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ABSTRACT The advance of next generation sequencing (NGS) techniques provides an unprecedented opportunity to probe the
enormous diversity of the immune repertoire by deep sequencing T-cell receptors (TCRs) and B-cell receptors (BCRs). However, an
efficient and accurate analytical tool is still on demand to process the huge amount of data. We have developed a high-resolution
analytical pipeline, Immune Monitor (“IMonitor”) to tackle this task. This method utilizes realignment to identify V(D)J genes and alleles
after common local alignment. We compare IMonitor with other published tools by simulated and public rearranged sequences, and it
demonstrates its superior performance in most aspects. Together with this, a methodology is developed to correct the PCR and
sequencing errors and to minimize the PCR bias among various rearranged sequences with different V and J gene families. IMonitor
provides general adaptation for sequences from all receptor chains of different species and outputs useful statistics and visualizations.
In the final part of this article, we demonstrate its application on minimal residual disease detection in patients with B-cell acute
lymphoblastic leukemia. In summary, this package would be of widespread usage for immune repertoire analysis.
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THE diversity of T-cell receptors (TCRs), B-cell receptors
(BCRs), and secreting form antibodies makes up the core

of the complicated immune system and serves as pivotal
defensive components to protect the body against invading
virus, bacteria, and other pathogens. The TCR consists of
a heterodimeric ab chain (�95%, TRA, TRB) or gd chain
(�5%), while the BCR is assembled with two heavy chains
(IGH) and two light chains (IGK or IGL). Structurally, each
chain can be divided into the variable domain and the con-
stant domain (Lefranc and Lefranc 2001a,b). The diversity of
the TCR and BCR repertoire is enormous, owing to the pro-
cess of V(D)J gene rearrangement, random deletion of germ-
line nucleotides, and insertion of uncertain length of
nontemplate nucleotides between V-D and D-J junctions
(TRB, IGH) or V-J junctions (TRA, IGK, IGL). In humans, it

has been estimated theoretically that the diversity of TCR-ab
receptors exceeds 1018 in the thymus, and the diversity of
the B-cell repertoire is even larger, considering the somatic
hypermutation (Janeway 2005; Benichou et al. 2012). The
T- and B-cell repertoire could undergo dynamic changes
under different phenotypic status. Recently, deep sequenc-
ing enabled by different platforms including Roche 454 and
Illumina Hiseq (Freeman et al. 2009; Robins et al. 2009;
Wang et al. 2010; Fischer 2011; Venturi et al. 2011) has
been applied to unravel the dynamics of the TCR and BCR
repertoire and extended to various translational applica-
tions such as vaccination, cancer, and autoimmune diseases.

Several tools and software have been developed for TCR
and BCR sequence analysis, including iHMMune-align (Gaeta
et al. 2007), HighV-QEUST (Li et al. 2013), IgBLAST (Ye et al.
2013), Decombinator (Thomas et al. 2013), and MiTCR
(Bolotin et al. 2013). These tools are equipped with useful
functions, including V(D)J gene alignment, CDR3 sequence
identification, and more, yet with obvious limitations. For
instance, HighV-QEUST can be adopted to analyze both TCRs
and BCRs, but its online version limits maximum sequence
input to 150,000 at a time for regular users. Decombinator
and MiTCR can only be used to analyze the TCR sequences.
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Besides, most tools lack specific solutions to some common
problems like systemic statistics and visualizations, PCR and
sequencing errors, and amplification bias correction.

Here, we introduce a novel pipeline, Immune Monitor
(IMonitor) for both TCR and BCR deep sequencing analysis.
It includes four steps in its core component: basic data pro-
cessing, V(D)J assignment, structural analysis, and statistics/
visualization. One feature that makes IMonitor stand out is its
realignment process to identify V(D)J genes and alleles with
significantly enhanced precision. We simulated 15 data sets
forfive chains (TRA, TRB, IGH, IGK, IGL) of different sequenc-
ing error rates and hypermutation rates, together with actual
rearranged sequences, to test performance of various tools.
IMonitor performs quite well in accuracy and clonotype re-
covery. Furthermore, IMonitor incorporates a process to cor-
rect PCR and sequencing errors, utilizing the data from six
plasmidmixed samples, and an in silicomodelwasmodulated
to reduce the PCR bias. Finally, we validate IMonitor in de-
tection of minimal residual disease (MRD) of B-cell acute
lymphoblastic leukemia (B-ALL) to show its wide utility
potential.

Materials and Methods

The core component of IMonitor consists of four steps: basic
data processing, V(D)J assignment, structural analysis, and
statistics/visualization, as shown in Figure 1. IMonitor can
utilize data generated by a variety of next generation se-
quencing (NGS) platforms, such as Illumina, Roche 454,
and Life Ion Proton, in both FASTQ and FASTA format. The
final results of IMonitor include a complete map of sequences
and data analysis in depth, and the latter is visualized and
presented with viewer-friendly graphs and figures.

IMonitor for basic data processing

In thefirst step, the readswere checked for inclusion of adaptor
sequences. If any adaptor sequence was detected and located
within 50 bp of the 39end of the read, it was deleted from the
read. Reads bearing adaptor sequence at the 59 end or .5%
“N” bases were discarded. The average base quality of each
readwas calculated after removing the low-quality bases (base
quality,10) at the 39 end. Further filtration left out readswith
average quality ,15. For Illumina paired-end (PE) sequenc-
ing, the PE reads were merged at their overlapping region. For
PE readswith insertion length longer than the lengthof a single
read, the COPE (Liu et al. 2012) toolwas used; otherwise reads
were assembled by an in-house program. Themain parameters
for both tools included themaximumoverlapping length (read
length), minimum overlapping length (10 bp), mismatch rate
(10%) at the overlapping region, and ratio (best overlap
length/second-best overlap length, 0.7).

IMonitor for V(D)J assignment

The V/D/J reference sequences were downloaded from the
IMGT database, the international ImMunoGeneTics informa-
tion system (http://www.imgt.org/). Processed sequences

were aligned to the V, (D), J references, respectively, by
BLAST (Altschul et al. 1990; Zhang et al. 2000; Ye et al.
2006) and specific parameters were applied to accommodate
the differences in lengths of V, (D), J segments (BLAST
parameters: V, -W 15 -K 3 -v 1 -b 3; D, -W 4 -K 3 -v 3 -b 5;
and J, -W 10 -K 3 -v 1 -b 3).

The high similarity among the genes and alleles of the
germline sequences, along with the diversity of V/D/J gene
rearrangement, gave rise to difficulties for accurate align-
ment. This might eventually lead to an incorrect structural
analysis (CDR3 identification, deletion, or insertion). To im-
prove the accuracy, a second alignment procedure was de-
veloped to identify exactly the V/D/J genes (Figure 2). First,
a global alignment strategy, which attempted to align every
base in every sequence, was used for the non-CDR3 region of
the sequence. The mapped region generated from BLAST
became a new seed and served as starting points for boot-
strapping (base-by-base) extension to both directions, until
the entire non-CDR3 region in the query was mapped to the
target (reference) sequence. The mapping score was calcu-
lated according to these rules: reward for a nucleotide match
was 5 and penalty for a nucleotide mismatch was 24. Sec-
ond, the M-mismatch extension model of local alignment
strategy was applied to locate the exact end positions of V
and J genes during CDR3 region realignment. The procedure
began at the CDR3 start position in the V gene or the CDR3
end position in the J gene and continuously extended in one
direction until the preset mismatch limit was reached, gen-
erating the longest possible interval with the highest score.
The mismatch numbers allowed for V/D/J genes were de-
termined based on the analysis result of publicly available
rearrangement sequences (http://www.imgt.org/ligmdb/)
(Supporting Information, Figure S2A) and adjusted accord-
ingly for different TCR and BCR chains (mismatches allowed:
TRBV/J, TRAV/J, 0; IGHV/J, 2; IGKV/J, IGLV/J, 7). As shown
in Figure S2A, these mismatch limits took mutations into
consideration and covered .99.5% of all defined rearrange-
ment sequences. Because the entire D gene was located
within the CDR3 region, only the M-mismatch extension
model was used for its realignment (mismatches allowed:
TRBD, 0; IGHD, 4). Finally, all data including alignment
score, identity, mismatch number, and alignment length were
processed, and the alignment with highest score and identity
larger than the threshold (.80%) was selected as the best
hit. However, there might be several best hits with the same
score due to the homology among the germline genes and
alleles. In this case, the reference with the fewest deletions
was selected, as shorter deletions are more likely to happen
according to previous reported results (Warren et al. 2009)
and our analysis from actual public rearrangement data (Fig-
ure S2B).

