimer. The identification of GHSR heterodimers certainly
opens the door for potential new treatments and treat-
ment adjuvants that could improve a number of chronic
psychiatric and metabolic conditions.

Targeting the D1R-GHSR1a dimer for treatment of
Parkinson’s disease
A standard treatment for Parkinson’s disease typically
involves the use of drugs that restore dopamine con-
centrations from the low levels caused by the loss of
dopaminergic neurons in the substantia nigra (Mercuri
and Bernardi, 2005). The coexpression of the ghrelin
and D1 receptors in this area suggests that supple-
menting this treatment, or perhaps even replacing it,
with a ghrelin mimetic may help amplify D1 signaling of
the remaining dopaminergic activity. The addition of a
ghrelin mimetic may also aid through other ghrelin-
related actions, including neuroprotection. Indeed, sev-
eral studies have examined the beneficial effects of
ghrelin in treatment for Parkinson’s disease. In partic-
ular, ghrelin and its receptor have been shown to
protect dopaminergic function from 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced degenera-
tion in the substantia nigra pars compacta and the
dorsal striatum (Andrews et al., 2009; Moon et al.,
2009). Andrews and colleagues (2009) demonstrated that
MPTP-induced dopaminergic dysfunction is amplified in
GHSR KO animals, and selective re-expression of
GHSR1a in catecholaminergic neurons of GHSR KO ani-
mals reduced this degeneration. These data suggest that
ghrelin may aid in two ways: (1) by amplifying the remain-
ing dopaminergic signaling through the D1R-GHSR1a
dimer, and (2) by providing neuroprotective effects that
may aid in slowing the progression of further dopaminer-
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gic degeneration, which may be the result of GHSR sig-
naling alone.

Treating drug addiction and preventing relapse with
ghrelin antagonists
There is now substantial evidence suggesting that GHSR
located in the mesolimbic dopaminergic system is asso-
ciated with the amplification of reward-seeking behaviors,
including those associated with drugs of abuse (Abizaid,
2009; Dickson et al., 2011; Suchankova et al., 2013;
Wellman et al., 2013; Leggio et al., 2014). Given the
described D1R-GHSR1a dimer, one could propose that
GHSR antagonism reduces the reinforcing effects of
drugs of abuse like alcohol, nicotine, and cocaine by
reducing D1 receptor signaling produced by the D1R-
GHSR1a dimer. Enhanced D1 receptor signaling would
also explain why addicts are more prone to relapse when
stressed or hungry, both conditions that augment ghrelin
secretion and sensitivity (Carroll, 1985; Brown et al., 1995;
Shalev et al., 2000; Shalev et al., 2001; Goeders, 2003;
Sinha et al., 2006). In these cases, increases in acylated
ghrelin levels, or increased GHSR1a expression, may en-
hance the sensitivity of the mesolimbic dopaminergic sys-
tem where GHSR1a and D1R are coexpressed. Relapse
may then be more a function of dopaminergic sensitivity,
as mediated by the ghrelin receptor. If such hypotheses
are correct, administration of a GHSR1a antagonist or a
GOAT inhibitor may aid in drug addiction as well as in
dieting. Pharmacological blockade of the GHSR1a or ge-
netic ablation of this gene would result in decreased
reward seeking behaviors. Indeed this seems to be the
case, as GHSR1a KO mice display reduced food-
anticipatory activity (Blum et al., 2009; Davis et al., 2011)
and reduced food reward as measured by conditioned
place preference (Zigman et al., 2005; Egecioglu et al.,
2010; Perello et al., 2010; Chuang et al., 2011). Further-

more, locomotor responses to cocaine and alcohol self-
administration are attenuated in GHSR1a- and ghrelin-
deficient mice and rats (Jerlhag et al., 2010; Abizaid et al.,
2011; Clifford et al., 2012). More research is needed,
however, to specifically target the D1R-GHSR dimer and
pinpoint its role in reward mechanisms, but it is clear that
this would represent a fresh target for the treatment of
addictions and the prevention of relapse.

