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Abstract. The Lone star tick (Amblyomma americanum L.) is the primary vector for pathogens of significant public
health importance in North America, yet relatively little is known about its current and potential future distribution.
Building on a published summary of tick collection records, we used an ensemble modeling approach to predict the
present-day and future distribution of climatically suitable habitat for establishment of the Lone star tick within the conti-
nental United States. Of the nine climatic predictor variables included in our five present-day models, average vapor
pressure in July was by far the most important determinant of suitable habitat. The present-day ensemble model pre-
dicted an essentially contiguous distribution of suitable habitat extending to the Atlantic coast east of the 100th western
meridian and south of the 40th northern parallel, but excluding a high elevation region associated with the Appalachian
Mountains. Future ensemble predictions for 2061–2080 forecasted a stable western range limit, northward expansion of
suitable habitat into the Upper Midwest and western Pennsylvania, and range contraction along portions of the Gulf
coast and the lower Mississippi river valley. These findings are informative for raising awareness of A. americanum-
transmitted pathogens in areas where the Lone Star tick has recently or may become established.

INTRODUCTION

One of the most widely anticipated ecological effects of cli-
mate change involves the geographic redistribution of organ-
isms.1 There is growing evidence that as temperatures increase
globally, the ranges of many species will expand or shift into
higher latitudes and elevations as organisms track their current
thermal or abiotic niche.2–4 This phenomenon may be espe-
cially pronounced for ectothermic taxa and those for which
temperature and associated abiotic conditions play critical roles
in regulating physiological or ecological processes.5,6 Terres-
trial arthropods meet these criteria and have been the focus
of considerable attention in this regard because many species
play central roles in the transmission of wildlife, livestock, and
human pathogens.7–9 Changes in the geographic distribution
and abundance of vector species driven by climate change
may thus have significant consequences for the incidence and
biogeography of infectious diseases.10–15 In light of this possibil-
ity, there is a growing need to accurately predict changes in the
distribution of arthropod vector species under future climate
change scenarios.
Among vector taxa, climate impacts on the biogeography

of ticks and tick-borne pathogens are of particular concern
for at least two reasons. First, ticks transmit a greater variety
of parasites and pathogens than any other biting arthropod16

and are responsible for the vast majority of vector-borne infec-
tions of humans in northern temperate latitudes.17,18 Tick-
borne pathogens also cause some of the most common and
economically important diseases of livestock, especially cat-
tle.19,20 Second, ticks are likely to shift their geographic distri-
bution in response to climate change because they are highly
sensitive to temperature and humidity, which are expected to
change over time. Physiological constraints associated with
temperature and humidity are known to have profound effects

on the growth, survival, and reproduction of ticks.21–23 As a
result, temperature and humidity significantly influence pat-
terns of tick distribution and abundance.24,25 By extension, it
seems very likely that large-scale changes in these conditions
could give rise to changes in tick biogeography. Indeed, data
from Europe and North America provide evidence that tick
distributions have recently shifted or expanded into higher lat-
itudes and altitudes in parallel with rising temperatures.26–29

Although mechanisms other than climate variability and
change undoubtedly contribute to these outcomes,30 the
repeated observation of range changes correlated with tem-
perature, in a manner consistent with known physiological
constraints, argues strongly for a central role of climate in
driving changes in tick distributions at broad geographic
scales.31–33 This recognition, and the aforementioned agricul-
tural and public health significance of ticks, underlie a grow-
ing interest in tick distribution modeling based on future
climate scenarios.34–37 Predictions of these models may pro-
vide valuable forecasts of changing acarological risk associated
with tick-borne diseases that could be used to inform vector
monitoring and control efforts and public health campaigns.
Bioclimatic envelope modeling, also known as ecological

niche or habitat suitability modeling, describes a suite of
methods developed in part to enable predictions of how cli-
mate change may affect organismal range limits.38–40 The gen-
eral approach, predicated on basic niche theory,41,42 involves
two steps. First, inferences are made about the fundamental
niche of a focal species (here, the abiotic conditions under
which viable populations are likely to be maintained) using
measured physiological thresholds or, more commonly, data on
the species’ current distribution and environmental conditions
in areas of occurrence. Correlational relationships between
range limits and preferred or tolerated climatic conditions are
thereby identified, though in reality these may be more
closely tied to the realized rather than the fundamental niche.
Second, future climate predictions are used to quantify how
the geographic distribution of these conditions, and associated
distributional limits of the focal species, might change in the
future. This approach has been criticized for various
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shortcomings including its failure to incorporate biotic interac-
tions, dispersal, and evolutionary dynamics.43,44 Nevertheless,
there is general agreement and growing empirical support for
the conjecture that at relatively large spatial scales, climatic
relationships make significant contributions to, and may deter-
mine, distributional limits.40,45 Although some limitations to
the approach are difficult to overcome (e.g., availability of
both presence and confirmed absence data), recent improve-
ments in predictive quality have been achieved through the
use of ensemble modeling approaches that synthesize out-
puts of multiple predictive models that vary in their assump-
tions and algorithms.46,47

Here, we use bioclimatic modeling and climate change
forecasts to predict the potential geographic distribution of
localities anticipated to be suitable for establishment of the
Lone star tick, Amblyomma americanum within the conti-
nental United States. Considered a major nuisance biter,48–50

A. americanum is also increasingly recognized as one of the
most important tick vectors in North America. Pathogens
transmitted by the Lone star tick are known to infect both
humans and domestic animals and include multiple species
in the genera Rickettsia (e.g., Rickettsia rickettsia, Rickettsia
parkeri) and Ehrlichia (e.g., Ehrlichia chaffeensis, Ehrlichia
ewingii), Francisella tularensis, and Heartland virus.51–55 In
spite of its significant impacts on wildlife, livestock, and
human health, relatively little is known about the current
and potential future distribution of A. americanum. Building
on a published summary of tick collection records reported
from 1898 to 2012,56 we use an ensemble approach involving
five different algorithms to model the current distribution
of localities climatically suitable for establishment of the
Lone star tick (hereafter suitable habitat) in the continental
United States. By integrating multiple algorithms, ensemble
modeling reduces the potential for predictive bias that may
arise when only a single algorithm is considered. We then use
insights obtained through this exercise, including the climatic
variables and conditions associated with the tick’s current dis-
tribution, to predict the future geographic distribution of suit-
able tick habitat under two greenhouse gas (GHG) emissions
scenarios using five general circulation models.

MATERIALS AND METHODS

Tick distribution data. We used published data on the geo-
graphic distribution of A. americanum collection records in
the United States as the basis of our modeling.56 These data
were generated by compiling Lone star tick collection records
obtained from a search of the published literature and data-
bases managed by the U.S. Department of Agriculture, U.S.
National Tick Collection, and Walter Reed Biosystematics
Unit. A total of 18,121 A. americanum collection records,
involving sampling events conducted at locations across the
continental United States (48 states and the District of
Columbia, hereafter DC) and reported from 1898 to 2012,
were summarized at the county level. Using a threshold
described by Dennis and others,57 A. americanum was catego-
rized as “established” in a county if six or more ticks, or two
or more life stages, were associated with one or more collec-
tion records in a single year. The species was categorized as
“reported” if the number of specimens or life stages col-
lected did not exceed these thresholds or was not specified.