IMonitor for structural analysis

The IMGT collaboration (YousfiMonod et al. 2004) outlined
the CDR3 region of all chains, starting from the second con-
served cysteine encoded by the V segment and ending with

460 W. Zhang et al.

http://www.imgt.org/
http://www.imgt.org/ligmdb/
http://www.genetics.org/content/suppl/2015/08/21/genetics.115.176735.DC1/176735SI.pdf
http://www.genetics.org/content/suppl/2015/08/21/genetics.115.176735.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2015/08/21/genetics.115.176735.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2015/08/21/genetics.115.176735.DC1/FigureS2.pdf
http://www.genetics.org/content/suppl/2015/08/21/genetics.115.176735.DC1/FigureS2.pdf


the conserved phenylalanine or tryptophane encoded by
the J segment. Combining this information with our se-
lected reference from the previous step, the CDR3 region
of target sequence could be readily identified. For un-
mapped sequences, the CDR3 region was determined by
searching through for a conservative amino acids module
within both ends of the CDR3 region (“YXC” for start and
“[FW]GXG” for end, where “X” stands for any amino acid).
The rearrangement frame was tagged as “in-frame” if the
length of CDR3 was a multiple of three and no stop codon
was found in whole sequence; otherwise it was tagged
“out-of-frame.” The structure of the sequence was clearly
described, including V, (D), J segments used, the CDR3 re-
gion, and the deletions and insertions at rearrangement
sites. Then the nucleotide sequences were translated into

peptides. However, some sequences must be filtered out to
ensure the accuracy of the immune repertoire, which include
(1) sequences without CDR3 region and (2) sequences with
V and J alignment orientation conflict. The sequences that
were aligned to pseudogenes, were out-of-frame, and in-
cluded a stop codon were marked.

IMonitor for statistics and visualization

The basic statistics of IMonitor include CDR3 frequency dis-
tribution, V-J paring, V/J usage, 59V/59D/39D/59J deletion
length distribution, V-D/D-J insertion length distribution,
V/J base composition, CDR3 length distribution, CDR3
segmental frequency statistics, Top10 CDR3 frequency,
hypermutation of BCRs, etc. Figures were plotted to visually
demonstrate each result. For V-J pairing, a three-dimensional

Figure 1 Overview of workflow of IMonitor.
Although the program includes four steps, we
have several parameters to control whether the
module runs or not. The program takes raw
NGS (FASTA or FASTQ) as input and outputs
the V(D)J assignment of the sequence, some
statistics, and corresponding figures.

Pipeline for TCR and BCR Repertoire 461



figure was generated. R script was used to draw most of the
figures while the V/J base composition was plotted with
weblogo 2.8 (Crooks et al. 2004). To completely eliminate
sequencing error effect, a sequence detected,10 times was
excluded to calculate hypermutation. The mutation rate
consisted of base mutation and sequence mutation. The
former was the content of mutational bases in total bases,
and the latter was rate of the sequence containing mutation
in total sequences.

The Shannon–Weiner index (Shannon 1997), as shown
below, used as an immunological diversity value in several
previous works (Sherwood et al. 2013), provided a good es-
timate of diversity in a large-scale study and was suitable for
immune repertoire. We used it to calculate the diversity of
CDR3, the V gene, the J gene, and V-J pairing,

H9 ¼ 2
XS
i¼1

pðiÞ ln pðiÞ; (1)

where CDR3 is an example, S denotes the total number of
unique CDR3, and pðiÞ denotes the frequency of CDR3.

IMonitor also provided the saturation analysis with the
Chao1 algorithm, which was used to estimate the target
richness for individual-based data in previous ecological stud-
ies. Estimated values generated by the Chao1 bias-corrected
algorithmwere used to predict themaximumnumber of clones
in the sample, while observed values were drawn separately
with the rarefaction curves (Chao 1984, 1987):

ŜChao1 ¼ Sobs þ
F1ðF121Þ
2ðF2 þ 1Þ: (2)

In Equation 2, Sobs stands for total number of observed clo-
notypes in a sample; F denotes the number of clonotypes (F1;
the number of clonotypes detected one time; F2; the number
of clonotypes detected two times).

PCR and sequencing error correction

PCR and sequencing error of NGS is one of the toughest
problems in immune repertoire analysis. The method we
developed to correct this error could be utilized on either
the whole sequence or just the CDR3 region. The pro-
cedure consisted of three steps. First, sequences were
divided into three groups: (1) high-quality sequences
whose base qualities all were .Q20 (Q20 were the best
cutoff according to Figure S5, A and B; (2) sequences with
more than five (three for only CDR3 region correction)
low-quality bases were unwanted and discarded; and (3)
the rest were defined as low-quality sequences. Second,
the low-quality sequences were mapped to the high-quality
ones. When the mismatches were no more than five (three
for only CDR3 region correction) and all located at low-quality
positions, the mismatches were corrected; otherwise the
sequence was discarded. Finally, to eliminate PCR errors,
sequences with low abundance were compared to ones with
high abundance (at least fivefold difference). If fewer than
three mismatches were found in the low-abundance sequen-
ces, they were corrected to the corresponding high-abundance
sequences. To test the effectiveness of this method, samples
made from mixtures of six plasmids were used for error char-
acteristics analysis and further evaluation.

Figure 2 The workflow of realign-
ment. The program takes the
BLAST alignment results as input,
realigns the sequence to reference
for both the non-CDR3 region and
the CDR3 region, calculating the
score and identity, and then
selects the maximal score as the
best hit. The reference with short-
est length of deletion is preferred
if it finds multiple references with
the same maximal scores. It out-
puts the optimal alignment result.
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Multiplex PCR bias minimization

We established a new bioinformatic approach to minimize
PCR amplification bias. The approach is built on the hypoth-
esis that there are two factors affecting a clone’s frequency
during multiplex PCR (MPCR): the template’s concentration
and the multiple primers’ efficiency. Using six plasmid mix-
ture samples (Table S4), we could compare the observed
with the expected frequency and simulate an effective
formula.