GHSR1a heterodimers as a target for the treatment
of schizophrenia, obesity, and addiction
5-HT2C -GHSR1a dimer
In general, patients suffering from schizophrenia are
treated with typical or atypical antipsychotic drugs. Typ-
ical antipsychotics generally block D2 dopamine receptor
signaling, whereas atypical antipsychotics block both D2-
like receptors and serotonin 5-HT2A receptors. Both
classes of antipsychotic medications have a number of
side effects that include motor dysfunction (dyskinesia),
obesity, and cardiovascular disease, as well as some
endocrine abnormalities (for review, see Young et al.,
2015). Interestingly, 5-HT2C receptor modulators, and in
particular 5-HT2C agonists, have been identified as poten-
tial antipsychotic medications with fewer side effects (for
review, see Rosenzweig-Lipson et al., 2012). Indeed
5-HT2C agonists appear to regulate DA neurotransmission
by decreasing DA cell activity in the VTA, a region also
rich in GHSR1a expression (Di Giovanni et al., 2000).
Additionally, treatment with 5-HT2C antagonists enhances
ghrelin-induced food intake, whereas treatment with lor-
caserin, a 5-HT2C agonist, decreases ghrelin-induced
food intake (Schellekens et al., 2015). These behavioral
effects may be mediated by internalization or changes in
sensitivity of the 5-HT2C-GHSR1a receptor dimer.

Interestingly, pretreatment with the GHSR inverse ago-
nist SP-analog enhances 5-HT2C intracellular receptor

Figure 6 Selected areas of interest involving possible GHSR1a dimers along with postulated roles/treatments. Brain figure adapted
from the Allen Mouse Brain Atlas (Lein et al., 2007).
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signaling, supporting the notion that inverse agonists of
the GHSR (and perhaps antagonists) may augment the
effectiveness of 5-HT2C in the treatment of schizophrenia.
These effects, however, are likely sensitive to the timing of
exposure of the dimer to the various ligands. Furthermore,
given that the effects of 5-HT2C agonists also include
weight loss and a reduction in reward-seeking behaviors,
the use of compounds that enhance 5-HT2C signaling
would also be clinically relevant for the treatment of obe-
sity or to prevent relapse to drug abuse. This certainly
warrants further exploration.

D2R-GHSR1a dimer
When Kern et al. (2012) administered the D2R agonist
cabergoline following pretreatment with the GHSR1a neu-
tral antagonist JMV2959, cabergoline’s anorexigenic ef-
fects were lost. Based on this result, the authors
argue that antagonism of the ghrelin system may exacer-
bate rather than ameliorate obesity. Complicating the
matter, administration of ghrelin still leads to cross-
desensitization of dopamine-induced Ca2� mobilization,
and while ghrelin antagonism also reduces this mobiliza-
tion, it is possible that concurrent cross-sensitization may
also occur, which may possibly carry beyond the time-
frame of bioavailability of such an antagonist. The balance
between such effects, particularly over a prolonged time-
frame, including effects at other GHSR1a monomers or
GHSR1a heterodimers with other receptor types, must be
taken into consideration.

MC3R-GHSR1a dimer
Being a system involved in satiety, the melanocortin sys-
tem is a promising target for treatment of obesity and
diabetes. While the melanocortin 4 receptor (MC4R) has
often been the target for obesity treatment, to the best of
our knowledge no dimerization between GHSR1a and
MC4R has been identified. As was done in the study of
D2R’s anorexigenic effects, the role of the GHSR1a-
MC3R dimer may be teased apart by examining GHSR
KO animals and MC3R agonists/antagonists. In addition
to its role in feeding, evidence suggests that activation of
MC3R may aid in insulin sensitivity and glucose control.
While MC4R KO mice generally demonstrate a more se-
vere diabetic phenotype, male MC3R KO mice neverthe-
less do display mild impairments in insulin sensitivity and
glucose control, along with increased adiposity (Butler
et al., 2000; Sutton et al., 2006). Administration of a
melanocortin agonist to mice lacking MC4R but not
MC3R improves hyperinsulinemia and homeostasis
model assessment of insulin resistance (HOMA-IR) scores
(Kumar et al., 2009). Furthermore, the coexpression of
MC3R and GHSR1a in the hypothalamic arcuate nucleus
suggests that this dimer may play a role in arcuate-
mediated feeding behavior (Roselli-Rehfuss et al., 1993;
Howard et al., 1996; Guan et al., 1997; Kistler et al., 1998;
Jégou et al., 2000; Archer et al., 2004; Rediger et al.,
2009).

