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ABSTRACT A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially
recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous
multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that
selective interference among loci causes this effect. In this article, I derive simple analytical approximations for the mutation load and
inbreeding depression, taking into account the effects of interference between pairs of loci. I consider two classical scenarios of
nonrandomly mating populations: a single population undergoing partial selfing and a subdivided population with limited dispersal. In
the first case, correlations in homozygosity between loci tend to reduce mean fitness and increase inbreeding depression. These effects
are stronger when deleterious alleles are more recessive, but only weakly depend on the strength of selection against deleterious alleles
and on recombination rates. In subdivided populations, interference increases inbreeding depression within demes, but decreases
heterosis between demes. Comparisons with multilocus, individual-based simulations show that these analytical approximations are
accurate as long as the effects of interference stay moderate, but fail for high deleterious mutation rates and low dominance
coefficients of deleterious alleles.
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ACCORDING to current estimates of spontaneous delete-
rious mutation rates in multicellular organisms (e.g.,

Baer et al. 2007; Haag-Liautard et al. 2007; Keightley
2012) and estimated distributions of fitness effects of these
mutations (e.g., Eyre-Walker and Keightley 2007; Keightley
and Eyre-Walker 2007; Boyko et al. 2008; Haddrill et al.
2010), individuals may typically carry large numbers (possi-
bly up to thousands) of deleterious alleles. Possible conse-
quences of this load of deleterious mutations have been
discussed since the early ages of theoretical population ge-
netics (e.g., Haldane 1937). In particular, it may reduce pop-
ulation mean rates of fecundity and viability, thereby
increasing vulnerability to extinction (Lynch et al. 1995a,
b). It may also affect a number of evolutionary processes,

such as the evolution of sex or mating systems: for example,
the fact that deleterious alleles are often partially recessive
generates inbreeding depression, favoring outcrossing over
self-fertilization (e.g., Lande and Schemske 1985; Charlesworth
and Charlesworth 1987; Charlesworth 2006).

In very large, panmictic populations and in the absence of
epistasis between mutations, genetic associations between
deleterious alleles at different loci should remain weak and
may be neglected. In diploids, and assuming that the domi-
nance coefficient of deleterious alleles is significantly greater
than zero, the mutation load (reduction in mean fitness of the
population due to deleterious alleles at mutation–selection
balance) is � 12 e22U ; where U is the deleterious mutation
rate per haploid genome (Crow 1970; Agrawal and Whitlock
2012). Furthermore, assuming for simplicity that all deleteri-
ous alleles have the same dominance coefficient h, inbreeding
depression (defined here as the reduction infitness of offspring
produced by self-fertilization, relative to offspring produced
by outcrossing) is � 12 e2Uð122hÞ=ð2hÞ (Charlesworth and
Charlesworth 2010). Analytical results on the effects of genetic
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drift and nonrandom mating mainly stem from single-locus
models. Inbreeding increases the efficiency of selection against
deleterious alleles, lowering the mutation load and inbreeding
depression (Lande and Schemske 1985). Genetic drift may also
lead to better purging of partially recessive deleterious alleles
(Kimura et al. 1963), but this effect causes only a moderate
reduction of the mutation load compared to the effect of non-
random mating and occurs only when the effects of drift and
selection are of the same order of magnitude (Glémin 2003).
Drift hasmore noticeable effectswhen it becomes stronger than
selection and allows deleterious alleles to reach fixation, which
may increase the load by several orders of magnitude and low-
ers inbreeding depression (Bataillon and Kirkpatrick 2000).
Population subdivision has similar consequences, due to the
effects of drift within each local population (Whitlock 2002;
Glémin et al. 2003; Roze and Rousset 2004).