The streamlined procedure of thismethod is demonstrated
by the flowchart in Figure 6. Two factors, templates’ concen-
tration and primers’ efficiency, were considered to be affect-
ing the bias and examined here. The samples were mixed
properly, and clones were grouped to explore PCR bias rules.
First, we analyzed the bias’ correlation with templates’ con-
centration (concentration analysis without primer effect).
Each clone had three different concentrations in all samples.
To eliminate potential effects caused by the multiple primers
efficiencies, the clones that had the same concentration ratio
among all samples were grouped together, generating five
groups in total [groups were named 10_2E4_1E5, 1000_2E4,
100_1000_2E4, 100_1E4_2E4, and 10_1E4_2E4; for instance,
10_2E4_1E5 denoted the three concentrations (10, 2E4, 1E5)
in respective samples]. Then, within each group, the clone fre-
quencies were normalized by multiplying the same coefficient
k, which could generate a minimal sum of absolute deviation
Dmin(i). The 10_2E4_1E5 group sets an example as follows:

mð jÞ ¼ 1
n

Xn
i¼1

f ði; jÞ; j ¼ f10; 2E4; 1E5g (3)

DminðiÞ ¼ minfj fði; 10Þ k2mð10Þj
þ j fði; 2E4Þ k2mð2E4Þj
þ j fði; 1E5Þ k2mð1E5Þjg; k 2 ð0;þNÞ (4)

fnormði; jÞ ¼ fði; jÞ k; j ¼ f10; 2E4; 1E5g; (5)

where n is clone number in a group, i is a clone, and f is clone
frequency. k was set consecutively from 0 and a series of D(i)
was calculated, after which the k that generated the smallest
D(i) was selected.

After normalization, five groups were combined on the
basis of 2E4 copies, which existed in all groups. We used
a regression module to fit a curve (Equation 6) that reflected
the relationship between concentration and PCR bias,

y ¼ 0:60636 log
xþ1

1:8
; (6)

where y is the observed sequence’s frequency and x is the
expected sequence’s frequency.

Second, we analyzed the bias caused only by primer effi-
ciencies (primer analysis without concentration effect). To
remove the effect of clone concentration, cloneswith the same
concentration in all samples were collected into one group;
thus six groups were generated (10, 100, 1E3, 1E4, 2E4, and

1E5, where group 10 contained all clones that had the con-
centration 10 in any of the samples) (Figure 6). After calcu-
lation, each group was normalized by multiplying the same
coefficient l, with the following details,

rði; jÞ ¼

8>>>>><
>>>>>:

f ði; jÞ l
fði; 2E4Þ ; if f f ði; jÞ l. f ði; 2E4Þg

fði; 2E4Þ
fði; jÞ l ; if ff ði; 2E4Þ. f ði; jÞ lg;

l 2 ð0;þNÞ; j ¼ f10; 100; 1E3; 1E4; 2E4; 1E5g
(7)

Rminði; jÞ ¼ min

(Xn
i¼1

rði; jÞ
)

(8)

fnormði; jÞ ¼ f ði; jÞ l; (9)

where, n is clone number in a group, i is a clone, and f is clone
frequency. l was set consecutively from 0 and a series of R(i)
was calculated, after which the l that generated the minimal
R(i) was selected.

Each primer’s efficiency was calculated after normaliza-
tion. Then, analysis of the two factors was integrated into
a formula that minimized the PCR bias (Equation 10),

fcorrect ¼ 1:8Si=ðS*0:60636*pÞ 2 1; p ¼ 0:5 pðvÞ
þ 0:5 pð jÞ þ 0:05; (10)

where fcorrect is the corrected frequency, Si is the clone’s ob-
served abundance, S is the sum abundance of the sample,
p(v) is the primer efficiency value for the V gene, and p(j)
is the primer efficiency value for the J gene.

Multiplex PCR amplification

Toamplify rearrangedCDR3 regions,multiple forwardprimers
in the V region and reverse primers in the J region were
designed. For the RNA sample, the first-strand cDNAs were
synthesized using SuperScript II Enzyme according to the
manufacturer’s instructions. Then two individual equimolar
pools of the forward primers and the reverse primers were
used for a multiplex PCR (QIAGEN, Valencia, CA) of 30 cycles
according to the provided protocol. The fractions between 110
and 180 bp of the PCR products were excised and purified.

Simulation of in silico sequences

A total of 105 sequences were generated in silico for each
data set with a length of 200–300 bp by simulating the
relevant biological processes that occur during B-cell and
T-cell development. The sequences of V(D)J genes of
TRA/TRB/IGH/IGK/IGL were downloaded from IMGT
(http://www.imgt.org/). First, to simulate recombination,
a V allele and a J allele (an extra D allele for TRB and IGH)
were selected at random to generate a V-D-J (V-J for TRA and
light chain) combination. Second, to simulate deletion and
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insertion, some baseswere deleted at the 39 end of V and the 59
end of J (both ends of D for TRB and IGH) according to the
deletion length distribution from previous research (Figure
S1); meanwhile some random bases were inserted at V-D
and D-J junctions (V-J junction for TRA and light chain), using
the established insertion length distribution (Figure S1). Third,
both somatic hypermutation during BCR maturation and se-
quencing error were also taken into consideration. Although
the typical error rate of IlluminaHTS technology is�1%, it can
be reduced aftermerging paired-end reads (Figure 5A). There-
fore, for each chain, the error rate was set to 0.1%, 0.5%, and
2% evenly at every position of the sequence. The hypermuta-
tion rate was set to 1% for IGH and 4% for IGK/IGL.

Public rearrangement data sets

The data sets were obtained from the IMGT/LIGM-DB data-
base(http://www.imgt.org/ligmdb/); searched by “Homo sa-
piens,” “rearranged,” “TRB,” or “IGH”; and then the selected
sequences were annotated manually (Annot. level==“ma-
nual”) and annotated by V, D, J genes. Finally, 24 TRB and
1763 IGH sequences met these requirements. The sequence
was in FASTA format, without sequencing quality. The length
of sequences downstream of the J gene was limited to 50 bp.

Samples

Plasmid mix samples: Thirty-three different functional TCR
b-chain sequences, which included all the TCR b, V, and J

genes, were integrated into plasmid vectors. Three mixing
pattern pools were used: one with an equal mole number of
each plasmid and the other two pools with different pool-
ing gradients. The mix patterns are listed in Table S4, and
each pattern was replicated to produce six plasmid mix
samples.

Spiked-in DNA samples: Spiked-in samples were generously
donated by Karen Cerosaletti (Benaroya Research Institute,
Seattle, WA) (Robins et al. 2012). Five CD4+ T-cell clones
were spiked in a background of sorted CD4+CD45RA+ naive
T cells and each unit had 1 million cells. The five clones in
three different units had different numbers of unique TCRb
CDR3 sequences and are shown in Table S7. The background
cells for these doped samples were sorted from a fresh pe-
ripheral blood mononuclear cell (PBMC) sample obtained
from a control donor with informed consent. DNA was
extracted from the cells with a commercial kit.

Healthy donor samples: Samples of peripheral blood from
two healthy human donors (H-H-1 and H-B-1) were obtained
by venipuncturewith informed consent. PBMCswere isolated
immediately and RNA was extracted using Trizol reagent
(Invitrogen,Carlsbad,CA).DNAwasextractedwithaQIAamp
DNABloodMini Kit and stored at220�. The CDR3 regionwas
amplified by multiplex PCR (Table S9) and sequenced by an
Illumina platform (Table S6).

Figure 3 Performance of different types of software on 105 in silico sequences. Shown is accuracy of TRA, TRB, IGH, IGK, and IGL sequences with 0.5%
sequencing error. The accuracy is calculated for both gene and allele, but Decombinator has only V and J genes identified.
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MRD samples: Bone marrow samples from two patients
(M001 andM002)with B-ALLwere providedwith informed
consent. The samples of pretreatment, day 15, and day 33
post-treatment were assayed. A total of 1.2 mg DNA of each
sample was used for multiplex PCR amplification (Table S9).
The library of �150–270 bp insert-size length was extracted
and sequenced using the 23100 PE Illumina platform
(Table S6).