The remaining counties had “no records” and were catego-
rized as such.
On the basis of these data, Springer and others56 categorized

A. americanum as established in 653 counties distributed across
32 states and the DC (Supplemental Table 1 Figure 1A).56 In
our analyses, we excluded two of these counties from our list
of those classified as present (Ravalli county, Montana and
Sacramento county, California) because they fall far outside of
the geographic core of the species’ distribution and associated
collections were likely the result of importation rather than
sampling of locally established populations. In addition, while
Springer and others56 categorized A. americanum as reported
in an additional 647 counties, we classified the species as absent
from these locations in our analyses. Because these collection
records reflect where efforts were made to sample or study
ticks, the geographic distribution of A. americanum inferred
from these data, and that forms the basis of our analyses, likely
underestimates the species’ true current distribution. Although
the inferred distribution consists of both present locations
(651 established counties) and presumed absence locations
(2,458 reported and no records counties), we have greater
confidence in the former than the latter. Given this, we ran the
species distribution models using all non-presence counties as
background to characterize available environment rather than
as presence/absence models that contrast environmental con-
ditions associated with presence and absence locations.
Selecting and quantifying climate predictor variables. Climate

predictor variables included in our present-day distribution
modeling were drawn from four sets. The first set consisted
of the 19 standard bioclimatic variables available at 2.5 arc
minutes resolution from version 1.4 of WorldClim.58 WorldClim
is a set of global climate layers based on interpolations of
temperature and precipitation from weather stations around
the globe, averaged across the years between 1950 and 2000.
For the second set, we calculated multiple estimates of grow-
ing degree days (GDDs), a predictor variable identified as
important in a number of previous models of tick-associated
phenomena.25,59,60 We estimated daily GDDs from monthly
WorldClim temperature data that were calibrated with daily
data obtained from Daymet61 (calculation methods described
in Supplemental Material 1). This resulted in 23 variables asso-
ciated with growing degree days: mean number of GDDs for
each month and cumulative from the start of the year for each
month (monthly and cumulative values are identical for the
month of January). To generate the third and fourth variable
sets, we calculated monthly average values for vapor pressure
(a measure of humidity) and number of days with snow cover
(based on the presence of snow inferred from values of snow
water equivalent > 0) using data for the period 1980–2000
available from Daymet.62 This generated an additional 24 vari-
ables, bringing the total number of climate predictor variables
considered for possible inclusion in our present-day distribu-
tion modeling to 66. Because our tick distribution data had
county-level spatial resolution, we used the Zonal Statistics
tool in ArcGIS version 10.2 (Environmental Systems Resource
Institute, 2010; ESRI, Redlands, CA) to calculate a county-level
mean value for each of the 66 historical climate predictor vari-
ables. Means for each county were calculated using data from
every 2.5 arc minutes climate data grid cell whose centroid fell
inside the county boundary.
Future climate data underpinning our predictions of the

future geographic distribution of suitable habitat were derived
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using empirically downscaled projections from five Atmo-
sphere Ocean General Circulation Models (AOGCMs) that
support phase five of the Coupled Model Intercomparison
Experiment (CMIP5).64 Multiple AOGCMs were used to
reduce uncertainty due to differences among climate models
(e.g., because of the way they each represent various pro-
cesses, their spatial resolution, etc.). The five AOGCMs
were chosen based on two criteria. First, each model is avail-
able in the WorldClim database at 2.5 arc minutes resolution
and is thus consistent with scale of the historical WorldClim
data described above. Second, each model ranks among the
top of the CMIP5 AOGCMs in its ability to simulate observed
temperature and rainfall globally.65 The following five
AOGCMs were chosen: 1) version 4 of the Community
Climate System Model (CCSM4),66 2) the low-resolution
version of the Max Planck Institute Earth System Model
(MPI-ESM-LR),67 3) the full-earth-system version of the Met
Office Hadley Center second generation family of coupled
climate models (HadGEM2-ES),68 4) CNRM-CM5,69 and 5)
ACCESS1-0.70 Details on the AOGCM downscaling meth-
odology are available at http://worldclim.org/downscaling.

We used the future climate projections for 2061–2080 from
two Representative Concentration Pathway (RCP) emissions
scenarios,71 RCP4.5 and RCP8.5. Two RCP scenarios were
used to incorporate uncertainty in future climate change that
results from the unknown GHG emissions trajectory that
humanity will take. RCP8.5 is a high-emissions scenario with
GHG radiative forcing reaching 8.5 W/m2 near 2,100. It repre-
sents a plausible trajectory if little is done to curb GHG emis-
sions.72 RCP4.5 is a low-to-moderate emissions scenario with
GHG radiative forcing reaching 4.5 W/m2 near 2,100, without
ever exceeding the value. It represents a trajectory that may
be plausible if, for instance, GHG emissions pricing were
introduced to limit radiative forcing.73

On the basis of results of our present-day distribution
modeling, only three climate predictor variables were associ-
ated with our predictions of future habitat suitability. Two
were among the 19 standard WorldClim bioclimatic variables
(mean diurnal temperature range [Bio2] and annual precipita-
tion [Bio12]), and predicted future values of these variables
were downloaded directly from WorldClim. Values of the
third variable, mean vapor pressure in July, were calculated

FIGURE 1. Response curves for the climate predictor variables that comprised the reduced set included in the optimized models. In each of
the figures, the x axis depicts the range of observed values for each climate predictor variable in the full training dataset and the y axis indicates
the associated habitat suitability scores (0 = not suitable, 1 = maximum suitability).
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from historical values of vapor pressure (from Daymet) and
both historical and future mean temperature (from WorldClim)
(calculation methods described in Supplemental Material 2).
Vapor pressure that quantifies the partial pressure of water
vapor in the atmosphere, is a temperature-dependent measure
of humidity. Vapor pressure is related to a better known
humidity variable, relative humidity (RH) that is the ratio of
the “actual” measured vapor pressure to the “saturated” vapor
pressure (the partial pressure of water vapor at which an air
parcel at a given temperature will become saturated). Knowing
this ratio and assuming future RH remains constant at his-
torical values, future vapor pressure can be calculated. The
assumption of constant RH in the future is consistent with stud-
ies based on observations of historical change and AOGCM
results.74,75 Notably, this means that the future vapor pressure
will be higher, because more water vapor is required to achieve
saturation (i.e., a RH of 100%) under warmer conditions.
Modeling present-day distribution. Before beginning the

present-day distribution modeling, we first evaluated all
pairwise correlations among the 66 climate predictor variables
to minimize statistical issues associated with colinearity. We
generated a matrix that listed the largest value from among
three correlation coefficients (Pearson, Spearman, and Kendall)
calculated for each pair of variables. To choose variables from
among the full set of 66 to include in the present-day distribu-
tion modeling, we first listed the variables in descending order
by their respective values of deviance explained. This parame-
ter serves as an analog of R-squared in a general additive
model (GAM) and here, estimates the amount of variation in
the present-day distribution of A. americanum explained by a
given climate predictor variable.76 It is calculated from a uni-
variate GAM function fit to the presence/background data for
the tick and associated values of the climate predictor vari-
able. From the ordered list of variables, we selected the one
with the highest value of deviance explained to include in the
reduced set and then manually went down the list, considering
each successive variable for inclusion in the reduced set based
on its pairwise correlation with the variable(s) already selected.
A given variable was added to the reduced set if none of its
pairwise correlations with variables already in the reduced set
exceeded ±0.7 in magnitude.77 Unless otherwise noted, all
statistical analyses were performed using VisTrails Software
for Assisted Habitat Modeling (SAHM).78