These previous studies are based on single-locus models
and therefore do not consider the effects of genetic associa-
tions between loci on the mutation load and inbreeding de-
pression. Between-locus associations are generated, however,
as soon as population size is finite or mating is nonrandom
(even in the absence of epistasis): in particular, correlations in
homozygosity, described as “identity disequilibria” (Weir and
Cockerham 1973; Vitalis and Couvet 2001), and linkage dis-
equilibria between selected loci (Hill and Robertson 1966;
Roze and Lenormand 2005; Kamran-Disfani and Agrawal
2014). Effects of deleterious mutations occurring at many
loci have been explored using simulation models of finite or
infinite populations (e.g., Charlesworth et al. 1990, 1991,
1992, 1993; Lande et al. 1994; Wang et al. 1999), sometimes
showing important deviations from single-locus predictions.
In particular, using Kondrashov’s (1985) model to simulate
recessive lethal mutations occurring at a very large (effec-
tively infinite) number of unlinked loci in a partially selfing
population, Lande et al. (1994) observed that contrary to the
predictions of single-locusmodels, recessive lethals cannot be
purged by selfing unless the selfing rate exceeds a threshold
value (see also Kelly 2007). Lande et al. (1994) argued that
this effect (called “selective interference”) is caused by iden-
tity disequilibria. Intuitively, selfing increases homozygosity
at each locus and should thus purge recessive lethal muta-
tions; however, if many such mutations segregate in the pop-
ulation, any selfed offspring will almost certainly carry at
least one mutation in the homozygous state and will thus
not survive. When this is the case, the population is effec-
tively outcrossing, and purging does not occur.

Todate, theeffectsof selective interference inpartially inbred
populations have been explored only numerically. How these
effects scale with the strength of selection against deleterious
alleles, dominance coefficients, and recombination rates be-
tween loci thus remainsunclear. In thisarticle, Ideriveanalytical
approximations describing the effect of interference between
pairs of loci on the mean frequency of deleterious alleles, the
mean and variance in fitness, and the strength of inbreeding
depression, assumingweak selectionagainstdeleteriousalleles.
I consider two classical scenarios of nonrandomly mating pop-

ulations: a single, large population in which individuals self-
fertilize at a given rate and a subdivided population with local
mating followed by dispersal (islandmodel of population struc-
ture). In thefirst case, interference between loci tends to reduce
mean fitness and increase inbreeding depression. These effects
are stronger when deleterious alleles are more recessive, but
depend only weakly on the strength of selection against dele-
terious alleles and on recombination rates. In the case of a sub-
divided population, I first show that combining two different
approximations used in previous works (Glémin et al. 2003;
Roze and Rousset 2004) yields more accurate expressions for
the mutation load, inbreeding depression, and heterosis gener-
ated by a single deleterious allele. In a second step, I derive
approximations for the effects of interference between loci and
show that interference increases inbreeding depression within
demes, but decreases heterosis between demes. Comparisons
with individual-based, multilocus simulation results show that
analytical approximations incorporating the effects of associa-
tions between pairs of loci often provide accurate predictions
for the mutation load and inbreeding depression as long as the
dominance coefficient h of deleterious alleles is not too low.
These approximations fail when h becomes close to zero and
when the deleterious mutation rate is high, however, probably
due to the fact that higher-order interactions (involving three
or more loci) become important.