The research was prospectively reviewed and approved by
a duly constituted ethics committee.

Data availability

The source code of IMonitor is freely available for download
at https://github.com/zhangwei2015.

Table S1: Simulated TRB with 0.1%, 0.5% and 2% sequenc-
ing error.

Table S2: Simulated IGH with 0.1%, 0.5% and 2% sequenc-
ing error and 0.1% hayper-mutation.

Table S3: Simulated Data with 0.5% sequencing error
(TRA/IGK/IGL) and 4% hyper-mutation.

Table S4: Plasmid mixing pattern.
Table S5: Data process for PCR and sequencing error

statistics.
Table S6: Samples information.
Table S7: Experimental design for five CD4+ T cell clones in

the three spiked in mix.
Table S8: Performance of IMonitor and other tools on the

simulated dataset.
Table S9: TRB and IGH V/J primers.

Figure S1: Insertion and deletion length distribution for sim-
ulated data.

Figure S2: IGH-VDJ Mutation and deletion/insertion analy-
sis on the public sequences.

Figure S3: Outputs of IMonitor, H-B-01 as an example.
Figure S4: H-B-01 sample output figure of IMonitor.
Figure S5: Error characteristics of 6 plasmid mix samples.
Figure S6: V-J pairing dynamics for M002.
Figure S7: MiTCR and IMonitor performance in 3 spiked-in

samples.
Figure S8: Nucleotide composition of V/J genes.

Results

System design of IMonitor

Four steps are described in Figure 1:

1. Basic data process: Sequence containing adapter sequence
was processed and low-quality bases at the 39 end of the
sequence were removed. PE reads were merged to one
sequence by an in-house program and COPE (Liu et al.
2012).

2. V(D)J assignment: The reference germline sequences
were downloaded directly from IMGT (http://www.
imgt.org/). Processed data were aligned to the references
by BLAST (Altschul et al. 1990; Zhang et al. 2000; Ye et al.
2006) and realigned to improve the map accuracy, after
which the optimal alignment was selected for every se-
quence (Figure 2).

3. Structural analysis: A novel method was established to
correct PCR and sequencing errors. The CDR3 region
was identified with the help of both V/J references and
conservative amino acids and then translated into amino
acids.

4. Statistics and visualization. Characteristic data of the im-
mune repertoire of the samples, such as repertoire diver-
sity, clonotype frequency, CDR3 length distribution, V/J
usage, V-J pairing, hypermutation, deletion, and inser-
tion, were collected (Figure S3) and presented with cor-
responding graphs. More specifically, the V-J pairing was
visualized by a three-dimensional graph (Figure 4, Figure
S4, and Figure S8).

IMonitor outperforms other analytical tools in
various aspects

To evaluate the performance of IMonitor,wedesigned a head-
to-head comparison between IMonitor and other publicly
available toolswith both simulateddata andpublic rearrange-
ment sequences. The TRA/TRBdatawere analyzed byHighV-
QEUST (Li et al. 2013), Decombinator (Thomas et al. 2013),
IgBLAST (Ye et al. 2013), and IMonitor, while the IGH/IGK/
IGL data were analyzed by HighV-QEUST, IgBLAST (Ye et al.
2013), and IMonitor. Thomas et al. (2013) reported that

Table 1 Number of sequences with correctly identified V, D, and J genes or alleles in public sequence data sets

Datasets/Tools V_gene V_allele D_gene D_allele J_gene J_allele

Data set of TRB (24 sequences)
IMonitor 24 (100%) 23 (96%) 17 (71%) 12 (50%) 24 (100%) 24 (100%)
IgBLAST 23 (96%) 22 (92%) 13 (54%) 11 (46%) 24 (100%) 24 (100%)
Decombinatora 21 (87%) — — — 23 (96%) —

Data set of IGH (1763 sequences)
IMonitor 1735 (98%) 1509 (86%) 1037 (59%) 952 (54%) 1619 (92%) 1533 (87%)
IgBLAST 1716 (97%) 1518 (86%) 986 (56%) 956 (54%) 1563 (89%) 1498 (85%)

The data sets were obtained from the IMGT/LIGM-DB database (http://www.imgt.org/ligmdb/); searched by “Homo sapiens,” “rearranged,” “TRB,” or “IGH”; and then the
selected sequences were annotated manually (Annot. level==“manual”) and annotated by V, D, J genes. So these sequences have a fairly high level of annotation
confidence. The data sets and HighV-QEUST came from the same website, so HighV-QEUST was not used here. The references used for tools were the same and were
from the IMGT database (http://www.imgt.org).
a Decombinator analyzed just the gene level of V and J.
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iHMMune-align (Gaeta et al. 2007) generated a similar re-
sult to IgBLAST so it was excluded from the comparison.
MiTCR (Bolotin et al. 2013) performance is strongly re-
lated to sequencing quality, so neither simulated data nor

public sequences were suitable for it. Three spiked-in sam-
ples sequenced by Illuminawere used to compareMiTCR and
IMonitor, the result of which is shown in Figure S7. Although
MiTCR finished the run much faster than IMonitor, clone G

Figure 4 Output figure of IMonitor. H-H-01
sample is shown as an example. (A) Sequence
length distribution. (B) Saturation curve, rare-
faction studies of sequences. Subsequences
are randomly selected and the observed
unique CDR3 number and predicted CDR3
number (Chao1-corrected algorithm) are cal-
culated. (C) CDR3 nucleotide length distribu-
tion. (D) CDR3 abundance distribution. (E)
CDR3 amino acid frequencies sectional con-
tent. (F) Top 10 frequency of CDR3 amino
acid. (G) The length distribution of the V/D/J
gene in the CDR3 region. (H) Deletion length
distribution of the V/D/J gene. (I) Insertion
length distribution between V and D genes,
D and J genes. (J) Hypermutation, only for Ig.
(K) J-gene usage. (L) V-gene usage. (M) Three-
dimensional graph of V-J pairing.
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was missed because of erroneous J-gene assignment and an
incorrect CDR3 region. All tools employed their default
parameters.

By processing the in silico data with different tools, we
calculated the accuracy of V/D/J genes and V/D/J alleles
of each tool analyzed (Figure 3 and Table S1, Table S2,
and Table S3). For all 24 V/D/J genes and alleles in all
TCR/BCR chains, IMonitor showed superior performance in
14 of them (58.33%), with 7 of 24 slightly lower in perfor-
mance than the best tool (no more than 1% difference) and
the remaining 3 from 1.6 to 3.25% difference (TRAV gene,
TRBD gene, and TRBD allele). For the highly homologous
V-gene family (at least 40 for each chain), the accuracy of
IMonitor was.95% for almost all chains and exceeded 99%
for all J genes. For D genes, which were short and embedded
with deletions and insertions at both ends, IMonitor per-
formed significantly better for IGH (.80% accuracy), while
slightly worse for TRB. Decombinator was not designed to
identify alleles and D genes.

In addition to the simulating data, public rearranged
sequences that are annotated manually with clear V(D)J
genes and extracted from the IMGT/LIGM-DB database
(http://www.imgt.org/ligmdb/) were utilized to test IMoni-
tor. Twenty-four TRB sequences and 1763 IGH sequences
were analyzed by different tools (Table 1). For TRB, IMonitor
and IgBLAST performed better than Decombinator in gen-
eral, whereas IMonitor outperformed IgBLAST in D genes.
For IGH, IMonitor performed similarly to IgBLAST in V and
D alleles, but was superior in all other genes and alleles. The
good performance in D genes by IMonitor demonstrated the
effectiveness of the M-mismatch extension model during D
gene realignment. The accuracies of IGH-J genes and alleles
were both slightly lower for these two tools, because some
public IGH sequences have only a partial J segment (,30 bp)

and they are difficult to distinguish from other homologous
genes and alleles.