We modeled the present-day distribution of suitable habitat
within the continental United States using all five algorithms
available in SAHM: 1) boosted regression trees (BRTs),79

2) generalized linear models (GLMs),80 3) multivariate adap-
tive regression splines (MARSs),81 4) maximum entropy
(Maxent),82 and 5) random forests (RFs).83 Each of these algo-
rithms performs well with presence/background data, and
because algorithm selection represents the greatest source of
quantifiable uncertainty in model predictions,84 consideration
of multiple algorithms allowed us to evaluate and reduce the
potential biasing effects of algorithm choice on our results.
Inputs to each model included county-level tick status (present
[N = 651 counties] or background [N = 2,458]) and values for
each climate predictor variable in the reduced set. As described
above, we used the Zonal Statistics tool in ArcGIS version 10.2
to calculate a county-level mean value for each climate predic-
tor variable. On the basis of this input information, each model
identified a unique, algorithm-specific set of climate conditions
associated with locations where A. americanum was classified

as present. In the present-day distribution models, these corre-
lations underlie predictions of locations where A. americanum
may be currently established based on the presence of climate
conditions favorable for tick survival.
Construction of the five present-day distribution models

used the 10-fold cross-validation method. After first running
each model with the full location dataset including all pres-
ence and background counties (training run), we randomly
divided the dataset into 10 equal subsets and ran the model
an additional 10 times, withholding one subset during each run
(testing runs). Each of the 11 runs of each model generated a
continuous habitat suitability score (range = 0–1) for each
county. For each run, the value of the continuous habitat
suitability score that maximized the sum of sensitivity and
specificity was calculated and used as a threshold to convert
the continuous score into a binary habitat suitability score that
classified each county as either suitable (score = 1) or unsuit-
able (score = 0).85,86 These binary scores formed the basis of
the associated confusion matrix.
We evaluated and optimized the fit (performance) of each

present-day distribution model using multiple, SAHM-generated
metrics of agreement between the predicted and observed
county-level tick distributions generated by the training and/or
testing runs. First, we examined receiver operating characteris-
tic (ROC) curves and associated values for area under the
curve (AUC)87 for training and testing runs. When the differ-
ence between the training AUC and the mean of the testing
AUC values exceeded 0.05, we ran several iterations of the
model, adjusting default parameter settings to identify the itera-
tion with optimized performance (i.e., smallest difference in
AUC scores and minimal overfitting as assessed by visual
examination of response curves for each climate predictor
variable). If multiple iterations of a model had similar perfor-
mance as measured by this ROC/AUC-based criterion, we dis-
tinguished them based on values of several metrics of fit
derived from their confusion matrices including the true skill
statistic (TSS, a modified Kappa statistic that accounts for and
reflects rates of omission and commission errors but is not
sensitive to prevalence),88 correlation coefficient (between
observed and predicted values), percent correctly classified
(the percent of counties correctly classified by the model relative
to known establishment/presumed absence of A. americanum),
and deviance explained (R-squared analog). We selected as
optimal the model iteration with the highest relative values of
these metrics. Once selected, we performed testing and train-
ing runs using this optimal model and used these as our final
optimized model in all subsequent analyses. BRT models with
default settings appeared overfit, and we optimized parameters
following Elith and others,79 selecting tree complexity of two,
learning rate of 0.005, and 5,000 trees where response curves
were smoothed while maintaining high performance metrics
with minimized difference between training data and testing
data calculations.
Predicting future distribution. We predicted the future

distribution of suitable habitat within the continental United
States using the optimized present-day distribution model
constructed with the GLM algorithm. Compared with models
derived from the other four algorithms, GLM-derived
models tend to be relatively simple in their structure, making
them less sensitive to spurious results that may arise during
the extrapolation involved in future projections and thus more
appropriate for capturing the potential rather than realized
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niche.89 We applied the GLM model 10 times, using as inputs
the predicted future county-level climate conditions associated
with each unique combination of AOGCM (N = 5) and RCP
(N = 2). As in the present-day modeling, each model applica-
tion (AOGCM/RCP combination) generated a continuous
habitat suitability score that we converted to a binary score
(suitable/unsuitable) using the aforementioned threshold
value. Using SAHM, we calculated the Multivariate Environ-
mental Similarity Surface (MESS) for each model applica-
tion to highlight counties where prediction uncertainty was
high. The MESS identifies areas where the future value of a
given climate predictor variable forecasted by the AOGCM is
more extreme than any value for that variable in the present-
day training dataset. These areas of extrapolation represent
locations for which future predictions should be made with
greater caution. Each county was assigned a MESS score that
indicated whether predicted future climatic conditions did
(score = 1) or did not (score = 0) fall outside the range of his-
torically observed conditions.
Visualization and evaluation of present-day modeling

results. For results of our present-day distribution modeling,
we quantified the relative contribution of climate predictor
variables in the reduced set to each of the five optimized
present-day distribution models (hereafter optimized models)
using metrics generated in SAHM. The number and identity
of included variables differed among optimized models. To
evaluate the relative contribution of a given variable to a
model, SAHM randomized values of the variable among
counties relative to tick status (present, background) and calcu-
lated a model AUC. The magnitude of the difference between
this AUC score and that of the original optimized model,
termed the train contribution value, is positively related to the
explanatory power of the climate predictor variable for which
values were randomized. To facilitate comparisons among var-
iables within and across optimized models we normalized
train contribution values by converting them to percentages
across all variables within each model. In addition, we exam-
ined the shape of the response curves for each climate predic-
tor variable across all optimized model in which it was
included. These curves graphically depict the relationship
between values of the variable and habitat suitability as
predicated by the different models. More broadly, we quanti-
fied the overall performance (fit) of each optimized model
using multiple metrics generated in SAHM. In addition to
those previously mentioned (AUC score, TSS, correlation
coefficient, percent correctly classified, deviance explained),
these included sensitivity (the proportion of established
counties classified as presence locations by the model) and
mean threshold (value used to dichotomize the continuous
model output into the threshold-dependent binary matrix).
We did not report specificity since counties classified as back-
ground represented presumed rather than confirmed absence
locations. For each of the five optimized models, values for
each performance metric were generated for both the training
run (full location dataset including all presence and back-
ground counties) and as an average across all 10 testing runs.
Using results associated with the five optimized models,

we created an ensemble model46 to predict the present-day
distribution of suitable habitat within the continental United
States. This was accomplished by adding together the binary
habitat suitability score maps of all optimized models that
had an average testing AUC value > 0.7, biologically realistic

response curves, and acceptably high values for metrics of fit
derived from the confusion matrix. Thus, in our ensemble
model, each county was associated with a consensus habitat
suitability score (range = 0–5) indicating the number of five
optimized models that classified it as representing suitable
habitat. To evaluate predictions of the ensemble model, we
compared these consensus habitat suitability scores to cate-
gorization made by Springer and others56 based on tick col-
lection records (established, reported, no records). We also
created a map of the continuous habitat suitability scores
generated by each model to visualize how specific underlying
predictions of individual models differed from those of the
ensemble model.
Visualization and evaluation of future predictions. As with