Methods

I consider a diploid population with discrete generations, in
which deleterious mutations occur at rate U per haploid ge-
nome per generation. For simplicity, I generally assume that
all deleterious alleles have the same selection and dominance
coefficients (s, h), although distributions of s and h will be
considered in the case of a partially selfing population. Del-
eterious alleles at different loci havemultiplicative effects (no
epistasis), so that the fitness of an organism carrying j het-
erozygous and k homozygous mutations is proportional to
ð12hsÞjð12sÞk: In the first model (partial selfing), a parame-
ter a measures the proportion of offspring produced by self-
ing, while a proportion 12a is produced by random union of
gametes. The second model corresponds to the island model
of population structure: the population is subdivided into
a large number of demes, each containing N adult individu-
als. These individuals produce large numbers of gametes (in
proportion to their fitness), which fuse randomly within each
deme to form juveniles. A proportion m of these juveniles
disperses, reaching any other deme with the same probabil-
ity. Finally, N individuals are sampled randomly within each
deme to form the next adult generation. I assume soft selec-
tion; that is, all demes contribute equally to the migrant pool.
In Supporting Information, File S1 and File S2, I derive
approximations for the mutation load and inbreeding depres-
sion that incorporate effects of pairwise associations between
loci, assuming s � U (so that individuals tend to carry many
deleterious alleles) and that drift at the whole-population
level is negligible relative to selection. In the next sections,
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these analytical predictions are compared with individual-
based, multilocus simulation results. The simulation pro-
grams (available from Dryad) are similar to those used in
previous work (e.g., Roze and Rousset 2009). Briefly, they
represent a finite population of diploids, whose genome con-
sists of a linear chromosome. Each generation, the number of
new mutations per chromosome is drawn from a Poisson dis-
tribution with parameter U, the position of each mutation
along the chromosome being drawn from a uniform distribu-
tion (in practice, a chromosome is represented by the posi-
tions of the deleterious alleles it carries). To form the next
generation, a maternal parent is sampled for each offspring,
either among all parents (in the case of a single population
undergoing partial selfing) or among all parents from the
offspring’s deme of origin (in the case of a subdivided pop-
ulation). In the first case, the parent self-fertilizes with prob-
ability a, while with probability 12a a second parent is
sampled. In the second case (subdivided population), a sec-
ond parent is sampled from the same deme as the first. In all
cases, the probability that a given parent is sampled is pro-
portional to its fitness. Parents produce gametes by meiosis,
a parameter R measuring the genome map length: for each
meiosis, the number of crossovers is sampled from a Poisson
distribution with parameter R, the position of each crossover
being drawn from a uniform distribution. Map length is fixed
to 10 M in most simulations, to mimick a whole genome with
multiple chromosomes. The program runs for a large number
of generations (generally 23 105) and measures the mean
number of deleterious alleles per genome, mean fitness, var-
iance in fitness, inbreeding depression, and heterosis (in the
case of a subdivided population) every 50 generations.

Data availability

Dryad DOI: doi:10.5061/dryad.sp01m.

Partial Self-Fertilization

In File S1, I derive approximate expressions for the mean and
variance in log fitness under weak selection (incorporating
effects of associations between pairs of loci) and show that,
neglecting higher moments of log fitness, the average fitness
is approximately

�W � elnW
�
1þ Var½lnW�

2

�
; (1)

where lnW and Var½lnW� are the average and variance in log
fitness, respectively. Alternatively, an approximation for �W
can be obtained by assuming that the number of heterozy-
gous mutations per outcrossed offspring follows a Poisson
distribution, while the number of homozygous and heterozy-
gous mutations per selfed offspring follows a bivariate Gauss-
ian distribution—a similar methodwas used by Charlesworth
et al. (1991) to compute inbreeding depression, using numer-
ical recursions. However, both methods yield very similar
results and only the first one is presented here.

In the following, I first assume that all deleterious alleles
have the same selection and dominance coefficients and then
turn to the more realistic situation where s and h vary among
loci. Throughout, I assume that deleterious alleles stay at
a low frequency in the population. In that case, and assuming
fixed s and h, the average log fitness is approximately

lnW � 2
X
i

s
h
2hþ ð12 2hÞFi

i
pi; (2)

where the sum is over all loci, pi is the equilibrium frequency
of the deleterious allele at locus i, and Fi is the probability of
identity-by-descent at locus i due to partial selfing (generat-
ing an excess of homozygosity at locus i). Note that under
random mating, Equation 2 holds only when the dominance
coefficient of deleterious alleles (h) is significantly greater
than zero (otherwise, terms in p2i must be included in Equa-
tion 2); however, Equation 2 holds for all values of h under
partial selfing (Fi . 0), as long as deleterious alleles stay at
a low frequency.

As shown in File S1, the variance in log fitness is
approximately

Var½lnW� � 2ðshÞ2
X
i
pi þ s2

�
12 2h2

�X
i
Fi   pi

þ s2ð122hÞ2
X
i6¼j

Gij   pi   pj;
(3)

where Gij is the identity disequilibrium between loci i and j
(covariance in identity-by-descent, generating a correlation
in homozygosity across loci). As explained in File S1, the
terms in the first line of Equation 3 are proportional to sU;
while the term in the second line is proportional to U2: There-
fore, assuming s � U and h 6¼ 0:5; the terms in the first line
of Equation 3 are relatively weak when the population is
partially selfing. Neglecting those terms, we have