To assess running time andmemoryneeded, 105 simulated
TRB and IGH data sets were analyzed by IMonitor, IgBLAST,
and Decombinator separately; the results are shown in Table
S8. When only one CPU was used, IMonitor took 12 min 52
sec and 21 min 96 sec to analyze the two data sets sepa-
rately, with peak memory of 226 � 325 Mb. Of all tools
tested, Decombinator was the fastest and IMonitor ranked
second.

Overall, IMonitor produced satisfactory results for both
simulated and published sequences. It generated similar
results to IgBLAST in somegenes,while it outperformed other
tools in most occasions. It is also direct proof that the re-
alignment strategy for V(D)J identification is useful.

The output of IMonitor

One of the features that distinguish IMonitor from others is
its ability to export comprehensive statistics for character-
istics of TCR/BCR repertoire and accessible graphs. The
statistics include not only basic statistics but also in-depth
statistics (Figure S3). The former elucidates the process
from raw data to effective sequences, such as clean data rate
and V(D)J gene mapped rate, which all provide sequence
number, rate of input, and rate of raw data. The latter con-
sists of multiple statistics based on effective sequence, such
as functional classification, V/J/V-J gene usage rate, clone
number, diversity calculated by Shannon index, and hyper-
mutation. IMonitor is also able to translate obscure data into
self-explanatory graphs. Important statistics like V/J usage,
top 10 clone frequencies, CDR3 segmental frequency statis-
tics (split into four segments after frequency sorted: top100,
100-1E3, 1E3-1E4, .1E4), insertion and deletion length
distribution, V/J nucleotide composition, and V-J pairing

Figure 5 Error rate before and after correction.
(A) The percentage of erroneous nucleotide ba-
ses divided by the total bases sequenced. (B)
The percentage of sequences containing erro-
neous bases divided by total sequences. The
primers at each sequence are excluded for
the calculation of error rate.
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Figure 6 Minimize MPCR bias flowchart. Six samples are mixed together and search the bias rules under two independent pathways, concentration
analysis and primer analysis. For concentration analysis, six groups are created to eliminate primer effect, and each group is normalized; then five groups
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can all be presented as figures (Figure 4, Figure S4, and
Figure S8) . V-J pairing diversity is visualized (Figure 4M,
Figure S4M), which can be applied to track the changes of
the immune system over time and reveal immunological
conditions.

PCR and sequencing errors correction

IMonitor also integrates a process to correct PCRand sequenc-
ing errors. The six plasmid mixture samples with three dif-
ferent pooling gradients (Materials and Methods and Table
S4) were used to analyze the error characteristics and eval-
uate the effectiveness of error correction. The processed
sequences were mapped to V/D/J references, and the final
effective data were used to summarize the error character-
istics shown in Figure S5. The known template sequences
were used as references to calculate the error rate, and the
results are shown in Figure 5 and Table S5. The average
percentage of high-quality sequences was 74.88%. A total
of 12.86% of sequences with low quality were corrected
according to high-quality sequences, while the remaining
12.26% were discarded. Thereafter, an average 6.33% of
low-abundance sequences were also corrected (Table S5).
In consideration of the influence posed on error statistics by
impurity of the plasmids during the cell culture before we
mixed the plasmids, if the “erroneous” sequence was found
in on less than four samples and was detected.100 times in
each sample, it was excluded from error rate calculation.
After the correction process, the mean error rate of all
sequences was decreased from 0.082 to 0.013%, and the

percentage of error-bearing sequences was decreased from
6.313 to 0.912% (Figure 5).

Minimization of multiplex PCR bias

We successfully developed a novel method to minimize
the MPCR bias under a given set of multiplex primers.
Details of this method are shown in Figure 6 andMaterials
and Methods. Cross-validation was used to evaluate this
method, as shown in Figure 6. Residual sum of squares
(RSS) (Draper and Smith 1998) was calculated for each
test, where RSS ¼ Pn

i¼1ðyi2̂yÞ2; yi is the observed frequency,
and ŷ is the expected frequency. Except for the mix 1-2
sample, the other five samples reduced the RSS value,
which demonstrated that this method is evidently effective.

Moreover, the method was tested using three spiked-in sam-
ples, in which five known clones were spiked in 106 cells. Com-
pared to the expected frequency, clones B, C, D, and G had
obvious bias. After modifying the frequency with this method,
the bias was relieved to a certain extent (Figure 7, A–C). The
bias ratio was defined as the observed frequency bias divided by
the corrected frequency bias. If the ratio is .1, it means the
frequency is corrected positively. A total of 86.7% of the clones
(except clone A in Index-R/T) generated a ratio.1, particularly
clone D in Index-R. These results conclude that the method is
indeed capable of minimizing MPCR bias (Figure 7, D and E).

IMonitor to monitor MRD

To test the feasibility of IMonitor in translational research, we
applied it to analyze the data from two patients with B-ALL.

are combined together and a curve is fitted. For primer analysis, six groups (10, 100, 1000, 1E4, 2E4, 1E5) are created to eliminate the concentration effect. Each
group is normalized by multiplying a constant term and combined together, and then the primer efficiencies are obtained. A formula for reducing PCR bias is
generated by integrating these two factors. Finally, cross-validation is used to evaluate this method’s robustness. Each time, five samples are used as training data,
and the remaining one is used as testing data. The residual sum of squares, RSS ¼ P

iðyi2̂yÞ2; where yi is the observed value, and ŷ is the expected value.

Figure 7 Evaluation of bias reduction in three
spiked-in samples. Both observed frequencies and
PCR bias-corrected frequencies were calculated for
the five clones in three samples, and each clone
provides a bias ratio to show bias change after
correction. The bias ratio is defined as the observed
frequency bias (observed frequency minus
expected frequency) divided by corrected fre-
quency bias (corrected frequency minus expected
frequency). (A) Sample: Index-K, five clone fre-
quencies. (B) Sample: Index-R, five clone frequen-
cies. (C) Sample: Index-T, five clone frequencies.
(D) Sample: Index-K, bias ratio. (E) Sample: Index-R,
bias ratio. (F) Sample: Index-T, bias ratio.
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Samples were collected upon diagnosis and on day 15 and day
33 post-treatment (details in Materials and Methods). We first
tried to identify the cancer clones in the B-cell receptor reper-
toire. Patients with B-ALL showed a clear pattern of deficient
clonal diversity (Figure 8A, Figure S6). By the cutoff of 10% for
the cancer clone frequency, the cancer clone was identified in
patient M001 with clonal frequency of 87.02% upon diagnosis,
whereas it substantially decreased to 14.65% on day 15 and
further to 0.28% on day 33, suggesting the effect of treatment
(Figure 8B). However, with the increased sensitivity of our
method, MRDwas detected on day 33. In contrast, flow cytom-
etry was not able to detect any MRD in this time slot. Interest-
ingly, two cancer clones (48.39% and 42.13%) were identified
in patient M002, and the data of day 33 post-treatment showed
an MRD level of 2.54% (1.46% and 1.08% corresponding to
each clone), comparedwith the negative result in detectionwith
flow cytometry. Although follow-up of the patients’ condition
was required to demonstrate its prognostic value, BCR sequenc-
ing plus IMonitor analysis showed its superiority in convenience
and sensitivity for MRD detection. More importantly, the three-
dimensional V-J pairing figure outputted by IMonitor revealed
the remodeling of clonal diversity in the BCR repertoire follow-
ing treatment, demonstrating its application in monitoring im-
mune reconstruction (Figure 8A and Figure S6).