the present-day modeling, we created ensemble maps for use
in predicting the future distribution of suitable habitat within
the continental United States. To produce these for each of
the two RCPs, we added together the binary habitat suitability
score maps of all five GLM-based AOGCM future predictions.
This generated an ensemble prediction in which each county
was associated with a consensus habitat suitability score
(range = 0–5). A score of 0 indicates that none of the five
AOGCMs forecasted that the county in question would
experience climatic conditions associated with suitable habitat
(i.e., matching the climatic conditions found in locations where
the tick is currently established). We compared consensus hab-
itat suitability scores underlying the present-day and future
ensemble maps to identify areas where forecasted changes in
climatic conditions are predicted to alter habitat suitability
(i.e., potential areas of range expansion or contraction). To
evaluate uncertainty in our future predictions, we created an
ensemble MESS map for each of the two ensemble predic-
tion maps by summing MESS scores across the five GLM-
based AOGCM future predictions. Each county was thereby
assigned a consensus MESS score (range = 0–5). A score of
0 indicates that climatic conditions predicted in the county in
question did not fall outside the range of historically observed
conditions in any of the five AOGCMs (i.e., no extrapolation,
high confidence). In contrast, a score of 5 indicates that pre-
dicted climatic conditions fell outside the range of historically
observed conditions in all five AOGCMs (i.e., extensive extrap-
olation, low confidence).

RESULTS

Selecting and quantifying climate predictor variables. Using
the correlation matrix, we reduced our original set of 66 cli-
mate predictor variables down to a reduced set of nine vari-
ables (Table 1). Among optimized models, the number of
variables included and their relative importance to the models
varied (Table 1). Notably, mean vapor pressure in July was
the only variable included in all five optimized models and
had the highest normalized train contribution value in each
model (≥ 69.99); across all models, its average train contribu-
tion value was over 11 times greater than that of the variable
with the second highest explanatory power. Mean tempera-
ture of the driest quarter (Bio9) and annual precipitation
(Bio12) were included in four of the five models, but normal-
ized train contribution values were less than 10.07.
All of the optimized models performed well, with mean

test AUC scores between 0.82 and 0.86 (Table 2). Across the
full dataset, the percent of counties correctly classified by the
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models (relative to the known establishment or presumed
absence of A. americanum based on Springer and others56)
ranged from 71% to 75%. More specifically, the proportion
of established counties classified by the models as “present”
locations was at least 0.89 in every model. Values of the
other performance statistics reinforced the conclusion that
the fits of the optimized models were good overall. Because
the models were built assuming presence/background data,
output values (continuous habitat suitability scores) were not
directly comparable across models. This necessitated the
conversion to binary scores that could be combined to create
the ensemble model. In evaluating approaches to combining
scores, Marmion and others90 found that the highest performing
method involved weighting binary scores based on the AUC
of the associated model. This was our method of choice, but
because the AUC scores of our five models were so similar we
opted to forgo any weighting. Further, because the five models
all performed comparably (Table 2) yet differed in terms of
the climate predictor variables they included and the geographic
patterns of continuous habitat suitability scores they predicted
(Figure 2C–G), we concluded that each would make a unique
contribution to and warranted inclusion in the ensemble model.
Predictor variable response curves. Plots of the response

curves for the climate predictor variables illustrated that the
relationships between mean vapor pressure in July and habitat
suitability had a fairly consistent shape among optimized
models, with indications of a minimum threshold value
between 1,500 and 2,000 Pa (Figure 1). Curves associated
with at least three of the five models further suggested that

maximum habitat suitability was achieved when values for
mean vapor pressure in July were between 2,250 and 2,750 Pa,
with declining habitat suitability at higher pressures. The
shapes of the response curves for mean temperature of driest
quarter (Bio9) varied among models, with relatively flat
curves for the BRT and MARS models, a nearly flat curve
showing very slight increases in habitat suitability above 5°C
for the RF model, and an erratic curve for the Maxent model
with highest habitat suitability corresponding to temperatures
between −8 and −4°C and lower but relatively constant suit-
ability between 0 and 17.5°C. Response curves for annual pre-
cipitation (Bio12) indicated a positive relationship between
habitat suitability and annual precipitation up to a maximum
between 1,200 and 1,400 mm, with either no further increases
or declines in suitability at higher precipitation values. Two of
three curves for mean diurnal temperature range (Bio2)
showed a slight negative relationship, with the highest values
of habitat suitability associated with temperature range values
of 9 to 11°C. As was the case with mean temperature of driest
quarter, the curve associated with the Maxent model was
erratic and indicated relatively high habitat suitability for a
mean diurnal temperature range from 9 to 14°C, with a pre-
cipitous decline at ranges above 14°C. Relative to the curves
generated for the other four models, those associated with the
optimized GLM-based model were comparatively smooth,
providing evidence of the model’s simple structure and low
sensitivity to spurious correlations in the data. Further, the
general shapes of the GLM-associated curves were consistent
with relationships between climatic conditions and habitat

TABLE 1
Performance statistics associated with each of the nine climate predictor variables in the reduced set used in our present-day distribution model-

ing. For each variable, the value of deviance explained is parenthetically accompanied by the rank of this value in the list of values for all
66 of the originally considered climate predictor variables, arranged in descending order (i.e., a rank of 1 indicates the highest value). Also
provided are the normalized train contribution values for each variable in each of the five optimized models. A blank cell indicates that the
variable was not included in the corresponding optimized model. Variables obtained from WorldClim have their associated Bioclim labels
indicated parenthetically

Climate predictor variable Deviance explained (rank)

Normalized train contribution values

BRT GLM MARS Maxent RF

Mean vapor pressure in July 26.13 (1) 92.80 93.10 84.21 69.99 76.39
Mean number of growing degree days in October 10.09 (34) – – – 1.09 2.98
Annual precipitation (Bio12) 10.07 (35) 4.54 9.42 1.70 3.81
Mean temperature of driest quarter (Bio9) 8.57 (42) 7.20 – 6.38 10.04 6.18
Mean number of days with snow in October 6.21 (50) – – – 0.99 0.06
Precipitation seasonality (Bio15) 4.91 (54) – – – 5.03 3.92
Mean temperature of wettest quarter (Bio8) 2.13 (61) – – – 3.30 3.09
Mean number of growing degree days in February 1.74 (62) – – – 1.12 0.61
Mean diurnal temperature range (Bio2) 1.15 (64) 2.35 – 6.73 2.98

BRT = boosted regression tree; GLM = generalized linear model; MARS = multivariate adaptive regression spline; Maxent = maximum entropy; RF = random forest.

TABLE 2
Values of multiple performance metrics associated with each of the five optimized models. For each model, metric values are provided for both

the training run (full location dataset including all presence and background counties) and as an average across all 10 testing runs

Performance metric

BRT GLM MARS Maxent RF

Test split Train Test split Train Test split Train Test split Train Test split Train

AUC 0.83 0.84 0.82 0.82 0.82 0.83 0.84 0.87 0.86 0.86
True skill statistic 0.55 0.57 0.54 0.56 0.55 0.56 0.56 0.61 0.45 0.59
Correlation coefficient 0.48 0.50 0.46 0.47 0.46 0.48 0.47 0.50 0.54 0.54
Percent correctly classified 72.13 72.51 70.36 70.78 71.04 70.68 74.01 75.17 82.07 72.80
Deviance explained (percent) 23.39 24.92 23.02 24.16 23.56 24.89 8.35 9.35 30.19 29.40
Sensitivity 0.87 0.89 0.89 0.91 0.88 0.90 0.84 0.90 0.56 0.91
Mean threshold 0.27 0.29 0.21 0.20 0.16 0.12 0.55 0.57 0.43 0.16

AUC = area under the curve; BRT = boosted regression tree; GLM = generalized linear model; MARS = multivariate adaptive regression spline; Maxent = maximum entropy; RF =
random forest.

