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Abstract

The Alanine-Serine-Cysteine transporter ASCT2 (SLC1A5) is a membrane protein that
transports neutral amino acids into cells in exchange for outward movement of intracellular
amino acids. ASCT2 is highly expressed in peripheral tissues such as the lung and intes-
tines where it contributes to the homeostasis of intracellular concentrations of neutral amino
acids. ASCT2 also plays an important role in the development of a variety of cancers such
as melanoma by transporting amino acid nutrients such as glutamine into the proliferating
tumors. Therefore, ASCT2 is a key drug target with potentially great pharmacological impor-
tance. Here, we identify seven ASCT2 ligands by computational modeling and experimental
testing. In particular, we construct homology models based on crystallographic structures of
the aspartate transporter Gltpy, in two different conformations. Optimization of the models’
binding sites for protein-ligand complementarity reveals new putative pockets that can be
targeted via structure-based drug design. Virtual screening of drugs, metabolites, frag-
ments-like, and lead-like molecules from the ZINC database, followed by experimental test-
ing of 14 top hits with functional measurements using electrophysiological methods reveals
seven ligands, including five activators and two inhibitors. For example, aminooxetane-3-
carboxylate is a more efficient activator than any other known ASCT2 natural or unnatural
substrate. Furthermore, two of the hits inhibited ASCT2 mediated glutamine uptake and pro-
liferation of a melanoma cancer cell line. Our results improve our understanding of how sub-
strate specificity is determined in amino acid transporters, as well as provide novel scaffolds
for developing chemical tools targeting ASCT2, an emerging therapeutic target for cancer
and neurological disorders.
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Author Summary

ASCT2 is a membrane protein that imports neutral amino acids into cells in exchange for
intracellular amino acids. ASCT?2 is highly expressed in peripheral tissues such as the lung,
where it contributes to the homeostasis of intracellular concentrations of neutral amino
acids. Recently, ASCT?2 has been shown to be important for nutrient uptake in repro-
grammed cancer networks. Here, we use an innovative computational approach that
includes homology modeling and ligand docking to model the structure of this transporter
in two distinct conformations, and virtually screen large compound libraries against these
models. We use a variety of experimental assays and functional measurements to confirm
seven new ligands for this transporter, including five activators and two inhibitors. This
combined approach reveals specificity determinants for ligand-binding and transport,
including previously unknown pockets to be targeted via structure-based drug design. The
results improve our understanding of how substrate specificity is determined in amino
acid transporters and provide a framework for developing potent chemical tools and
potential drugs targeting ASCT2, an emerging therapeutic target for cancer and neurologi-
cal disorders.

Introduction

The solute carrier 1 family (SLC1) consists of five glutamate transporters (Excitatory Amino
Acid Transporters, EAATSs) that contribute to the regulation of synaptic concentrations of glu-
tamate—the primary excitatory neurotransmitter in the central nervous system (CNS); and
two neutral amino acid transporters (Alanine-Serine-Cysteine transporters, ASCT1 and 2) that
exchange amino acids in neurons and/or cells of the peripheral tissues, to contribute to the
homeostasis of intracellular concentrations of neutral amino acids [1]. ASCT2 (SLC1A5) isa
sodium-dependent transporter located in the lung, kidney, intestines, and testis, where it trans-
ports small neutral amino acids across the cell membrane. ASCT2 expression levels are
increased in various types of cancer, including glioblastoma multiforme (GBM) [2], neuroblas-
toma [3], lung cancer [4], prostate cancer [5] and melanoma [6]. ASCT2 was suggested to play
a key role in cancer metabolism by supplying growing tumor cells with amino acids that are
used as nutrients to build biomass and as signaling molecules to activate growth and prolifera-
tion pathways such as the mTOR pathway [7,8]. Thus, ASCT?2 is a potential cancer drug target,
where a compound interacting with ASCT?2 can be an inhibitor that deprives the cancer cells of
nutrients, a cytotoxic ASCT2 substrate with an intracellular target (e.g., a metabolic enzyme),
or alow affinity ligand (a substrate or inhibitor) that acts as inhibitor or substrate on multiple
targets, including ASCT?2 [9].

Currently, no experimentally determined atomic structures for any of the human SLCI1 fam-
ily members, including ASCT2, are known. However, structures of an SLC1 homolog, the
aspartate transporter Gltpy,, from the archaean organism Pyrococcus horikoshii, have been
determined in different conformations of the transport cycle [10,11]. Gltp}, shares 24-35%
sequence identity and the same number of transmembrane helices (i.e., eight) with the human
SLCI family, as well as a conserved binding site; therefore the Gltp, structure is the most suit-
able template for generating homology models of the SLC1 members [1,10,12]. Indeed, previ-
ous homology models for various human SLCI1 family members [13-15] have revealed
important structure-function relationships in the SLC1 family. For example, Scopelliti et al.
have recently converted the substrate specificity of ASCT1 from transporting neutral amino
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acids to transporting glutamate by mutating three binding site amino acids (e.g., A3827T),
revealing previously unknown specificity determinants for the SLCI family [15].

In addition, structure determination of Gltpy, structures in different conformations with X-
ray crystallography [10,11] and experimental characterization of this protein using other
approaches (e.g., double electron-electron resonance spectroscopy [16]) have contributed to
our understanding of the dynamics of the SLC1 family. For example, it was shown that Gltpy,
exists in a conformational ensemble of protomers that sample the outward-facing and inward-
facing states with nearly equal probabilities, and that specific mutants adopt unique conforma-
tions [16]. These studies, together with computational analyses [17,18], confirm that Gltpy,, and
likely the human SLCI1 family members, including ASCT?2, transport ligands across the cell
membrane via the ‘alternating access’ transport mechanism in which the transporter under-
goes conformational changes between extracellular outward-facing and intracellular inward-
facing states, and the substrate binding sites can be exposed to either side of the membrane
[19]. Particularly, it has been suggested that Gltp;, transports substrates via an “elevator mecha-
nism”, where one domain remains static while the transport domain makes substantial move-
ment from the extracellular side to the intracellular side as a rigid-body [20]. Two hairpin
loops, HP1 on the intracellular side and HP2 on the extracellular side, act as gates that allow
the release and binding of the substrate. Describing the structural basis for substrate specificity
in the SLCI family and further characterization of this pharmacologically important trans-
porter family is expected to expand our understanding of transport in human systems as well
as help in the design of drugs for metabolic diseases and cancer.