Discussion

We have developed a comprehensive methodology for anal-
ysis of the T-cell receptor repertoire and B-cell receptor

repertoire made available by next generation sequencing
technology. IMonitor provides an arsenal of solutions for four
steps: basic data processing, V(D)J assignment, structural
analysis, and statistics visualization. IMonitor distinguishes
itself from other analysis tools with several features. The first
important feature is its realignment process. The high homol-
ogy among genes and alleles together with random base
deletion and insertion at gene junctions have been affecting
the accuracy of alignment. Therefore, global or local align-
ment by itself is not sufficient to complete the whole picture.
During the realignment process, CDR3 regions are scrutinized
with the M-mismatch extension model of local alignment
while non-CDR3 regions are covered by global alignment.
The test using simulated data and published rearrangement
sequences demonstrated IMonitor’s unquestionably better
performance than other tools. The second feature of IMonitor
is its ability to correct PCR and sequencing error and mini-
mize MPCR bias, whose usage can be extended to other fields
of research. IMonitor can be used to analyze any chain of
T- and B-cell receptors and multiple species such as humans,
monkeys, and rabbits. Furthermore, IMonitor results are pre-
sented with intuitive graphs. For example, the overall diver-
sity of the immune system can be interpreted easily from
a three-dimensional V-J pairing graph.

PCR and sequencing error of NGS is one of the problems
that remain untackled for immune repertoire analysis. Pre-
liminary results from previous studies show that a significant
number of errors accumulate, and these errors can potentially
lead to overestimating the actual TCR clonotypes. Besides,

Figure 8 Detection of MRD in B-ALL using IMonitor. (A) Repertoire (V-J pairing) of IGH is shown for pretreatment (day 0) and post-treatment (day 15 and day
33). (B) Cancer clone frequency is shown for each clone in the two patients (M001 and M002) before treatment (day 0) and post-treatment (day 15 and day 33).
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sequencing error also results in artificially increased diversity
of the TCR repertoire (Nguyen et al. 2011; Warren et al.
2011). Simply filtering out all low-quality sequences not only
removes the sequencing error bases, but also leaves out a lot
of genuine sequences. Our method, however, manages to de-
crease the error rate while rescuing most of the sequences.
Actually, the efficiency of the approach would be improved if
more factors are considered when correcting the errors. For
example, erroneous bases have some bias for certain se-
quencing platforms, and the occurrence probability of se-
quencing error at each position of sequence is different.
Using the six plasmid mixture samples, the characteristics
of PCR and sequencing errors can be analyzed, as shown in
Figure S5. The base error rate declines as the base quality in
the sequence improves, whereas the percentage of discarded
sequences increases sharply (Figure S5, A and B). The quality
indexes of incorrect basesmainly fall into two categories: Q#

10 and Q $ 35. Apparently, the former mostly results from
sequencing error, while the cause of the latter is mostly PCR
error (Figure S5D) . More than 85% of sequences have only
one error base, and the rate rises after removing the sequen-
ces with minimal base quality of Q20 (Figure S5C).

Here we have introduced a new bioinformatics methodol-
ogy to reduce the PCR bias of MPCR samples. We found that
the bias originated from two factors: template concentration
and inconsistent primer efficiencies. Using six plasmid mix-
ture samples, we designed a formula to reduce the bias. By
applying it to the spiked-in samples, we validated its effec-
tiveness. However, due to the limited size of training data,
somebias persisted in spiked-in samples.Webelievewhen the
training data contain $100 templates, the effect of the ap-
proach would be more significant. Besides, different primer
sets should be trained to generate a suitable formula to re-
duce bias, so this article mainly introduces a bioinformatics
approach showing how to create a suitable formula to adjust
the bias. Previous literature reports that it reduce the bias
mainly through an experimental method to optimize the pri-
mers and primer concentration (Carlson et al. 2013). It is
a scientific and systemic experimental method to adjust pri-
mers. It would be ideal to use this method for optimizing
primers in the first step and then to use our bioinformatics
method for further reducing PCR bias. Stephen R. Quake and
colleagues developed a consensus read sequencing approach
that incorporated unique barcode labels (UIDs) on each start-
ing RNA molecule (Vollmers et al. 2013). It could eliminate
PCR bias completely in theory if the synthetic UIDs were
random enough.

IMonitor for analyzing the TCRs and BCRs repertoire in
human and other animal models has the widest applications
among the available tools in basic and translational research.
We have demonstrated its utility in identifying the cancer
clonotypes and monitoring MRD in B-ALL, while at the same
time evaluating the clonal diversity for immune remodeling
following treatment by its graphic visualization. We believe
that IMonitor can also be applied inmany other areas, such as
tracing emerging clonotypes upon vaccination and following

their frequencies during the process, selecting monoclonal
antibodies based on sequencing the immune repertoire. With
the importanceof immune repertoire researchbecomingmore
recognized, we believe IMonitor will play a role in advancing
our understanding of the immune system.
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Table S1. Simulated TRB with 0.1%, 0.5% and 2% sequencing error. 

Mismatc

h Rate 

Hyper-

Mutatio

n Rate 

Software TRBV-Ge

ne(%) 

TRBD-Ge

ne(%) 

TRBJ-G

ene(%) 

TRBV-al

lele(%) 

TRBD-a

llele(%) 

TRBJ-al

lele(%) 

0.10% 0.00% IMMonitor 98.25  77.04  100.00  82.95  72.13  99.98  

HighV-QUST 91.46  86.31  99.24  65.94  81.69  99.23  

IgBLAST 97.87  80.55  99.20  72.46  76.33  99.19  

Decombinator 70.28  - 80.76  29.53  - 70.17  

0.50% 0.00% IMMonitor 98.18  76.90  100.00  82.34  71.60  99.83  

HighV-QUST 91.44  85.77  99.24  66.04  80.75  99.14  

IgBLAST 97.80  79.32  99.02  72.58  74.95  98.92  

Decombinator 68.33  - 78.64  - - - 

2% 0.00% IMMonitor 98.13  77.82  100.00  80.01  70.77  99.42  

HighV-QUST 91.59  83.89  99.30  65.39  77.27  98.96  

IgBLAST 97.83  75.13  98.61  71.82  70.07  98.27  

Decombinator 59.58  - 68.45  24.85  - 60.18  
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Table S2. Simulated IGH with 0.1%, 0.5% and 2% sequencing error and 0.1% 

hyper-mutation 

Mismatc

h Rate 

Hyper-Mu

tation 

Rate 

Software IGHV-G

ene(%) 

IGHD-G

ene(%) 

IGHJ-G

ene(%) 

IGHV-al

lele(%) 

IGHD-al

lele(%) 

IGHJ-all

ele(%) 