880 SPRINGER AND OTHERS



suitability for ticks that would be expected based on funda-
mental aspects of tick physiology and ecology.
Visualization and evaluation of present-day modeling

results. The pattern of distribution of suitable habitat shown
in the present-day ensemble map (Figure 2B) was largely con-
sistent with the map of county-level collection records of
A. americanum (Figure 2A) generated by Springer and
others.56 The ensemble map projected a relatively contiguous
swath of counties categorized as suitable habitat beginning at
roughly the intersection of the 100th western meridian (here-
after 100th meridian), which forms the eastern border of the
Texas panhandle with Oklahoma, and the 40th northern par-
allel (hereafter 40th parallel), which is coincident with border
of Kansas with Nebraska. In the collection records map, this
area is associated with the majority of counties categorized as
established but also with many counties categorized as reported
or associated with no collection records. Assuming that
A. americanum is indeed established across much or all of

this area, this result suggests that many of the county-level
gaps in the collection records map may be attributable to spa-
tial biases in tick sampling effort and/or associated reporting
apparent as gaps in Figure 2A. In addition, the ensemble map
projected an absence of suitable habitat associated with the
Appalachian Mountains, an area extending from northern
Georgia/eastern Tennessee northeast through eastern Kentucky,
western Virginia, and West Virginia, to the southern border of
Pennsylvania. The paucity of collection records in associated
counties is consistent with this result and suggests that
A. americanum may not be established in this area. Of the 651
counties categorized as established by Springer and others,56

87.6% had a score of 5 in the ensemble model (i.e., all of the
optimized models predicted the presence of suitable habitat),
and none had a score of 0 (Table 3, Supplemental Table 1). Of
the 1,811 counties for which Springer and others56 found no
records of A. americanum collection, 74.4% had a score of
0 in the ensemble model and 17.0% had a score of 4 or 5.

FIGURE 2. Maps depicting Amblyomma americanum collection records and results of the present-day distribution modeling. (A) County-level
classification of A. americanum collection records, cumulative from 1898 through 2012 (established, reported, no records), based on Springer and
others.56 (B) Map of present-day ensemble model depicting consensus habitat suitability scores. Scores indicate the number of the five optimized
models that classified a given county as having climatic conditions suitable for the establishment of A. americanum. (C–G) Maps depicting the
continuous habitat suitability scores predicted by each of the individual optimized models: BRT, GLM, MARS, Maxent, and RF, respectively.
BRT = boosted regression tree; GLM = generalized linear model; MARS = multivariate adaptive regression spline; Maxent = maximum entropy;
RF = random forest.
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Although there was general agreement between the collection
records and ensemble maps, two noteworthy differences were
apparent. First, the ensemble map projected suitable habitat
in eastern and central Oklahoma and Kansas, areas beyond
the apparent western distributional limit suggested by the map
of collection records. For Oklahoma, this prediction is sup-
ported by a recently published report of tick collection in
nearly every county in the state east of the panhandle region.91

Second, very few if any of the optimized models predicted the
presence of suitable habitat north of the 40th northern parallel,
a result inconsistent with collection records in areas of the
northeast (e.g., New York) and upper Midwest (e.g., Wisconsin)
where there is strong evidence that A. americanum is in fact
established in localized pockets (but generally at relatively low
abundance). Some fraction of these northern areas would
likely have been identified as suitable habitat had we consid-
ered the tick present in counties categorized as reported by
Springer and others.56 Of the 647 counties categorized as

reported by Springer and others,56 34.3% had a score of
0 in the ensemble model while 59.5% had a score of either
4 (31.1%) or 5 (28.4%) (Table 3, Supplemental Table 1).
Maps of the continuous habitat suitability scores generated
by each optimized model (Figure 2C–G) showed variation
among model predictions, with those of some models being
much more spatially conservative (e.g., MARS) than others
(e.g., Maxent).
Visualization and evaluation of future predictions. Future

ensemble prediction maps suggested a number of changes to
the distribution of suitable habitat relative to the present-day
ensemble map (Figure 2B). Both RCP4.5 and RCP8.5 future
ensemble prediction maps (Figure 3A and B, respectively)
projected an expansion of suitable habitat north and east
across Iowa, Illinois, Indiana, and Ohio. The northern borders
of these states represented the northern limit of expansion in
the former scenario, while in the later, suitable habitat
extended into central portions of South Dakota, Minnesota,

FIGURE 3. Maps depicting predicted future distribution (and associated uncertainty) of habitat climatically suitable for the establishment of
Amblyomma americanum. Predictions were generated using the optimized present-day distribution model constructed with the GLM algorithm
(see Figure 2D) and future climate projections for 2061–2080. Maps of future ensemble predictions depicting consensus habitat suitability scores
for (A) the RCP4.5 and (B) RCP8.5 scenarios are presented above their respective ensemble MESS maps (C, D). In maps of future ensemble
predictions (A, B), consensus habitat suitability scores indicate the number of the 5 AOGCMs forecasting climate conditions associated with suitable
habitat in a given county. In the MESS maps (C, D), consensus MESS scores indicate the number of the 5 AOGCMs in which climate conditions
forecasted in a given county fell outside the historical range of climate conditions observed across all counties.
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Wisconsin, and Michigan. East of this region, both future
ensemble prediction maps projected suitable habitat in eastern
Tennessee and Kentucky and western West Virginia, areas
classified as unsuitable in the present-day ensemble model. In
eastern areas of the tick’s present range, both future ensemble
prediction maps projected modest northward expansion of
suitable habitat. Only the RCP8.5 ensemble map projected
the appearance of suitable habitat across parts of western and
central Pennsylvania and in areas of western New York, and
neither emissions scenario was associated with the prediction
of any suitable habitat north or east of the eastern border of
New York. A portion of the band of higher elevation habitat
associated with the Appalachian Mountain region remained
unsuitable in both future ensemble prediction maps, yet the
width of this band was reduced relative to the present-day
ensemble model. With the expansion of suitable habitat into
northern Virginia, southern Pennsylvania, and portions of
West Virginia in the RCP8.5 ensemble map, this band would
effectively become an island of unsuitable habitat. Consistent
with results of the present-day ensemble model, predictions
for both future scenarios forecasted a relatively stable western
limit to the distribution of suitable habitat that was roughly
coincident with the 100th meridian. Finally, ensemble maps
for both future scenarios predicted areas of unsuitable habitat
along coastal areas of Florida and the state’s panhandle region,
southern coastal areas of Alabama, Mississippi, Louisiana, and
southeastern Texas, and extending north to varying degrees
along the lower Mississippi river valley into northeastern
Arkansas and western Tennessee. Because these general areas
were identified as suitable habitat in the present-day ensemble
model, they could represent locations of future range contrac-
tion. It should be noted, however, that many of the associated
counties had high MESS scores, indicating high predictive
uncertainty due to climatic extrapolation (see below). Of the
1,569 counties with a score of 0 in the present-day ensemble
model, 69.0% and 50.5% had the same score in the RCP4.5
and RCP8.5 future ensemble predictions (i.e., none of the
five AOGCMs forecasted climatic conditions associated with
suitable habitat), respectively, while 2.5% and 27.2% had a
score of either 4 or 5 (Table 3, Supplemental Table 1). Of the
817 counties with a score of 5 in the present-day ensemble
model, 74.8% and 80.3% had a score of either 4 or 5 in the
RCP4.5 and RCP8.5 future ensemble predictions, respectively.
In the ensemble MESS maps for both ensemble predictions