Here, we characterize ASCT?2 using a combined computational and experimental approach
[21-24]. We construct structural models of ASCT2 based on structures of Gltpy, in two differ-
ent conformations, and refine the models to distinguish between known ligands and likely
non-binders. We perform virtual ligand screening of various small molecule libraries against
these models, where top scoring hits are tested experimentally for ASCT?2 inhibition and acti-
vation using electrophysiological methods, as well as for their effect on melanoma cell line pro-
liferation and apoptosis. Finally, we describe how the results of this study improve our
understanding of the chemical basis for discriminating inhibitors from activators for ASCT?2,
as well as discuss the pharmacological implications of our results, including the potential use of
the identified ligands as chemical tools to characterize the role of ASCT2 in cancer.

Results and Discussion
ASCT2 homology models

We modeled the ASCT2 structure using MODELLER [25] based on the Gltpy, structures
(sequence identity of ~24%) in two different conformations, including an outward-occluded
(‘occluded’) state and an inhibitor-bound outward open (‘outward-open’) state [10,11] (Meth-
ods). The ASCT2 models contain eight transmembrane helices that make up the entire trans-
membrane region of the protein, as well as one ligand and two sodium ions, which their initial
coordinates were derived from their location on the template structures (Fig 1). Next, the
ASCT2 models in each state were optimized for protein-ligand complementarity by iteratively
sampling different conformations from the initial MODELLER’s models, refining these models
by sidechain modeling on a fixed backbone with SCWRL4 [26], performing minimization with
molecular dynamics (MD) simulations with GROMACS [27], and evaluating how well the
models can discriminate known ligands from decoys with enrichment calculations (Methods).
The final models obtained logAUC values of 33.1 (occluded conformation) and 27 (out-
ward-open conformation) (Fig 2), suggesting that both conformations can be used for produc-
tive virtual screening and that the occluded ASCT2 model captures interactions with ligands
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Fig 1. ASCT2 models in different conformations reveal gating mechanism of the HP2 loop. Side (A) and cytoplasmic (B) view of the ASCT2 models in
the occluded conformation are represented in gray ribbons. The HP2 loop of the outward-open conformation (pink ribbons) is superposed to the occluded
model. Atoms of the substrate cysteine are shown as spheres where oxygen atoms are displayed in red, sulfur in yellow, and carbon atoms in cyan. Sodium

ions are illustrated as small purple spheres.

doi:10.1371/journal.pcbi.1004477.g001

more accurately than the outward-open model [23,28]. These final models include two helical
hairpin loops (referred to as HP1 and HP2), which are inserted into the membrane from its
opposing sides, similar to the equivalent loops in the Gltpy, structures. In the occluded state,
HP2 occludes the substrate from the aqueous environment, while in the outward-open state
HP2 adopts an open conformation and may act as the extracellular gate (Fig 1). Thus, the out-
ward-open state has a significantly larger surface area in the ligand binding site despite overall
high structural similarity (RMSD of 0.5 A).

Occluded state predicts non-trivial substrate-like compounds

We analyzed the predicted docking poses of known ligands against the models of the two con-
formations, and compared them to the Gltpy, structure in complex with the substrate aspartate
(occluded state) and the competitive inhibitor TBOA (outward-open state). The occluded
ASCT2 conformation model reveals a small binding site that limits the size of the ligands and
their mode of interaction with the binding site residues (Figs 3 and 4). In particular, the major-
ity of the interactions between the binding site residues and known ASCT2 ligands are similar
to those in the Gltpy,-aspartate complex structure. For example, the amino and carboxy groups
of ASCT?2 ligands such as serine (Fig 3A) or threonine (Fig 4A) make polar interactions with
Ser353, Pro432, Ile431, Asp464, Thr468, and Asn471 of ASCT2, similar to the interactions that
the corresponding chemical groups of the Gltpy, ligand aspartate make with the Gltpy, binding
site residues (Arg278, Pro356, Val355, Asp394, Thr398, Asn401) (Fig 3A). Notably, the amino
acid substitution of Arg397 in Gltpy, to Cys467 in ASCT2 contributes significantly to ligand
binding specificity among these transporters. In particular, the Gltpy, binding site residues
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Fig 2. Enrichment plots of the ASCT2 models indicate the suitability of the models for productive virtual screening. Enrichment plots of ASCT2 in (A)
the occluded conformation, (B) the outward open conformation and (C) the outward open conformation with Asp460 facing the binding site. The enrichment
plots are represented in red, whereas the plot that is expected by random selection of ligands is represented in a dashed blue line. The bottom panel shows

the enrichment in a semi-logarithmic scale.

doi:10.1371/journal.pcbi.1004477.9002

Arg397 and Asp390 form a salt bridge, in which the basic sidechain atoms of Arg397 also form
hydrogen bonds with the B-carboxy group of the ligand aspartate. In ASCT?2, however, Cys467
substitutes Arg397 of Gltpy, breaking the salt bridge and changing the size, shape, and overall
charge distribution of the binding site. As a result, the region, named “pocket B” (Fig 3B), occu-
pied by the sidechain of Arg397 in Gltpy,, becomes accessible for ligands in ASCT2, where
ligands can interact with Asp460 (which corresponds to Asp390 in Gltpy,) as well as with other,
hydrophobic residues including Phe407 and Val477. Interestingly, in ASCT1, Thr459, which
corresponds to Cys467 in ASCT2, was shown to play a key role in determining substrate speci-
ficity, further supporting the role of this position in mediating interactions with substrates
[15].