0.10% 0.10% IMonitor 98.30  83.97  99.98  81.48 81.41 99.88 

HighV-QUST 87.97  72.90  98.60  69.38 70.81 97.21 

IgBLAST 98.76  75.68  99.83  80.74 73.7 99.73 

0.50% 0.10% IMonitor 98.19  83.86  99.98  81.3 81.28 99.66 

HighV-QUST 87.51  72.73  98.61  68.96 70.66 97.01 

IgBLAST 98.63  75.47  99.83  80.63 73.52 99.5 

2% 0.10% IMonitor 98.02  83.79  99.96  80.46 81.01 98.68 

HighV-QUST 87.72  72.33  98.59  68.43 70.04 96.17 

IgBLAST 98.52  74.61  99.79  79.63 72.22 98.55 
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Table S3. Simulated Data with 0.5% sequencing error (TRA/IGK/IGL) and 4% 

hyper-mutation for IGK/IGL 

Gene Mismatc

h Rate 

Hyper-

Mutatio

n Rate 

Software V-Gene(

%) 

J-Gene(

%) 

V-allele(

%) 

J-allele(

%) 

IGK 0.50% 4.00% IMMonitor 93.57  99.99  86.91  92.70  

HighV-QUST 73.13  99.97  64.94  93.19  

IgBLAST 91.53  100.00  85.46  92.94  

IGL 0.50% 4.00% IMMonitor 100.00  99.57  77.24  98.79  

HighV-QUST 98.82  97.54  76.85  97.26  

IgBLAST 100.00  99.67  78.25  99.53  

TRA 0.50% 0.00% IMMonitor 98.35  100.00  86.75  99.39  

HighV-QUST 100.00  94.12  83.31  93.85  

IgBLAST 100.00  100.00  85.32  99.93  

Decombinator 68.36  72.83  - - 
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Table S4. Plasmid mixing pattern  

Plasmi

d No. 
V gene J gene 

Plasmid 

mix 1-1* 

Plasmid 

mix 1-2* 

Plasmid 

mix 2-1* 

Plasmid 

mix 2-2* 

Plasmid 

mix 3-1* 

Plasmid 

mix 3-2* 

C-01 TRBV10-1 TRBJ2-7 2000 2000 10 10 100000 100000 

C-02 TRBV10-2/3 TRBJ2-7 2000 2000 1000 1000 1000 1000 

C-03 TRBV11-1/2/3 TRBJ1-3 2000 2000 10 10 100000 100000 

C-04 TRBV11-1/2/3 TRBJ1-5 2000 2000 100 100 10000 10000 

C-05 TRBV12-3/4 TRBJ2-1 2000 2000 10000 10000 100 100 

C-06 TRBV12-5 TRBJ2-1 2000 2000 100 100 10000 10000 

C-07 TRBV13 TRBJ1-1 2000 2000 10000 10000 100 100 

C-08 TRBV14 TRBJ2-7 2000 2000 100000 100000 10 10 

C-09 TRBV15 TRBJ1-6 2000 2000 1000 1000 1000 1000 

C-10 TRBV15 TRBJ2-4 2000 2000 100000 100000 10 10 

C-11 TRBV16 TRBJ1-1 2000 2000 100000 100000 10 10 

C-12 TRBV19 TRBJ1-6 2000 2000 100 100 10000 10000 

C-13 TRBV20-1 TRBJ1-4 2000 2000 100000 100000 10 10 

C-14 TRBV20-1 TRBJ1-5 2000 2000 10 10 100000 100000 

C-15 TRBV20-1 TRBJ2-2 2000 2000 1000 1000 1000 1000 

C-16 TRBV24-1 TRBJ1-2 2000 2000 100 100 10000 10000 

C-17 TRBV25 TRBJ2-5 2000 2000 10000 10000 100 100 

C-18 TRBV27/28 TRBJ2-4 2000 2000 100000 100000 10 10 

C-19 TRBV29-1 TRBJ2-3 2000 2000 100000 100000 10 10 

C-20 TRBV2 TRBJ2-6 2000 2000 10 10 100000 100000 

C-21 TRBV30 TRBJ1-1 2000 2000 1000 1000 1000 1000 

C-22 TRBV3-1 TRBJ1-2 2000 2000 10000 10000 100 100 

C-23 TRBV4-1/2/3 TRBJ2-7 2000 2000 10000 10000 100 100 

C-24 TRBV5-1 TRBJ2-1 2000 2000 100000 100000 10 10 

C-25 TRBV5-4/5/6/8 TRBJ2-3 2000 2000 10000 10000 100 100 

C-26 
TRBV6-1/2/3/5/

8 
TRBJ2-1 2000 2000 10000 10000 100 100 

C-27 TRBV6-4 TRBJ2-5 2000 2000 1000 1000 1000 1000 

C-28 TRBV6-6 TRBJ1-6 2000 2000 10 10 100000 100000 

C-29 TRBV6-9 TRBJ1-3 2000 2000 1000 1000 1000 1000 

C-30 
TRBV7-2/4/6/7/

8 
TRBJ2-6 2000 2000 10 10 100000 100000 

C-31 TRBV7-3 TRBJ2-7 2000 2000 100 100 10000 10000 

C-32 TRBV7-9 TRBJ1-4 2000 2000 1000 1000 1000 1000 

C-33 TRBV9 TRBJ1-2 2000 2000 100 100 10000 10000 

Note: * the clone ratio in the sample. 
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Table S5. Data process for PCR and sequencing error statistics. 

Sample 
Sum 

Sequence 

High 

Quality 

Sequence(

%) 

Filter 

Sequen

ce(%) 

Low 

Quality 

Correcte

d(%) 

PCR 

Error 

Correcte

d(%) 

Effective 

Data 

Before Correction After Correction 

Base 

Error(%

) 

Sequenc

e Error 

(%) 

Base 

Error(

%) 

Sequence 

Error(%) 

index-1 4,273,571  78.50  9.28  12.21  8.36  3,876,775  0.098  7.304  0.016  1.152  

index-2 4,217,557  78.59  9.77  11.64  9.10  3,805,551  0.111  8.628  0.022  1.564  

index-3 3,603,556  70.16  16.25  13.59  4.44  3,018,100  0.070  5.218  0.009  0.590  

index-10 5,078,119  81.28  8.80  9.92  4.70  4,631,376  0.058  4.359  0.009  0.569  

index-11 2,785,059  64.59  18.61  16.80  5.32  2,266,836  0.081  6.484  0.010  0.779  

index-12 3,335,881  76.15  10.87  12.98  6.04  2,973,382  0.072  5.885  0.010  0.816  
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Table S6. Samples information 

Sample species Gene Library Experimental 

method 

Sequencer Type Amount 

H-B-01 Human TRB cDNA  MPCR Hiseq2500 PE100 1ug 

H-H-01 Human IGH DNA  MPCR Hiseq2000 PE100 3ug 

M001 Human IGH DNA  MPCR Hiseq2500 PE150 1.2ug 

M002 Human IGH DNA  MPCR Hiseq2500 PE150 1.2ug 
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Table S7. Experimental design for five CD4+ T cell clones in the three spiked in 

mix. 

Clone TCRB V TCRB J CDR3  Mix 1  Mix 2   Mix 3  

G VB8 TRBJ1-1 CASSLGGQGVG 100,000 1000 10 

A VB5.1 TRBJ2-5 CASSPGIAELKETQY 10,000 1000 100 

B VB6.7 TRBJ2-7 CASHTGFVSYEQY 1000 1000 1000 

C VB4 TRBJ1-4 CSVGTGDNEKLF 100 1000 10,000 

D VB4 TRBJ1-4 CSVGQGDNEKLF 10 1000 100,000 
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Table S8. Performance of IMonitor and other tools on the simulated dataset. 