(Figure 3C and D), the greatest uncertainty in future predic-
tions was in areas of the south central and southern United
States: from eastern Texas and Oklahoma, east across central
and southern Mississippi and Alabama to southern Georgia and
Florida, and then north along coastal areas of the Carolinas.
In the RCP4.5 ensemble MESS map the highest levels of
uncertainty (consensus MESS scores of 4 or 5) were concen-
trated in coastal portions of Gulf coast states (e.g., eastern
Texas, Louisiana, Mississippi, Alabama, Florida) and extending
along the Louisiana/Mississippi border north through the lower
Mississippi river valley to the confluence of northern Arkansas
and eastern Tennessee. In the RCP8.5 ensemble MESS map,
the total geographic area associated with highest uncertainty
was larger, covering most of Oklahoma, eastern Texas,
Louisiana, and Arkansas and extending into Midwestern and
central states (e.g., eastern Kansas and southeastern Nebraska,
northern Missouri, southern Illinois), and further north along
the eastern seaboard (e.g., through eastern North Carolina

and inland to the base of the Appalachian mountains). In
the RCP4.5 ensemble MESS map, 96.5% of counties with an
ensemble prediction score of 5 had an ensemble MESS score
of 2 or less (i.e., predicted climatic conditions fell outside the
historically observed range in 2 or fewer AOGCMs) (Table 3,
Supplemental Table 1). In contrast, 50.5% of counties with
an RCP8.5 ensemble prediction score of 5 had an ensemble
MESS score of 3 or more.
On the basis of the findings of Springer and others56

A. americanum is currently established in 651 counties dis-
tributed across 32 states and the DC. According to results of
our present-day ensemble model, between 817 counties (all
those with a consensus habitat suitability score of 5, 23 states
and the DC, 1,360,034 km2 of total area) and 1,540 counties
(all those with consensus habitat suitability score of at least
1, 30 states and the DC, 2,426,368 km2) are currently associ-
ated with suitable habitat. This extent represents between 17%
and 31% of the total area of the continental United States.
Applying the same delimiters to the RCP4.5 future ensemble
prediction, between 915 counties (19 states, 1,520,078 km2)
and 1,876 counties (29 states and the DC, 2,808,752 km2) were
forecasted to experience climatic conditions associated with
suitable habitat. This would represent a range of between 20%
and 36% of the total area of the continental United States. By
comparison, between 1,320 counties (23 states and the DC,
2,027,839 km2) and 2,131 counties (31 states and the DC,
3,279,726 km2) were forecasted to experience climatic condi-
tions associated with suitable habitat by the RCP8.5 future
ensemble prediction (between 26% and 42% of the total
area of the continental United States). It must be noted,
however, that values of these forecasted statistics are likely
overestimates for at least two reasons. First, the county-level
scale of the analyses assumes that conditions will be homoge-
neous across entire counties. In reality, it is highly likely that
within counties classified as suitable, only a fraction of the
total county area will actually be associated with suitable
habitat. Second, summary statistics generated for the future
ensemble predictions could be made more conservative by
incorporating uncertainty information from the MESS maps.
As the most extreme example, when counties associated with
climatic extrapolation in any one of the five AOGCMs (con-
sensus MESS score of 1 or more) were excluded from the
tallies associated with the RCP4.5 future ensemble prediction,
the range of counties forecasted to have suitable climatic con-
ditions shrank to between 330 (13 states, 516,490 km2) and
1,023 (25 states and the DC, 1,371,458 km2). Because the
RCP8.5 scenario is associated with more extreme climate
change, the effects of this MESS filtering on summary statis-
tics were even more pronounced: the range of climatically
suitable counties shrank to between 106 (six state, 231,564 km2)
and 531 (22 states, 944,772 km2).

DISCUSSION

Despite being a major nuisance biter and serving as the pri-
mary vector for multiple pathogens of public health signifi-
cance, the pattern of distribution of A. americanum within the
continental United States has received relatively little atten-
tion. This contrasts sharply with Ixodes scapularis, the primary
vector associated with Lyme disease in eastern North America
and a species whose distribution has been the focus of consid-
erable interest and study.24,57,92–95 Developing a well-resolved
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distribution map of the range of A. americanum represents
an important first step for both guiding future research on
tick ecology and biogeography as well as raising awareness
of A. americanum-associated diseases, particularly in more
northerly areas where the tick has become established rela-
tively recently. Using an ensemble approach to account
for uncertainty across modeling algorithms, we generated
a climate-based ensemble model that can be used to predict the
present-day distribution of locations within the continental
United States associated with climatic conditions suitable for the
establishment of A. americanum. With the exception of a rela-
tively high elevation region associated with the Appalachian
Mountains, our analyses suggested that suitable habitat effec-
tively extends eastward to the Atlantic coast from the 100th
meridian and southward from the 40th parallel. Our analyses
further suggested that humidity during summer months is the
primary determinant of habitat suitability. On the basis of two
different climate change scenarios (RCP 4.5 and 8.5) and
projected conditions for the period 2061–2080, our future
ensemble predictions included a relatively stable western limit
to the distribution of suitable habitat, an expansion of suitable
habitat north into the Upper Midwest and east into the Ohio
River Valley and western Pennsylvania, and potential dis-
appearance of suitable habitat in areas along the Gulf coast and
in the lowerMississippi river valley.
Mean vapor pressure in July was the only climate predic-

tor included in all five optimized models and had the highest
explanatory power. In reducing the original set of 66 climate
predictors to arrive at the nine variable reduced set, mean
vapor pressure in July had the highest value of deviance
explained and was strongly correlated with mean vapor pres-
sure in all months from April through October (inclusive, cor-
relation coefficient ≥ 0.9), mean temperature of warmest
quarter (Bio10, correlation coefficient = 0.89), and annual
mean temperature (Bio1, correlation coefficient = 0.84). These
correlations are not surprising given that vapor pressure is
strongly dependent on and positively related to temperature,
particularly as it nears saturation (i.e., when RH is high) (Sup-
plemental Material 2). Results of our present-day modeling
therefore indicate that humidity (vapor pressure) and tem-
perature, especially from late spring through early autumn,
are disproportionately important in defining the fundamental
(here, climatic) niche and distribution of A. americanum.
The minimum threshold value for mean vapor pressure
in July identified by the response curves of our optimized
models is approximately equal to values observed around the
100th meridian, with vapor pressure decreasing to the west
(Supplemental Figure 1). Further, values of mean vapor pres-
sure in July identified as optimal by our models are only
observed in areas of the southeastern United States where
A. americanum is highly abundant. Humidity exerts strong
effects on the activity patterns and survival of hard ticks of
many species.23,96–100 Laboratory studies involving nymphal
and adult A. americanum have estimated the critical equilib-
rium activity (water vapor activity [%RH/100] at which ticks
can remain adequately hydrated by absorbing water vapor
from the air) to be between 0.80 and 0.88, indicating relatively
high sensitivity to desiccation and dependence on a moisture-
rich environment.101–103 Oviposition, egg-hatching rates, and
larval survival and molting success in A. americanum are also
sensitive to and require high humidity (approximately ≥ 70%).104