We then docked various libraries from the ZINC [29] and KEGG [30,31] databases against
the occluded structural model. We hypothesized that virtual screening against the occluded
conformation model, which is based on the template structure bound to its substrate aspartate,
will capture substrate-like ASCT?2 ligands that can be activators or competitive inhibitors.
Moreover, the binding site of the occluded conformation is small and narrow; thus, the pre-
dicted compounds that interact with this conformation are more likely to be amino-acid ana-
logs. Indeed, various previously-characterized amino acid substrates of ASCT2 ligands were
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Fig 3. Binding sites of ASCT2 and Gltp,, differ in their shape, size, and polarity. The final model of ASCT2 (gray) in an occluded conformation is
superimposed on the X-ray structure of Gltpy, (pink). Key residues are displayed as lines, where oxygen and nitrogen atoms are colored in red and blue,
respectively; the sodium ions are visualized as purple spheres. The L-aspartate coordinates from the Gltpy, structure are depicted by green sticks and L-
serine coordinates derived from the docking of known ligands against the ASCT2 model are visualized with cyan sticks. (A) Hydrogen bonds between L-
aspartate and Gltpy, are shown in dotted yellow lines and between L-serine and the ASCT2 model in dotted black lines. (B) The surface of the binding pocket
is displayed in pink and gray for the template and the model, respectively, to visualize the additional pocket (pocket B) accessible in the model compared to

the Gltpy, structure.

doi:10.1371/journal.pcbi.1004477.g003

ranked highly in our screen, increasing our confidence in the approach. For instance, cysteine
and threonine were ranked #14 and #24, respectively, in the KEGG DRUG docking screen of
6,436 molecules. The top 500 docking poses of molecules from the various ligand screens were
visually analyzed in the context of the predicted pose of the known ligands (Fig 4A and 4B)
[32,33].

Our strategy was to select molecules based on their ability to maintain important conserved
interactions with binding site residues that are needed for function, while also exploring addi-
tional interactions and pockets for each conformation, similarly to approaches taken in previ-
ous successful studies [9,21,23]. Particularly, we picked molecules that form polar interactions
with the binding site residues that were also predicted to interact with the carboxy and amino
groups of the known ligands (e.g., Ser351, Ser353, Ile431, Asp464 and Asn471). Therefore,
because most compounds are expected to consist of amino acid-like scaffold, to increase the
probability of identifying potential novel scaffolds and reduce the bias introduced by the visual
analysis, (i) we selected ligands exploring the newly discovered pocket B, constituted by several
hydrophobic (Phe407 and Val477) and polar residues (Asp460), which is expected to increase
the potential ligands chemical space that can be explored; (ii) We also focused on ‘non-trivial’
amino acid analogs that would unlikely be tested without being highly ranked by virtual screen-
ing. For example, proline is not a ligand of ASCT2 and we tested the proline analog cis-
3-hydroxyproline because it formed additional key interactions with ASCT?2 binding site (e.g.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004477 October 7, 2015 6/22
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Fig 4. Ligand binding mode for the ASCT2 occluded conformation model reveals key residues for substrate binding. Predicted binding modes of
selected known ligands (A-B) and ligands identified in this study (C-F). The backbone atoms of the ASCT2 binding site are visualized in gray cartoon;
sidechain atoms of key residues are illustrated with gray lines and ligands are displayed as cyan sticks, with oxygen, nitrogen, and hydrogen atoms in red,
blue, and white, respectively; hydrogen bonds between the small molecules and ASCT2 (involving residues Phe407, Gly448, Pro446, lle445, Ser353,
Thr468, Asn471) are displayed as dotted gray lines. The small molecule ligands are Threonine (A), 2-amino-3-(propionyloxy)propionic acid (B),
aminooxetane-3-carboxylate (C), cis-3-hydroxyproline (D), acivicin (E), and L-DOPS (F).

doi:10.1371/journal.pcbi.1004477.9004
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Table 1. Experimentally confirmed ligands.

Name?

Alanine (control)

cis-3-hydroxyproline
Aminooxetanecarboxylate (AOC)
Penicillamine
Chloroalanine
Acivicin
L-DOPS

y-FBP

Asnd471, Fig 4D). Finally, eight compounds were selected for experimental testing based on the
occluded model (Fig 4C-4F and Table 1 and S1 Fig).

Experimental testing confirms ASCT2 activators

We used transporter-mediated anion current as a measure of transport/inhibition activity
[34,35] (Methods), because, due to its function as an electroneutral obligate exchanger, ASCT2
does not mediate steady-state transport current. We have previously shown that anion current
is a measure of transport activity [36], due to the kinetic coupling of transport and anion flux,
and this fact is also well established for the homologous glutamate transporters [37], which
have a much more rigorously determined pharmacology [38]. Anion current is activated when
the transporter visits certain states in the transport cycle, such as the fully Na*/substrate occu-
pied state (substrate-induced anion conductance), or the Na*-bound state (leak conductance)
[39]. Thus, transported substrates induce anion current and non-transported inhibitors block
the leak anion current. This kinetic link between transport and anion current can be demon-
strated using a prototypical competitive inhibitor, benzylserine, which is unable to elicit
exchange-mediated transient transport currents in ASCT2-expressing cells, in contrast to the
transported substrate, alanine (S2 Fig) [39]. These transient currents are directly caused by re-
equilibration of the amino acid translocation equilibrium upon voltage jumps and are, thus, a
direct measure of transport. Functional characterization by patch clamping is a powerful
approach when combined with virtual screening that prioritizes molecules from large libraries,
but precludes screening of large amounts of compounds due to its labor-intensive nature.
Inward anion currents were observed upon application for 5 of the 8 selected compounds,
similarly to the native transported substrate alanine (Fig 5A and 5C and 5D), indicating that
these compounds may be transported substrates (activators). One of these previously unknown
ligands, the anti-cancer agent acivicin, is a chemically novel ASCT2 ligand (Tanimoto coefti-
cient (Tc) of 0.46 to the most similar known ASCT?2 ligand), although the apparent affinity is
fairly low (Table 1). Two of the compounds (AIB and thiazolidine-2-carboxylate) did not elicit
any significant response, at concentrations up to 5 mM, indicating that they do not interact