  Peak Memory(MB) Run Time 

Data set of TRB(10
5
 sequences) 

IMonitor 
a
 325.88M 12m52s 

IgBLAST 
b
 327.95M 27m46s 

Decombinator
 c
 209.00M 1m23s 

HighV-QUST
d
 - - 

   
Data set of IGH (10

5
 sequences) 

IMonitor 
a
 226.22M 21m96s 

IgBLAST
b
 196.22M 92m30s 

HighV-QUST
d
 - - 

Note: 
a
, run with 1cpu and blast (-a 1); 

b
, run with 1cpu and iglast (-num_threads 1);  

c
, run with command prompt; 

d
, run online, send the results to user after 1-2weeks 



 Wei Zhang et al. 11 SI 

Table S9. TRB and IGH V/J primers 

IGH V/J Primers TRB V Primers 

IGHV1-18 AGAGTCACCATGACCACAGAC TRBV2 ATTTCACTCTGAAGATCCGGTCCAC 

IGHV1-2/1-46 AGAGTCACCAKKACCAGGGAC TRBV3-1 AAACAGTTCCAAATCGMTTCTCAC 

IGHV1-24 AGAGTCACCATGACCGAGGAC TRBV4-1/2/3 CAAGTCGCTTCTCACCTGAATG 

IGHV1-3/1-45 AGAGTCACCATTACYAGGGAC TRBV5-1 GCCAGTTCTCTAACTCTCGCTCT 

IGHV1-69/1-f AGAGTCACGATWACCRCGGAC TRBV5-4/5/6/8 TCAGGTCGCCAGTTCCCTAAYTAT 

IGHV1-8 AGAGTCACCATGACCAGGAAC TRBV6-4.1 CACGTTGGCGTCTGCTGTACCCT 

IGH2-70/26/5 ACCAGGCTCACCATYWCCAAGG TRBV6-8/5/1.2 CAGGCTGGTGTCGGCTGCTCCCT 

IGHV3 GGCCGATTCACCATCTCMAG TRBV6-9/7/1.1/6 CAGGCTGGAGTCAGCTGCTCCCT 

IGH4 CGAGTCACCATRTCMGTAGAC TRBV6-4.2 AGTCGCTTGCTGTACCCTCTCAG 

IGHV5-51 CAGCCGACAAGTCCATCAGC TRRBV6-2/3 GGGGTTGGAGTCGGCTGCTCCCT 

IGHV6-1 AGTCGAATAACCATCAACCCAG TRBV7-2/4/6/7/8 GGGATCCGTCTCCACTCTGAMGAT 

IGHV7 GACGGTTTGTCTTCTCCTTG TRBV7-3 GGGATCCGTCTCTACTCTGAAGAT 

IGHJ CTGAGGAGACGGTGACCRKKGT TRBV7-9 GGGATCTTTCTCCACCTTGGAGAT 

    TRBV9 CCTGACTTGCACTCTGAACTAAACCT 

    TRBV10-1 CCTCACTCTGGAGTCTGCTGCC 

    TRBV10-2/3 CCTCACTCTGGAGTCMGCTACC 

    TRBV11-1/2/3 GCAGAGAGGCTCAAAGGAGTAGACT 

    TRBV12-3.2/5.2 GAAGGTGCAGCCTGCAGAACCCAG 

TRB J Primers TRBV12-3.1/4/5.1 GAAGATCCAGCCCTCAGAACCCAG 

TRBJ1.1 CTTACCTACAACTGTGAGTCTGGTG TRBV13 TCGATTCTCAGCTCAACAGTTC 

TRBJ1.2 CTTACCTACAACGGTTAACCTGGTC TRBV14 GGAGGGACGTATTCTACTCTGAAGG 

TRBJ1.3 CTTACCTACAACAGTGAGCCAACTT TRBV15 TTCTTGACATCCGCTCACCAGG 

TRBJ1.4 AAGACAGAGAGCTGGGTTCCACT TRBV16 CTGTAGCCTTGAGATCCAGGCTACGA 

TRBJ1.5 CTTACCTAGGATGGAGAGTCGAGTC TRBV18 TAGATGAGTCAGGAATGCCAAAG 

TRBJ1.6 CATACCTGTCACAGTGAGCCTG TRBV19 TCCTTTCCTCTCACTGTGACATCGG 

TRBJ2.1 CCTTCTTACCTAGCACGGTGA TRBV20-1 AACCATGCAAGCCTGACCTT 

TRBJ2.2 CTTACCCAGTACGGTCAGCCT TRBV24-1 CTCCCTGTCCCTAGAGTCTGCCAT 

TRBJ2.3 CCGCTTACCGAGCACTGTCAG TRBV25-1 GCCCTCACATACCTCTCAGTACCTC 

TRBJ2.4 AGCACTGAGAGCCGGGTCC TRBV27-1 GATCCTGGAGTCGCCCAGC 

TRBJ2.5 CGAGCACCAGGAGCCGCGT TRBV28 ATTCTGGAGTCCGCCAGC 

TRBJ2.6 CTCGCCCAGCACGGTCAGCCT TRBV29-1 AACTCTGACTGTGAGCAACATGAG 

TRBJ2.7 CTTACCTGTGACCGTGAGCCTG TRBV30-F5 CAGATCAGCTCTGAGGTGCCCCA 
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Figure S1. Insertion and deletion length distribution for simulated data. 
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Figure S2.  IGH-VDJ Mutation and deletion/insertion analysis on the public 

sequences. (A) VDJ mutation number statistics. (B) VDJ deletion/insertion length 

statistics. The data sets were obtained from IMGT/LIGM-DB 

database(http://www.imgt.org/ligmdb/), searched by “Homo sapiens”, 

“rearranged”, ”TRB” or “IGH”, and then selected the sequences annotated by 

manual(Annot. level==”manual”) and annotated by V,D,J genes. So these sequences 

have fairly high level of annotation confidence. 

http://www.imgt.org/ligmdb/
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Figure S3. Outputs of IMonitor, H-B-01 as an example. Sample basic statistics 

show the data procedure, from raw data to effecive data, such as paired-end reads 

merged, V(D)J alignment rate. Sample further statistics, show the multiple statistics 

based on effective data.
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Figure S4. H-B-01 sample output figure of IMonitor. (A) Sequence length 

distribution.  (B) Saturation curve, rarefaction studies of sequences. Sub-sequences 

are randomly selected and observed unique CDR3 number and predicted CDR3 

number (Chao1 corrected algorithm) are calculated. (C) CDR3 nucleotide length 

distribution. (D) CDR3 abundance distribution. (E) CDR3 amino acid frequencies 

sectional content.  (F) Top ten frequency of CDR3 amino acid. (G) Length 

distribution of V/D/J gene in CDR3 region. (H) Deletion length distribution of V/D/J 

gene.  (I) Insertion length distribution of between V and D gene, D and J gene. (J) 

Hyper-mutation, Only for Ig. (K), J gene usage.  (L) V gene usage.  (M) 

Three-dimensional graph of V-J pairing. 
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Figure S5. Error characteristics of 6 plasmid mix samples. (A) Error base rate 

after sequence filtering by different minimal quality value. For example, Q20 means 

filter the sequence with at least one base quality less than Q20. (B) Removed data rate 

after sequence filtering by different minimal quality. (C) Mismatch number 

distribution, raw sequences (Q0, no filtration) and sequences after filtering by 

minimal quality 20(Q20). (D) Error base distribution with base quality. Only unique 

sequences are considered.
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Figure S6. V-J pairing dynamics for M002. Day 0 for pre-treatment, Day 15 and 

Day 33 for post-treatment. 
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Figure S7. MiTCR and IMonitor performance in 3 spiked-in samples. 
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Figure S8. Nucleotide composition of V/J genes. (A) H-H-01 sample. (B) H-B-01 

sample. 

 