Var½lnW� � s2ð122hÞ2
X
i6¼j

Gij   pi   pj: (4)

Identity disequilibria thus affect mean fitness through the
term in Var½lnW� in Equation 1. However, they also affect
allele frequencies pi and excesses of homozygotes Fi that
appear in Equation 2. Indeed, we have (see File S1)

Fi � a

22a

2
412 sð12 2hÞ

X
j 6¼i

Gij   pj

3
5; (5)

while changes in allele frequencies due to selection are
approximately

Dspi �2 s

2
4hþ ð12 hÞFi

2 sð12 hÞð12 2hÞ
�
1þ a

22a

�X
j6¼i

Gij   pj

3
5pi: (6)
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Intuitively, homozygosity at locus i (measured by Fi) is de-
creased by the fact that homozygotes at locus i (either for the
wild-type or for the deleterious allele) tend to be also homo-
zygous at other loci and that homozygotes at these loci have
a lower fitness than heterozygotes when deleterious alleles
are partially recessive (Equation 5). Note that homozygosity
at locus i is also affected by selection acting at this locus, but
this effect is negligible relative to the effects of all other loci
when the number of segregating loci is large (i.e., when
s � U). This decrease in homozygosity reduces the efficiency
of selection against deleterious alleles, through the term in Fi
in Equation 6. However, identity disequilibria further de-
crease the strength of selection against partially recessive
deleterious alleles through two additional effects (explained
below): (1) they reduce the “effective” dominance coefficient
of deleterious alleles and (2) they generate a relative excess
of heterozygosity at locus j among individuals carrying a del-
eterious allele at locus i (measured by the association Dij;j in
File S1). These two effects generate the last term within the
brackets of Equation 6 (see File S1 for derivation).

Thefirst effect stems fromthefact that thefitnessesofmutant
andwild-type homozygotes at locus i are decreased by the same
factor from associations with homozygotes at other selected
loci; however, thefitness of heterozygotes at locus i is decreased
by a smaller factor, since these tend to be associated with het-
erozygotes at other loci,which have a higherfitness than homo-
zygotes (provided h,0:5). Therefore, identity disequilibria
have a stronger impact on the fitness of homozygotes than on
that of heterozygotes, decreasing the effective dominance co-
efficient of deleterious alleles and thereby reducing the effi-
ciency of selection against those alleles.

The second effect (deleterious alleles tend to be associated
withmore heterozygous backgrounds) stems from the fact that
because heterozygotes at locus i tend to be heterozygous at
locus j (while homozygotes at locus i tend to be homozygous at
locus j) and because selection is more efficient among homo-
zygotes than among heterozygotes, selection against the del-
eterious allele at locus i is less efficient among heterozygotes at
locus j than among homozygotes. This effect causes the dele-
terious allele at locus i to be more frequent among heterozy-
gotes than among homozygotes at locus j, in turn decreasing
the efficiency of selection at locus i, since heterozygous back-
grounds are fitter than homozygous ones when h, 0:5:

In the following, expressions for mean fitness �W and in-
breeding depression d are obtained by replacing identity dis-
equilibria Gij by their equilibrium values under neutrality.
Because allele frequencies pi are of order u=s (where u is
the deleterious mutation rate per locus), this will generate
terms of order U2 in the expressions for �W and d below.
Taking into account the effect of selection acting at loci i
and j on Gij would generate terms of order sU2;which should
be negligible relative to terms in U and U2 as long as selection
is weak (s small). However, Gij is also affected by selection
acting at other loci, due to three-locus identity disequilibria.
Taking into account the effects of these three-locus associa-
tions would introduce terms of orderU3 in the expressions for

�W and d, which may become important when U is sufficiently
large. As we will see, some discrepancies are observed be-
tween the analytical predictions and the simulation results
for high U and low h, probably due to the fact that these
higher-order genetic associations (between three or more
loci) are not taken into account in the analysis.