Inax” Km® (mM) Tc
1 0.41 £0.02
Occluded conformation
1.39 £ 0.1 0.019 £ 0.01 0.51
117 £0.13 0.22 +0.02 0.55
0.68 + 0.08 1.37 £ 0.68 0.64
1.28 £ 0.22 0.90 £0.12 0.62
0.45 £ 0.03 5115 0.46
-0.03 £ 0.01 1.95+0.9 0.55
Outward-open conformation
-0.64 £0.13 0.087 + 0.022 0.47

a Name is the generic name of the molecule. Chemically novel ligands are marked with bold font

b Imax Marks the maximum currents relative to 1 mM alanine

¢ Ky, is the K;,, values for the active compounds

d Tc is the Tanimoto coefficient calculated relying on Daylight fingerprints. Tc values of < 0.5 suggest that the molecule is a chemically novel ASCT2

ligand

doi:10.1371/journal.pcbi.1004477.1001
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Fig 5. Electrophysiological methods confirm predicted activators and inhibitors. (A-C) Representative whole-cell current traces in response to 1 mM of
alanine, L-DOPS, and aminooxetane-3-carboxylate (AOC) applied at the time indicated by the gray bar. (D) Dose response curves for AOC and penicillamine
(membrane potential = 0 mV, internal buffer contained 130 mM NaSCN and 10 mM alanine, external buffer contained 140 mM NaCl). (E) Maximum whole-
cell currents relative to that induced by 1 mM alanine (membrane potential = 0 mV, internal buffer contained 130 mM NaSCN and 10 mM alanine, external

buffer contained 140 mM NaCl).
doi:10.1371/journal.pcbi.1004477.9005
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with ASCT2. Two other compounds, N-(2-phenylethyl)tryptophan and 3-{[(1H-imidazol-
2-ylmethyl)(methyl)amino]methyl}-5-methyl-1H-indole-2-carboxylic acid, were poorly solu-
ble in water and required 5% DMSO for solubilization at concentrations higher than 1 mM. At
the maximum concentration tested, 500 uM, these compounds were also inactive. They were
not included in Fig 5E due to these solubility problems. Some other compounds, including
chloroalanine, cis-3-hydroxyproline, and penicillamine activated inwardly-directed anion cur-
rents, three of them with a higher I,,,., than that of alanine (Table 1). These results indicate that
these compounds are more effective activators of the ASCT2 anion conductance, and are, pos-
sibly, more rapidly transported. For example, cis-3-hydroxyproline induces a relative current
of 1.39—the highest activity of all the active compounds (Fig 5E and Table 1). Surprisingly, cis-
3-hydroxyproline is a proline derivative. Proline is a known non-ligand of ASCT2, and has
been tested here as negative control (Fig 5E). The hydroxyl moiety of the proline establishes
hydrogen bonds with residue Asn471, which likely contributes to the increased affinity of the
compound (Fig 4D). These results demonstrate the strength of relatively unbiased structure-
based virtual screening in capturing ligands that would unlikely be considered for testing other-
wise. The overall structure of the newly identified ASCT?2 activators includes a small neutral
amino acid scaffold, in which an oxygen atom connected to the C, atom makes key polar inter-
actions with binding site residues. This provides an initial pharmacophore model for designing
better ASCT?2 cytotoxic substrates for cancer therapy.

Finally, L-DOPS, was found to be a weak inhibitor of the ASCT2 leak anion conductance
(Fig 5B and 5E), inducing apparent outward current by inhibiting leak anion outflow from the
cell. L-DOPS current responses, although small, were always outward directed, indicating that
the inhibitory effect, while small, is significant. In contrast, the currents elicited by 4-hydroxy-
proline-benzylether were too small to be measurable in most cells, or randomly inward or out-
ward directed, suggesting that the response was not significantly different from zero. In
addition of inducing only small outward current, L-DOPS also showed low apparent affinity,
with a K| of about 2 mM (Table 1). Due to this low affinity, L-DOPS was unable to significantly
inhibit alanine-induced responses at concentrations up to 5 mM. The modulation of ASCT2 by
acivicin and L-DOPS, both of which are also ligands of the L-type amino acid transporter 1
(LAT-1) [22], suggests that ASCT2 and LAT-1 have common ligands and that drugs targeting
nutrient transporters can potentially be designed to interact with both proteins simultaneously.

Outward facing model reveals new pocket

The ASCT2 model in the outward-open conformation was based on Gltp, structure bound to
the amino acid analog TBOA. TBOA is a weak inhibitor of Gltp, [11] but interacts with low
micromolar affinities with mammalian glutamate transporters such as the EAATSs. Thus, the
model is thought to approximate a conformation that is incapable of transport. Our rationale
was, therefore, that a model based on an inhibited conformation would be useful for identifying
putative inhibitors. Some of the interactions between the ligands with the ASCT2 binding site
are similar to the ASCT2-ligand interactions in the occluded model. In particular, the amino
and carboxy groups of the amino acid ligands form polar interactions with the binding site res-
idues Ser351 (backbone), Ser353, Asp464, Thr468, and Asn471 (Fig 6A). These interactions are
also conserved with respect to the template structure, in which the amino acid analog TBOA
interacts with the corresponding residues in Gltpy, (i.e., Arg276, Arg278, Asp394, Thr398 and
Asn401). Notably, two key features in the binding site of the outward-open conformation
model likely contribute to its preference for amino acid-like ligands with a larger and more
hydrophobic sidechain. First, HP2 is in an open conformation, leading to an increased surface
accessible area in the ligand binding site compared to that of the occluded state (Fig 6B). The

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004477 October 7, 2015 10/22
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Fig 6. Outward-open conformation reveals an additional novel pocket. (A) Predicted binding mode of the known inhibitor benzylcysteine derived from
docking. The backbone atoms of ASCT2 are visualized as gray cartoon, with key residues establishing hydrogen bonds with the ligand in gray sticks, with
oxygen, nitrogen, and hydrogen atoms in red, blue, and white, respectively. Two potential rotamers of Asp460 including the orientation facing the binding site
(in pink) and surface (gray) are shown as sticks. Sodium ions are represented in purple spheres. (B) The binding site surface of the outward-open model of
ASCT2 bound to benzylcysteine reveals the novel pocket (pocket A) resulting from the opening of HP2.