The effects of humidity on tick mortality are likely to be

greatest during the period of peak host-seeking activity when
ticks spend more time away from favorable microclimate con-
ditions found in the leaf litter or close to the soil. For Lone star
ticks, this period spans April–July for adults, May–August for
nymphs, and July–September for larvae.105 As such, the sum-
mer months represent the portion of the year when all three
life stages are actively seeking hosts and may be most vulner-
able to desiccation stress. In modeling the distribution of
A. americanum within Missouri, Brown and others106 found
that RH in July was a significant predictor of nymphal and
adult abundance. Similarly, James and others34 modeled the
climatic niche of the American dog tick (Dermacentor
variabilis) and found a strong effect of normalized difference
vegetation index in July, which they posited is an indicator of
humidity levels on the ground. It should be noted that in our
analyses we modeled vapor pressure using atmospheric mea-
surements. Humidity experienced by ticks in microhabitats
associated with the ground and leaf litter should in general be
correlated with but higher than atmospheric humidity.
Although all of the other eight climate predictor variables

included in our present-day modeling had very limited
explanatory power, two warrant mention. Mean temperature
of the driest quarter (Bio9) and annual precipitation (Bio12)
were both included in four of the five models and had the
second and third highest explanatory power behind mean
vapor pressure in July, respectively. The response curves for
Bio9 varied among optimized models and there were no clear,
consistent, relationships with habitat suitability. This appar-
ently equivocal result may be due in part to the fact that the
period of the year that constitutes the driest quarter varies
geographically (Supplemental Figure 2). Specifically, Missouri,
eastern Oklahoma, and northwestern Arkansas, areas that are
all highly suitable for A. americanum, experience their driest
quarter in winter, whereas other highly suitable states such as
eastern Arkansas, Louisiana, Alabama, and Mississippi experi-
ence their driest quarter in the summer. Therefore, the modest
positive slope observed at approximately 17.5°C in the response
curves of three of four models (Figure 1) likely reflects
increased suitability for A. americanum in areas of the south-
east that experience warmer late-spring to early-autumn tem-
peratures and also experience high RH (Supplemental
Figure 1). With the exception of the Maxent model, habitat
suitability appears to change little in response to temperature
in areas where the driest months occurs in the winter (e.g.,
where mean temperature of the driest quarter is less than
5°C), a finding that might suggest that the insulating effects
of snow cover could result in winter temperatures having a
negligible effect on establishment. In contrast to Bio9, there
seemed to be relatively consistent evidence of an asymptotic
relationship between habitat suitability and annual precipita-
tion (Bio12), with positive increases in suitability up to a
peak between 1,200 and 1,400 mm. Two of the models indi-
cated decreases in suitability at higher levels of precipitation
while two indicated no effect of additional precipitation on
suitability. Similar to the pattern for mean vapor pressure in
July, a dramatic decline in annual precipitation west of the
100th meridian likely contributes to conditions that are pro-
hibitively dry for tick establishment (Supplemental Figure 1).
The five optimized models varied both in their structure

(number and identity of climatic predictor variables included)
and their spatial predictions of habitat suitability across the
continental United States. Geographic variation among models
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could be generally characterized based on the predicted likeli-
hood and spatial extent of suitable habitat in three geographic
regions: 1) a core area of distribution in south central and
southeastern regions where A. americanum is known to occur
in high abundance, 2) areas west of the 100th meridian where
A. americanum is unlikely to be currently established, and
3) areas of the northeast and upperMidwest located north of the
40th parallel into which the range of A. americanum may be
expanding.56All five optimized models included vapor pressure
in July and predicted high habitat suitability within the core
area. The optimized BRT model included the fewest number of
climatic predictor variables (two) and predicted suitable habitat
almost exclusively within this core area. In contrast,, the opti-
mized GLM and MARS models both included three climatic
predictor variables and predicted moderately suitable habitat
in the northeast and upper Midwest. In addition to vapor pres-
sure in July, both of these models also included annual precipi-
tation (Bio12). The MARS model was the only one of the five
to predict extensive areas of low habitat suitability west of the
100th meridian. The optimized Maxent and RF models both
included all nine climate predictor variables. The former pre-
dicted broad areas of relatively high habitat suitability within
the northeast and upper Midwest, and patchy areas of low
habitat suitability west of the 100th meridian. By comparison,
the latter had the most spatially conservative predictions.
Locations with the highest predicted habitat suitability largely
coincided with counties categorized as established by Springer
and others,56 with scattered clusters of areas of considerably
lower predicted suitability interspersed among them.
Our present-day models (the five individual optimized models

and the ensemble model created from them) performed well
in predicting the presence of suitable habitat in the core area
of the distribution of A. americanum.56 Extending to the coast
from the 100th meridian in the west and the 40th parallel in
the north and excluding higher elevation regions associated
with the Appalachian Mountains, this area is consistent with
the spatial distribution of A. americanum collected as part of a
large-scale field study of I. scapularis92 and with qualitative,
continental-scale distribution maps produced to date for the
Lone star tick.48,107,108 The area is also roughly coincident with
the predicted and observed spatial distribution of E. chaffeensis
(in white-tailed deer) (Odocoileus virginianus),109–112 a zoonotic
pathogen for which A. americanum is the principle vector.107

The distribution of human cases of ehrlichiosis, a disease caused
primarily by E. chaffeensis, also falls largely within this area.
For example, of the 4,619 cases of confirmed human infection
by E. chaffeensis reported to the U.S. Centers for Disease Con-
trol and Prevention from 2008 through 2012, 62% were associ-
ated with residents of seven states located centrally within
our predicted distribution of suitable A. americanum habitat:
Oklahoma, Missouri, Arkansas, Kentucky, Tennessee, Virginia,
North Carolina).113–117 Finally, the distribution of suitable habi-
tat is also consistent with general biogeographic patterns identi-
fied by studies of other Ixodid ticks. For example, Diuk-Wasser
and others92 reported the 100th meridian as the western distri-
butional limit of I. scapularis and also failed to collect any indi-
viduals of that species or D. variabilis at multiple sites in the
Appalachian Mountains. In creating a county-level map of
records of I. scapularis collections, Dennis and others.57 found
the species to be essentially absent from the Appalachian region.
In contrast to results associated with the tick’s core area of