Because the identity disequilibrium Gij depends on the
recombination rate rij between loci i and j (see File S1), Fi
and pi may depend on the position of locus i within the ge-
nome. However, the expression for Gij under neutrality only
weakly depends on rij and is often close to the expression
obtained for freely recombining loci:

Gij ¼ 4að12aÞ
ð42aÞð22aÞ2 : (7)

Injecting this expression into Equations 5 and 6 yields the
following approximation for the average number of deleteri-
ous alleles per haplotype (n ¼ P

ipi) at mutation–selection
balance (to the second order in U),

n � Uð22aÞ
s½2hþ að12 2hÞ� ð1þ I1Þ; (8)

where

I1 ¼ 2Uð12 hÞð12 2hÞ 2þ a

22a
  T; (9)

T ¼ 2að12aÞ
ð42aÞ½2hþ að122hÞ�2$ 0: (10)

The term I1 in Equation 8 represents the effect of identity
disequilibria, increasing the mean number of deleterious
alleles when h, 0:5 (due to the three effects described
above). From this, and neglecting terms in oðU2Þ; we obtain
the following approximation for mean fitness,

�W � ð1þ I2Þexp
�
2U  

4hþ að124hÞ
2hþ að122hÞ ð1þ I1Þ þ 2a

22a
  I2

�
;

(11)

with

I2 ¼ U2ð122hÞ2T: (12)

As shown by Equation 11 and the previous equations, identity
disequilibria have three different effects on mean fitness
(represented by the term in I1 and the two terms in I2 in
Equation 11), which can be interpreted as follows:

1. Correlations in homozygosity directly increasemean fitness
when h 6¼ 0:5; because double homozygotes and double
heterozygotes have a higher fitness (on average) than gen-
otypes that are homozygous at one locus and heterozygous
at the other (e.g., Roze 2009): this effect is represented by
the term in Var½lnW� in Equation 1 (approximated by Equa-
tion 4), corresponding to the factor 1þ I2 in Equation 11.
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2. Identity disequilibria tend to decrease the excess of homo-
zygosity Fi at each locus when h,0:5 (Equation 5), in-
creasing mean fitness since homozygotes have a lower
fitness than heterozygotes when h, 0:5 (term in elnW in
Equation 1, which increases as Fi decreases if h, 0:5;
as shown by Equation 2). If h.0:5; Fi is now increased
by identity disequilibria, but this again increases mean
fitness since homozygotes have a higher fitness than het-
erozygotes. This second effect corresponds to the term
2aI2=ð22aÞ in Equation 11.

3. Finally, identity disequilibria increase the frequency of del-
eterious alleles atmutation–selection balancewhen h, 0:5
(as explained above), which decreases mean fitness: this
corresponds to the factor 1þ I1 in Equation 11.

One can show that effect 3 is stronger than effects 1 and 2
when h, 0:5; causing identity disequilibria to decreasemean
fitness (while when h. 0:5; all three effects increase mean
fitness). An approximation for the variance in fitness at equi-
librium is provided in File S1 (Equation A46); from this ex-
pression, it is possible to show that identity disequilibria
generally increase the variance in fitness (unless h ¼ 0:5; in
which case their effect vanishes).

Finally, the effect of identity disequilibria on inbreeding
depression is obtained as follows. Inbreeding depression is
classically defined as

d ¼ 12
�Wself
�Wout

; (13)

where �Wself and �Wout are the average fitnesses of individuals
produced by selfing and by outcrossing, respectively
(Charlesworth and Charlesworth 1987). These quantities
can be calculated as above, using expressions for Fi and Gij

in selfed individuals (for �Wself ) and in outcrossed individuals
(for �Wout). Because the last quantities equal zero, we have
�Wout � e22sh