doi:10.1371/journal.pcbi.1004477.9g006

hydrophobic sidechain of TBOA occupies this additional binding pocket in the ASCT2 model
(‘pocket A’), analogously to the Gltpy, structure. Second, similarly to the occluded state model,
Cys467 in ASCT2 replaces Arg397 in Gltpy, to break a salt bridge with Asp460 (Asp390 in
Gltpy,) and thus reveals the additional pocket accessible for binding (named ‘pocket B’ as in the
occluded state) (Fig 6B). Therefore, we tested the hypothesis whether in the outward-open
model, similarly to the occluded state model, Asp460 faces the binding pocket and directly
interacts with the ligand (Fig 6A). However, logAUC scores for ASCT2 model with Asp460
sidechain facing the binding pocket and a model with this sidechain facing the surface were 27
and 11.1, respectively, indicating that the model with Asp460 sidechain facing the pocket can-
not distinguish between known ASCT?2 ligands and decoys any better than random. This sug-
gests that, for this conformation, Asp460 is unlikely to be involved in ligand coordination and
is more likely to face the surface (Fig 6A). Moreover, this result highlights the utility of iterative
modeling and docking to refine structures, thereby capturing functionally important residues
and regions on the protein surface.

Next, we docked various small molecule libraries from the ZINC database against the out-
ward-open model. The binding site of this conformation is larger than that of the occluded
model; therefore, the outward-open binding site is likely to accommodate inhibitors, which are
larger than the molecules captured by the occluded model. We tested experimentally molecules
that: i) interact with the conserved binding site residues that form the polar interactions with
the amino and carboxy group of the known ligands (e.g., Ser351 and Asp464 interact with the
amino moiety of the backbone of amino acids, whereas Ser353 and Asn471 interact with the
carboxy moiety of the substrates); and molecules that ii) bind pockets A or B to increase the
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chemical space and binding affinity of potential hits. Overall three compounds matching those
criteria were selected. Again, although we selected amino acid-like compounds, this transporter
is highly specific, where molecules within one or two heavy atoms of known ligands do not nec-
essarily interact with ASCT2 [14]. Moreover, these compounds are chemically dissimilar to
known ASCT?2 ligands, as measured by their Tanimoto Coefficient (Tc) values (Table 1 and S1
Fig). Furthermore, these putative ligands are predicted to bind newly identified pockets sug-
gesting a novel mode of interaction of ASCT?2 with small molecule ligands.

Experimental characterization of predicted ligands suggests new
inhibition mode

Surprisingly, of the three selected compounds, the proline derivative y-FBP (Fig 7A) was found
to elicit large outward current (response of -0.64 + 0.13 uM relative to saturating [alanine], Fig
7B and Table 1), indicating that it is an inhibitor of ASCT?2 function. Consistent with this
result, y-FBP was able to alleviate alanine activation at concentrations down to 100 uM (Fig
7D). In addition, the apparent K; for y-FBP in the absence of alanine (87 £ 22 uM, Fig 7C and
Table 1) was increased in the presence of alanine (Fig 7D, K; of 250 £ 75 pM), an effect that is
expected for competitive inhibition. If inhibition were purely non-competitive, the K; would be
expected to be independent of alanine concentration, in contrast to the experimental data.

v-FBP is a chemically novel ligand for ASCT?2, exhibiting Tc of 0.47 to the most closely
related known ASCT2 ligand (Table 1). The result that a proline derivative is the most potent
inhibitor discovered in this study is particularly intriguing because proline is not an ASCT2
ligand (Fig 5E) and because a different proline derivative was shown to activate ASCT2 (Fig 5E
and Table 1). This unexpected activity of y-FBP can be explained by a novel hydrophobic scaf-
fold that includes an aromatic ring capable of forming n-m interactions with Phe407 of pocket
B, and a fluorine atom (Fig 7A). Fluorine atoms have been shown to improve the therapeutic
activities of drugs by enhancing their affinities in various ways, one of them being the interac-
tion of the fluorine with the peptide bond [40]. In this particular case, the fluorine atom points
toward the Val364-Asp365 peptide bond (Fig 7A). In summary, the outward-open model has a
larger binding site facilitating targeting additional pockets for drug discovery. Future studies
are expected to optimize the binding of this new scaffold to design more potent inhibitors of
ASCT2.

Effects of ligands on ASCT2 mediated glutamine uptake and cell viability
in C8161 melanoma cells

We have previously shown that ASCT2 mediates glutamine uptake in C8161 human mela-
noma cells, and that blocking ASCT?2 activity inhibits cell growth and viability (Methods) [6].
We therefore used this model to confirm the activity of three ASCT2 ligands: Chloroalanine,
and aminooxetane-3-carboxylate (AOC), two of the most effective activators, and y-FBP, the
most potent inhibitor ligand for ASCT?2 inhibition (Fig 5E). In the presence these compounds,
[*H]-L-glutamine uptake was decreased in a dose-dependent manner in C8161 cells, in agree-
ment with their elicitation of current as activators and potential substrates (Fig 8A-8C). The
ICs, of chloroalanine was 9.2 mM, and the IC5, of AOC and y-FBP was between 10-15 mM,
which is similar to the ASCT2 ligand benzylserine (ICs5, of 5.3 mM in C8161 cells) [6].
Glutamine is a conditionally essential amino acid required for cancer cell growth, being
used as fuel source for the TCA cycle, and a carbon and nitrogen source for macromolecule
production. We therefore examined cell viability in the presence of chloroalanine (5 mM),
AOC (5 mM) and y-FBP (5 mM) using an MTT assay in C8161 cells (Methods). Chloroala-
nine, AOC and y-FBP significantly inhibited cell viability in C8161 cells (Fig 8D-8F). To
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Fig 7. Identification of a potent ASCT2 inhibitor based on the outward-open model. (A) Predicted binding mode of the new identified inhibitor y-FBP.
The ASCT2 binding site is visualized as gray cartoon; sidechain atoms of key residues are illustrated with gray lines and the ligand is displayed as yellow
sticks, with oxygen, nitrogen, and hydrogen atoms in red, blue, and white, respectively; hydrogen bonds between the inhibitor and ASCT2 (involving residues
Ser351, Asp464, Thr468 and Asn471) are displayed as dotted black lines. (B) Representative current recordings in response to application of alanine, y-
FBP, and alanine + y-FBP at conditions indicated in the legend. The gray bar depicts the duration of compound application. (C) Dose response relationship of
v-FBP-induced currents with the number of experiments averaged for each data point illustrated in brackets. (D) Alanine-induced currents (100 uM) in the
presence of varying concentrations of y-FBP (membrane potential = 0 mV, internal buffer contained 130 mM NaSCN and 10 mM alanine, external buffer
contained 140 mM NaCl). The number of experiments averaged for each data point is illustrated in brackets. The dashed line represents the relationship
based on a K; of 87 pM, for comparison with (C).