Within the GHSR1a-MC3R dimer, the GHSR1a inverse
agonist SP-analog eliminates amplification of MC3R sig-
naling (Rediger et al., 2011), an effect likely due to the
dependence on GHSR1a constitutive activity. While SP-

analog has been shown to reduce weight gain, and hence
likely aid in treatment of diabetes and obesity (Asakawa
et al., 2003), when considering the dimer alone this atten-
uation may not be beneficial. GHSR1a neutral antago-
nists, however, do not eliminate basal activity, although
the effects of such compounds on GHSR1a-MC3R have
not been examined. Although there is no reason to believe
that a neutral antagonist would directly affect MC3R sig-
naling, the possibility remains that such an antagonist
may lead to cross-sensitization or reduced internalization
of the dimer, in effect amplifying MC3R signaling further
through increased surface expression or sensitization.

CB1-GHSR1a dimer
While dimerization between the CB1 and GHSR1a recep-
tors has not been fully confirmed, there is evidence sug-
gesting that feeding responses to cannabinoids require
intact GHSR1a receptors, and feeding responses to ghre-
lin require CB1 receptors. While one would suspect that
coadministration of rimonabant, a selective CB1 antago-
nist, with a GHSR1a antagonist or inverse agonist may
help to decrease appetite, or may reduce body weight
with less side effects due to reduced dosage (Rinaldi-
Carmona et al., 1994; Després et al., 2005), our current
understanding of this potential dimer is too limited to
allow us to speculate how such poly-drug treatment
would affect signaling at the dimer. Alternatively, a com-
bination of CB1 and GHSR1a agonists could be used to
increase appetite and decrease nausea, for instance, in
patients undergoing chemotherapy. Understanding the
intracellular mechanisms underlying the interaction be-
tween these receptors may help improve CB1- or
GHSR1a-based treatments to combat obesity.

Conclusion
One of the big questions surrounding the ghrelinergic
system has been the role of the ghrelin receptor in the
brain. Demonstrating the presence of the ghrelin peptide
centrally has remained difficult, and hence no definite
ligand for GHSR1a has been identified in many areas of
the brain. Following the identification of GHSR1a’s con-
stitutive activity, investigators quickly started identifying
dimerization partners of GHSR1a that occur under normal
biological conditions with considerable evidence of activ-
ity resulting from the dimerized complexes. Thus, even in
the absence of GHSR1a’s natural ligand, GHSR1a ap-
pears to have significant physiological effects via these
protein�protein complexes.

Understanding how these dimers work, including how
the signaling of each protomer is modified and how they
affect different pathways and systems, is an area that
should be enthusiastically studied by those interested in
the development of novel pharmacological treatments.
Being a receptor involved in many systems, including
reward, feeding, and memory, GHSR1a represents an
important target for the treatment of psychiatric and met-
abolic disorders. Due to its broad distribution, however, a
wide range of side effects would be expected by targeting
this receptor. While the technology does not yet exist, by
narrowing the pharmacological target of drugs to specific
dimers involving GHSR1a, it may be possible to signifi-
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cantly reduce side effects while targeting with more pre-
cision the culprits involved in the disorder being treated.
Regardless of our ability to develop such drugs, by in-
creasing our understanding of the changes induced by
dimerization, one would hope that our ability to under-
stand and treat disorders, such as through poly-drug
treatments, will improve. Identification of the dimer part-
ners presented here, which include 5-HT2C, MC3R, D1R,
D2R, and CB1, represents only the beginning of our
knowledge regarding dimerization involving GHSR1a. We
can say with confidence that many more dimer partners
will be identified within the near future.
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