P
i
pi : Furthermore, denoting Fi;self and Gij;self the

excess of homozygosity and the identity disequilibriumamong
offspring produced by selfing, we have Fi;self ¼ ð1þ FiÞ=2;
while at the neutral equilibrium andunder free recombination
Gij;self ¼ Gij=4: From this, we obtain

d � 12
�
1þ I2

4

�
exp

�
2U  

12 2h
2hþ að12 2hÞ ð1þ I1Þ

þ a

22a
  I2

�
; (14)

where I1 and I2 are given by Equations 9 and 12. The three
terms generated by identity disequilibria in Equation 14 cor-
respond to the three effects affecting mean fitness described
above: (1) correlations in homozygosity tend to increase the
fitness of inbred offspring whenever h 6¼ 0:5; thereby reduc-
ing inbreeding depression (1þ I2=4 factor); (2) identity
disequilibria reduce the excess homozygosity of inbred
offspring, which also reduces inbreeding depression [term
aI2=ð22aÞ]; and (3) identity disequilibria increase the equi-
librium frequency of partially recessive deleterious alleles,
which increases inbreeding depression (1þ I1 factor). Here
again, the third effect is stronger than the first two, and the
overall effect of identity disequilibria is thus to increase d.

Figure 1 shows that Equation 11 provides accurate predic-
tions for mean fitness when U ¼ 0:5 and h$ 0:2; while dis-
crepancies are observed for h ¼ 0:1: By contrast, ignoring
effects of identity disequilibria overestimates mean fitness,
in particular when h is low. Figure 1 also shows that �W is
systematically lower than predicted when the selfing rate
approaches 1; this effect is likely due to the fact that in the
simulations, the effective population size is greatly reduced
by background selection effects when outcrossing is very
rare, in which case deleterious alleles may increase in fre-
quency due to drift. As shown by Figure S1, reducing the
mutation rate from U ¼ 0:5 to U ¼ 0:1 reduces the effects
of identity disequilibria and leads to a better match between

Figure 1 Average fitness at equilibrium as a function
of the rate of self-fertilization a, for different values of
the dominance coefficient of deleterious alleles (h),
and deleterious mutation rate per haploid genome
U ¼ 0:5. Solid curves, analytical approximation includ-
ing effects of identity disequilibria (Equation 11);
dashed curves, neglecting effects of identity disequili-
bria (obtained by setting I1 ¼ I2 ¼ 0 in Equation 11);
solid circles, simulation results (in this and the follow-
ing figures, error bars are smaller than the size of
circles). In the simulations, s ¼ 0:05; N ¼ 20; 000;
and R ¼ 10 M:
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predictions from Equation 11 and simulation results for
h ¼ 0:1: Figure S2 and Figure S3 show that changing the
selection coefficient of deleterious alleles to s ¼ 0:01 or
s ¼ 0:1 leads to very similar results (indeed, Equation 11
does not depend on s), except that the effects of drift at high
a are stronger for lower values of s. Genomic map length (R)
was set to 10 M in these simulations; additional simulations
were run for the case of freely recombining loci, but yielded
undistinguishable results unless a is close to 1 (in which case
free recombination lowers the effects of drift—results not
shown). The variance in fitness in the population at equilib-
rium is shown in Figure 2: when h is low, the variance in
fitness is maximized for intermediate values of the selfing
rate a, mainly due to the effects of identity disequilibria
(which are maximized for intermediate values of a).

Figure 3 compares the value of inbreeding depressionmea-
sured in simulations with predictions from Equation 14, also
showing that taking into account the effects of identity dis-
equilibria leads to more accurate predictions (although dis-
crepancies appear for h ¼ 0:1). Results for the case of fully
recessive mutations (h ¼ 0) are shown in Figure 4: in agree-
ment with Lande et al. (1994), for high mutation rates
(U ¼ 0:25 or 0.5) purging occurs only when the selfing rate
exceeds a threshold value. Below this threshold, the popula-
tion is effectively outcrossing, which is confirmed by the fact
that mean fitness stays very close to the average fitness of
a panmictic population ( �W � e2U when h ¼ 0) multiplied by
the outcrossing rate (see Figure S4). Figure 4 also shows that
while Equation 14 provides better predictions than the equiv-
alent expression ignoring identity disequilibria, it does not
fully capture the effect of selective interference for interme-
diate selfing rates and high values of U, indicating that
higher-order genetic associations (in particular, joint homo-
zygosity at multiple loci) must have important effects for
these parameter values.