doi:10.1371/journal.pcbi.1004477.9007

determine whether these compounds also induced apoptosis, we used flow cytometry to quan-
titate Annexin V/propidium iodide staining in C8161 cells exposed to chloroalanine (5 mM),
AOC (5 mM) and y-FBP (5 mM) for 48 hours (Fig 8 G-8I). While chloroalanine significantly
increased apoptosis, neither AOC nor y-FBP led to a significant increase in early (Annexin V
+PI-) or late (Annexin V+PI+) apoptosis. Inhibition of intracellular amino acid levels has been
shown to induce adaptive responses through ATF4 transcriptional regulation of amino acid
transporters including ASCT2 [3,8].

To ensure these inhibitory effects were not due to changes in ASCT?2 protein levels, we
examined ASCT?2 protein levels by Western blotting 48 hours after incubation with
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chloroalanine (5 mM), AOC (5 mM) or y-FBP (5 mM) (Fig 8]). While chloroalanine reduced
the levels of ASCT2 protein, there was no change after AOC or y-FBP, suggesting the inhibi-
tory effects are directly on ASCT2 transport rather than protein expression. The low levels of
ASCT?2 after chloroalanine are likely due to apoptosis, which was significantly increased in
chloroalanine treated cells, but not AOC or y-FBP treated cells. Although these previously
unknown ASCT? ligands exhibit weaker therapeutic effect on the melanoma cell line and are
thus unlikely to be used for drug development, these compounds can be useful chemical tools
to further characterize the role of ASCT?2 in cancer metabolism. For example, y-FBP is an
inhibitor that deprives the cancer cells from nutrients and the activator Chloroalanine can
potentially be further developed as a cytotoxic ligand.
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Fig 8. Chloroalanine, AOC and y-FBP inhibit ASCT2-mediated glutamine uptake and cell viability in C8161 human melanoma cells. (A-C) [*H]-L-
glutamine uptake in C8161 cells was used to determine the ICsq of chloroalanine, AOC and y-FBP (n = 3). (D-F) MTT cell viability assay (n = 3) in C8161 cells
incubated with chloroalanine (5 mM), AOC (5 mM) and y-FBP (5 mM). Two-way ANOVA test was performed to determine significance. (G-l) Apoptosis (Early,
Annexin V+ PI-; Late, Annexin V+PI+) was examined by flow cytometry in C8161 cells incubated with chloroalanine (5 mM), AOC (5 mM) and y-FBP (5 mM).
Mann Whitney U test was used to determine significance. (J) ASCT2 expression (with GAPDH as a loading control) in C8161 cells was assessed after 48
hours incubation with chloroalanine (5 mM), AOC (5 mM) and y-FBP (5 mM).

doi:10.1371/journal.pcbi.1004477.9g008
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Conclusions

ASCT?2 is a sodium-dependent neutral amino acid exchanger located in peripheral tissues,
which is highly expressed in a variety of cancers where it provides key nutrients and signaling
molecules for growth and proliferation. ASCT2 can be a drug target for inhibitors that block
nutrient uptake or it can import cytotoxic substrates to act on a different target. Here, we
describe the structural models of ASCT?2 in two distinct conformations and identify specificity
determinants for this protein. Three major findings emerge from this study.

First, we identified seven previously unknown ASCT?2 ligands, including five activators and
two inhibitors. This result provides chemical basis for discriminating inhibitors from activators
as well as novel scaffolds for optimizing more efficacious ligands against ASCT2, an emerging
drug target for cancer and neurological disorders. Moreover, three of these compounds were
chemically different from known ligands (acivicin) or chemically related to known non-ligands
(Table 1). For example, the activator cis-3-hydroxyproline and inhibitor y-FBP are proline
derivatives, and we confirmed that proline is not an ASCT2 ligand (Fig 5). For the activator,
the hydroxyl group Cg of the proline enables additional interaction with residue Asn471, but
the molecule remains small enough to activate the transporter and possibly get transported
(Fig 4D). Conversely, for the inhibitor, a fluorobenzyl is bound to the C, of the proline (Fig
7A). This bulky group is likely to enhance the affinity of the molecule through n-m and fluo-
rine-peptide bond interactions, but the molecule is too large to be transported. Notably, struc-
ture based virtual screening enabled us to identify seemingly non-ligands.

Second, three of our hits (choloroalanine, AOC and y-FBP) inhibited glutamine uptake and
proliferation of the melanoma cell line C8161, at similar concentrations to the ASCT?2 inhibitor
benzylserine (Fig 8). Interestingly, the cytotoxic compound acivicin, which also interacts with
the structurally unrelated cancer-associated amino acid transporter LAT-1 was previously
shown to inhibit proliferation of GBM cell line [22]. Acivicin is not a strong inhibitor of any of
these transporters, however, it likely obtains its positive and negative pharmacological effects
by acting on more than one target via polypharmacology. Indeed, acivicin was recently shown
to interact with additional metabolic enzymes suggesting that polypharmacology contributes
to its therapeutic effects [41,42]. Thus, future drugs can potentially be developed by refining
their interaction with multiple transporters and other targets simultaneously.

Third, we used iterative modeling and docking approach to model ASCT?2 structure based
on X-ray structures of a prokaryotic aspartate transporter that shares about 24% sequence
identity with ASCT?2 and different substrate specificity. This analysis of a technically challeng-
ing target provides a framework for understanding amino acid selectivity among the SLC1 fam-
ily of amino acid transporters that play an important role in various biological activities such as
neurosignaling, as well as an approach that is generally applicable to the characterization of
other human transporter structures and their interactions with ligands, including drugs.