distribution, the present-day and ensemble models generally

failed to predict suitable habitat in areas north of the 40th par-
allel even though A. americanum is known to be established
in localized pockets in the northeast and upper Midwest (e.g.,
areas of New York, Connecticut, Rhode Island, Maine,
Wisconsin).56 A post hoc analysis that separately compared
predictions among counties north and south of the 40th par-
allel revealed that on average, the sensitivity of individual
optimized models (proportion of established counties classi-
fied as presence locations) was 97% in the south but only
46% in the north. Similarly, 97% of established counties in
the south received a consensus habitat suitability score of 4
or 5 in the present-day ensemble model compared with only
33% of northern established counties. A total of 64% of
northern established counties were only identified as suitable
habitat by the optimized RF model. The low sensitivity of our
models in the north could be attributable to true biological
variation. For example, habitat suitability in northern areas
might be driven by different climatic conditions or to a greater
extent by biotic factors than in the south. Alternatively, the
results might reflect the relatively low and spatially localized
surveillance efforts in the north. Given the broad spatial
scale of our models, the influence of a small number of northern
established counties on model predictions was likely swamped
by that of the large number of southern counties. This imbal-
ance could be addressed through either greater surveillance
in northern areas to identify additional counties where
A. americanum is established and/or the construction of finer
scale, localized models that focus on these northern regions.
Such efforts seem warranted given the widely held belief that
the range of A. americanum is expanding northward.
Model predictions about the spatial distribution of suitable

habitat are likely robust in terms of climatic factors. In our
analyses, we considered a diverse suite of climate predictors
including variables that are known to have strong effects on
tick growth, survival, and/or reproduction and that have been
identified as important contributors in modeled distributions
of other tick species.118 In addition, we used the most updated
and empirically robust range map for A. americanum that
included numerous known established locations distributed
across the full geographic and climatic extent of the presumed
extant range of the species.56 Finally, we generated predictions
using an ensemble approach that combined results of multiple
algorithms that varied in the number and identity of the cli-
mate predictors included and in the modeled relationships
between those variables and habitat suitability. Nevertheless,
while our analyses have likely defined the climatic niche of
A. americanum reasonably well, there are at least four limita-
tions that could contribute to disparities between our results
and the actual present-day distribution (∼realized niche) of
the Lone star tick. First, our analyses did not consider the dis-
tribution of host species that represent the tick’s food source.
Although A. americanum is known to feed on a variety of spe-
cies of reptiles, birds, and small- and medium-sized mam-
mals, the white-tailed deer (O. virginianus) is considered the
tick’s principle wildlife host.54 Large-scale changes in the dis-
tribution and abundance of O. virginianus within the conti-
nental United States caused primarily by hunting have been
linked to concomitant effects on the biogeography of species
of ticks including A. americanum.54 Second, our analyses did
not directly incorporate information on the distribution of veg-
etation known to be important to Lone star tick ecology. Spe-
cifically, the relative abundance of A. americanum is highest
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within young, second-growth woodland habitats where dense
understory vegetation creates microclimatic conditions opti-
mal for ticks survival.54 As with white-tailed deer, reductions
in the extent of woodland habitat in the United States caused
by anthropogenic deforestation and agricultural development
have been correlated with changes in the distribution of
A. americanum.54 Although we recognize that host availabil-
ity and vegetation are important in determining tick establish-
ment, neither variable was included in our analyses because
present-day distributions are not of suitable quality or desired
spatial resolution and/or future distributions are poorly defined.
Third, colonization of a specific location by ticks will require
both the presence of suitable habitat as well as successful dis-
persal to that location. Dispersal of ticks occurs primarily
through movement of hosts, the majority of which range across
relatively limited geographic extents (e.g., < 100 km). Although
ticks of many species can travel longer distances while feeding
on birds,119 these migrants are generally reproductively imma-
ture larvae or nymphs. Establishment of ticks in a new loca-
tion would require either the dispersal of one or more gravid
adult female ticks that lay eggs following arrival, or of multiple
immature stages with post-arrival survival, contact, and repro-
duction. Finally, because our analyses had a broad geographic
extent overall, our results are spatially coarse at the level of
individual counties. Mean climatic conditions for any given
county, calculated from one or a few associated climate data
grid cells, are an obvious oversimplification of the range of
microclimates present within that county. In reality, it is likely
that a portion of every county classified in its entirety as suit-
able habitat by our analyses would not support A. americanum
populations given climatic conditions at smaller spatial scales.
Future ensemble predictions based on conditions associated

with both of the simulated climate change scenarios (Supple-
mental Figures 3–5) forecasted northward expansion of suit-
able habitat into areas of the Upper Midwest and northeast
into the Ohio River Valley. This result in directionally consis-
tent with observed and modeled changes in the distribution
of I. scapularis, which is most abundant in parts of its range
associated with states in Northeast and upper Midwest and
is expanding northward into areas of eastern and central
Canada.28,32,37 In our results, the extent of predicted expan-
sion of suitable habitat was greater in the RCP8.5 scenario,
which is associated with higher emissions and more extreme
warming. Maps for both future ensembles suggested consid-
erable increases in the proportion of suitable habitat in Iowa,
Illinois, Indiana, and Ohio. With greater warming, southern
and central portions of South Dakota, Minnesota, Wisconsin,
and Michigan are also likely to increase in suitability. These
changes are almost certainly driven by warming and the
accompanying changes in humidity, particularly during spring
and summer months. As the climate warms and average sat-
uration vapor pressure increases concomitantly, higher vapor
pressure (humidity) conditions will become more common,
particularly during warmer times of year.74 In contrast,
extensive northward expansion of suitable habitat into north-
eastern states was not predicted under either scenario, with no
suitable habitat forecasted east of New York in either model.
Extreme precipitation events have become more frequent in
the northeastern United States in recent decades,120 and
precipitation is forecasted to increase in the northeastern
United States under future climate scenarios.121 This could
render habitat unsuitable by increasing the frequency and/or

degree of water saturation that results in inundation. Predic-
tions for both scenarios forecasted essentially no westward
extension of suitable habitat beyond the 100th meridian,
suggesting that this longitude may represent a relatively
stable biogeographic boundary for A. americanum. Distance
from the Gulf of Mexico moisture source and increases in
elevation beginning at this longitude likely render areas to the
west inhospitable due to insufficient moisture. Finally, both
future ensemble predictions suggested the potential for range
contraction in coastal areas of Florida, Alabama, Mississippi,
Louisiana, and eastern Texas, as well as in the region of
the lower Mississippi river valley extending from southern
Louisiana to the Tennessee/Arkansas border. As in the north-
eastern United States, loss of suitable habitat in these areas
appears to be rooted in future increases in precipitation to
levels that are inhospitable for ticks due to inundation. It
should be noted, however, that the intermediate habitat suit-
ability scores predicted for these areas by the optimized present-
day GLM model (Figure 2D) suggest that they are already
associated with suboptimal climatic conditions at the present
time. Further, because these areas were associated with rela-
tively high consensus scores in both MESS maps, this predic-
tion of range contraction should be interpreted with caution.
The Lone star tick is increasingly recognized as a vector

species of significant public health importance in North
America. Predictions about future distributional changes of
A. americanum highlight areas where public health informa-
tion campaigns could be initiated proactively and where field
studies of tick ecology (e.g., investigating physiology at range
limits, invasion dynamics) might be conducted. In addition,
our results complement and build upon those of Springer and
others56 by providing a contiguous, county-level representa-
tion of the present-day spatial distribution of areas associated
with habitat climatically suitable for the establishment of
A. americanum within the continental United States. Together,
results of these present-day habitat suitability models and
future ensemble predictions provide a foundation upon which
more comprehensive studies of A. americanum biogeography
(e.g., incorporating information about other aspects of tick
ecology including vegetation associations, host distributions,
and/or dispersal) can be based.
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