Finally, many solute carriers (SLC) play a key role in various human diseases by mediating
transport of amino acids, sugars (e.g., GLUTs), and other metabolites such as citric-acid cycle
intermediates [12]. Such disorders result from dysregulated metabolism that can be caused by
single point mutations or aberrant expression levels. Therefore, nutrient SLC transporters are
emerging drug targets for both targeting and delivery. For instance, the Food and Drug Admin-
istration has recently approved the type-2 diabetes drug canagliflozin, which acts by inhibiting
transport by Na™-glucose co-transporter 2 (SGLT2/SLC5A2) to lower concentration of sugar
in the blood [43]. The significant increase in the number of membrane transporter structures,
coupled with the progress computer-aided drug design methodologies, has improved the appli-
cability of rational structure-based drug-design to human SLCs [9]. Importantly, even though
human structures are determined there is still need to characterize computationally and
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experimentally additional conformations of transporters so additional fractions of the chemical
space with virtual screening can be covered, as demonstrated in this study. Taken together, in
the next few years, the number of drugs targeting SLC transporters that are designed rationally
with combined computational and experimental techniques is expected to grow significantly.

Materials and Methods

Homology modeling

We modeled ASCT2 based on X-ray structures of Gltpy, from Pyroccocus horikoshii in the
occluded and the outward-open conformations (PDB identifiers 2NWX and 2NWW, respec-
tively). The initial alignment between ASCT?2 and Gltp;, was calculated using the Promals3D
server using various parameters [44] and then subsequently refined based on comparison to
previously published comprehensive alignment of SLC1 members with Gltpy, [10], as well as by
constructing models based on the various alignments and analyzing them visually [45]. Three
long and divergent segments, including the N-terminus (53 residues), the loop between trans-
membrane helix (TM) 3 and TM4a (29 residues), the loop between TM4b and TM4c (27 resi-
dues), and the C-terminus residues (55 residues) were not included in our model [10]. These
regions are distant from the binding site and are unlikely to interact with the ligand. 385 and
387 residues of ASCT?2 were modeled for the occluded and outward-open models respectively,
covering 70% and 71% of the protein sequence.

For each conformation, we used the standard ‘automodel’ class of MODELLER-9v11 [25] to
generate initial 100 models, which were evaluated using Z-DOPE, a normalized atomic dis-
tance-dependent statistical potential based on known protein structures [46]. The Z-DOPE
score of the top models were -0.19 for the occluded model and -0.08 for the outward-open
model, suggesting that the models are likely to be sufficiently accurate to guide further struc-
ture/function studies [9,46,47]. Moreover, the models were constructed with non-protein
atoms, based on their coordinates in the template structures. These non-protein elements
include the sodium ions, as well as the ligand molecules, aspartate and TBOA for the occluded
and outward-open models, respectively. Finally, we sampled additional conformations for
enrichment calculations by sidechain modeling and energy minimization with MD
simulations.

Molecular Dynamics (MD) simulations

MD simulations were performed with GROMACS4 [27]. Each model was refined using the fol-
lowing protocol. The model was subjected to 10,000 steps of conjugate gradient minimization
using the Amber99SB-ILDN force field [48,49]. To account for the membrane hydrophobic
environment, an implicit model for the solvent based on a generalized Born formalism was
used. A dielectric constant equal to 2 was used to model the membrane interior. Whenever
ions were present in the model, the system was simulated “in vacuum” and the coulomb inter-
actions were screened by using a dielectric constant equal to 2. All bond lengths were con-
strained to their equilibrium values using the LINCS algorithm [50] and a time step of 2 fs was
adopted. A cutoff of 1.0 nm was used for the Lennard-Jones and the electrostatic interactions.

Ligand docking and enrichment

Initial docking and enrichment calculations were performed with DOCK, as described previ-
ously [51-53]. The homology models were evaluated by calculating the AUC (Area Under the
Curve) and LogAUC of the enrichment plots representing the ability of the virtual screening to
discriminate known ligands among the set of decoys. The plots show the percentage of known
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ligands correctly predicted (y-axis) within the top ranked subset of all database compounds (x-
axis on logarithmic scale) (Fig 2) [28,29,54]. 28 known ligands of ASCT?2 were selected from
the literature [14,55,56] and 1,400 decoys were generated with the DUD-E server [57]. This set
of 1,428 molecules was then screened against three models with OpenEye FRED(58]: i) the
occluded conformation model ii) the outward open conformation, iii) the outward open con-
formation with Asp460 facing the binding site.

Docking with FRED

OpenEye FRED uses an empirical- and shape-based scoring function [58]. The receptor was
prepared with the MAKE_RECEPTOR utility of FRED. The box enclosing the binding site was
generated based on the coordinates of the crystallographic ligand (aspartate and TBOA for the
occluded outward-open conformations, respectively). The docked poses were ranked by the
Chemgauss4 scoring function, which is defined by smoothed Gaussian potentials describing
the complementarity (by shape and chemical properties) between the ligands and the binding
site.

Ligand libraries for virtual screening

We used DOCK and FRED to virtually screen the following compound libraries from ZINC:
(i) A filtered version of the Kyoto Encyclopedia of Genes and Genomes (KEGG) DRUG data-
base that included 6,436 approved drugs in Japan, USA, and Europe, as well as over the counter
(OTC) drugs [52]. (ii) A filtered version of the KEGG LIGAND COMPOUND database that
included 12,730 metabolites, biopolymers, and other bioactive molecules. For example, mole-
cules containing 50 or more nonhydrogen atoms or a molecular weight greater than 600 Da
were filtered out, because docking does not typically work well for such large molecules. (iii)
The ZINC Fragment Now set that included 575,000 compounds with molecular weight (mwt)
of 250 Dalton or lower, five or fewer rotatable bonds (rot), and xlogP value of 3.5 or lower,
where xlogP is the octanol/water partition coefficient (logP) calculated by an atom additive
method. iv) The ZINC Leads Now set that contained 2,268,809 compounds of molecular
weights between 250 and 350 Dalton, 7 or fewer rotatable bonds and xlopP value of 3.5 or
lower [29,59].

HEK293 culture and transfection for electrophysiology

cDNA coding for rat ASCT?2 was kindly provided by S. Broer [60]. The coding region of the
c¢DNA was subcloned into the EcoRI site of the pPBK-CMYV vector (Stratagene). The cDNA con-
struct was used to transiently transfect human embryonic kidney cells (HEK293, ATCC No.
CGL 1573) with leptrime reagent (Polyplus, Ilkrich, France). Transfection was performed as
detailed in the supplier’s instructions. Electrophysiological recordings were performed 24-48 h
after transfection.

Electrophysiological methods

ASCT2-associated whole-cell currents were recorded with an Adams & List EPC7 amplifier
(HEKA, Lambrecht, Germany) using voltage-clamp conditions. Open-tip electrode resistances
were 2-3 MQ and the series resistance (Rs) was 5-8 MQ. Rg was not compensated in the
recordings, as compensation had no effect on the magnitude of the observed currents. The
extracellular bath solution contained (in mM): 140 NaMES, 2 MgGluconate,, 2 CaGluconate,,
and 10 HEPES (MES = methanesulfonic acid, pH 7.4 / NaOH). The pipette solution contained
(in mM): 130 NaSCN, 2 MgCl,, 10 EGTA, 10 HEPES, and 10 L-alanine/cysteine (pH 7.3 /
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NaOH). Using this intracellular solution, the transporters operate in the Na*/alanine exchange
mode. Here, external alanine is exchanged with internal alanine in the absence of net transport.
The exchange mode is associated with the activation of an uncoupled anion current, which was
used as an indirect measure of transport activity [14,36]. The currents were low pass filtered at
3 kHz (EPC?7 built-in filter) and digitized with a digitizer board (Digidata 1200, Axon Instru-
ments, Foster City, CA, USA) at a sampling rate of 10-50 kHz (controlled by software, Axon
PClamp?7). All experiments were performed at room temperature. Rapid solution exchange
was essentially performed as described previously [61]. Briefly, substrates and inhibitors were
applied to the ASCT2-expressing HEK293 cells with a quartz tube (350 pm tube diameter)
positioned at a distance of ~0.5 mm to the cell. The linear flow rate of the solutions emerging
from the opening of the tube was approximately 5-10 cm/s.

Melanoma cell culture for uptake, proliferation and apoptosis studies

Human melanoma cell line C8161 culture was performed as previously described [6]. Media
used was DMEM/F12 medium (Life Technologies) containing 5% (v/v) fetal bovine serum
(FBS), penicillin-streptomycin solution (Sigma-Aldrich). Cells were maintained at 37°Cin a
fully humidified atmosphere containing 5% CO,. Inhibitors (chloroalanine, AOC and y-FBP)
were resuspended in H,O, with control cells treated with the appropriate concentrations of
vehicle alone.

Glutamine uptake assay

C8161 cells (1 x 10°/well) were incubated with [*H] -L-glutamine (400 nM; PerkinElmer) in
MEM media (Life Technologies) for 15 min at 37°C in the presence or absence of each inhibi-
tor. Cells were collected and transferred to filter paper using a 96-well plate harvester (Wallac
PerkinElmer), dried, exposed to scintillation fluid and counts measured using a liquid scintilla-
tion counter (PerkinElmer).

Cell viability assay

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide; Millipore) cell viabil-
ity assay was performed as previously described [62]. Briefly, C8161 cells (1 x 10*/well) were
seeded in a flat-bottomed 96-well plate, incubated overnight in media, prior to culture with or
without each inhibitor. MTT solution (10 pL) was added to each well for 4 h, prior to addition
of 100 pL of isopropanol/HCI solution. Solution was mixed thoroughly and plates immediately
read at 570 nm/630 nm in a PolarStar plate reader (BMG). Results were plotted as percentages
of the absorbance observed in control wells.

Annexin V assay

Cells (5 x 10° per well) were seeded in 24 well plates, allowed to adhere overnight, and then
incubated in the presence of 5 mM chloroalanine, AOC or y-FBP for 48 hours. Cells were
detached using Tryple and resuspended in 300 pL of binding buffer (HEPES-buffered PBS sup-
plemented with 2.5 mM calcium chloride) with Annexin V-APC (BD) and incubated for 15
min in the dark at room temperature. Propidium iodide solution (5 pg/mL) was added, and the
cells were analyzed using the BD LSRFortessa and FlowJo software.

Western blotting

Cells (5 x 10° per well) were seeded in 24 well plates, allowed to adhere overnight, and then
incubated in the presence of 5 mM chloroalanine, AOC or y-FBP for 48 hours. Cells were
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detached using Tryple and lysed in lysis buffer (50 uL; 20 mM Tris-HCI, 150 mM NaCl, 1%
Triton X-100, 0.5% Na deoxycholate, 0.1% SDS) with protease inhibitor Cocktail IIT (Biopro-
cessing Biochemical, California). Protein was measured using micro-BCA method (Pierce) and
loaded onto a 4-12% gel (Life Technologies), electrophoresed, and transferred to PVDF mem-
brane. The membrane was blocked with 2.5% (w/v) BSA in PBS-Tween20, and incubated with
primary (ASCT2, Cell Signaling; GAPDH, Abcam) and secondary antibodies. Secondary HRP-
labeled antibodies (Millipore) were detected using chemiluminescence reagents (Pierce) on a
Kodak imager (Kodak).

Supporting Information

S1 Fig. 2D representation of the experimentally confirmed ligands.
(PDF)

S2 Fig. Exchange current is mediated by a transported substrate, but not by a non-trans-
ported inhibitor. Voltage jumps induce transport-mediated exchange current (due to voltage-
dependent re-equilibration of the translocation equilibrium) in the presence of the transported
substrate alanine (1 mM, black trace), but not in the presence of the non-transported inhibitor
benzylserine (5 mM, red trace). The solutions contained 140 mM Na" and 10 mM alanine
(intracellular) and 140 mM Na™ (extracellular). The anion was methanesulfonate, which does
not permeate the anion conductance.

(PDF)

S1 Models. PDB files of the ASCT2 models in occluded (cm251) and outward-open
(cm301) conformations.
(ZIP)
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