The previous results assume that all deleterious alleles
have thesameselectionanddominance coefficients.However,

File S1 shows that they are easily extended to the more re-
alistic situation where s and h vary among loci, as long as we
can assume that selection is much stronger than drift at most
loci. In that case, mean fitness and inbreeding depression at
equilibrium do not depend on the strength of selection
against deleterious alleles and can be obtained by integrating
terms appearing in the equations above over the distribution
of dominance coefficients of these alleles (see Equations A56
and A57 in File S1). To test these results, I modified the
simulation program so that the distribution of selection coef-
ficients of deleterious alleles is log-normal, with density func-
tion fðsÞ ¼ exp½2ðlns2mÞ2=ð2s2Þ�=ðss ffiffiffiffiffiffi

2p
p Þ (where m and

s2 are the mean and variance of ln  s), truncated at s ¼ 1 (this
has a negligible effect for the parameter values considered
here). Available data on fitness effects of deleterious alleles
point to an absence of correlation between homozygous and
heterozygous effects of deleterious mutations (at least for
mutations having sufficiently large homozygous effect, e.g.,
Manna et al. 2012), the distribution of heterozygous
effects (sh) being much less variable than the distribution
of homozygous effects (s). Here, I assume for simplicity
that all deleterious alleles have the same heterozygous effect
u: as a consequence, s and h are negatively correlated, and
the distribution of dominance coefficients (h ¼ u=s) is
given by cðhÞ ¼ ðu=h2Þfðu=hÞ: Figure 5 shows the distribu-
tions of s and h for s ¼ 0:8; setting m and u so that
�s ¼ exp½mþ s2=2� ¼ 0:05 and �h ¼ u=exp½m2s2=2� ¼ 0:25
(that is, m � 2 3:316 and u � 0:00659); Figure S5 shows h
as a function of s for these parameter values. As shown by
Figure 5, Equations A56 and A57 in File S1 provide accurate
predictions for mean fitness and inbreeding depression when
s and h vary across loci (as before, discrepancies appear when
a approaches one, due to finite population size effects). It
also shows that introducing a variance in h has little effect
on mean fitness (its value being well predicted by the expres-
sion assuming fixed h), while it strongly increases inbreeding
depression, in particular when the selfing rate is small. This

Figure 2 Variance in fitness in the population at equilibrium, as a function
of the rate of self-fertilization a and for different values of the dominance
coefficient of deleterious alleles. Curves correspond to predictions from
Equation A46 in File S1 (dotted, h ¼ 0:2; long dashed, h ¼ 0:3; solid,
h ¼ 0:4). Short-dashed curve, adding the term given in Equation A47 in
File S1 for h ¼ 0:2; symbols, simulation results for h ¼ 0:2 (open circles),
h ¼ 0:3 (solid circles), and h ¼ 0:4 (solid squares). Parameter values are
the same as in Figure 1.

Figure 3 Inbreeding depression as a function of the rate of self-fertilization
a, for different values of the dominance coefficient of deleterious
alleles (h ¼ 0:1; 0.2, 0.3, and 0.4 from top to bottom), and deleterious
mutation rate per haploid genome U ¼ 0:5: Solid curves, analytical
approximation including effects of identity disequilibria (Equation
14); dashed curve, neglecting effects of identity disequilibria (setting
I1 ¼ I2 ¼ 0 in Equation 14); solid circles, simulation results (same parameter
values as in Figure 1).
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may be understood from single-locus results: inbreeding de-
pression increases faster than linearly as h decreases (the
effect of h on d being more marked when a is small), causing
inbreeding depression to increase as the variance of h
increases. By contrast, the effect of h on mean fitness is
weaker and vanishes when a ¼ 0: Finally, Figure S6 shows
that when �h ¼ 0:5; the variance of h generates positive in-
breeding depression, which is slightly increased by identity
disequilibria.

Population Structure

The mutation load L, inbreeding depression d, and heterosis H
in a subdivided population may be defined as (e.g., Theodorou
and Couvet 2002;Whitlock 2002; Glémin et al. 2003; Roze and
Rousset 2004)

L ¼ 12
�W

Wmax
; d ¼ 12 Ex

�
Wself;  x

Wout;  x

�
; H ¼ 12

Ex
	
Wout;  x



Wbetween

;

(15)

where �W is the average fitness over the whole metapopula-
tion, Wmax is the maximal possible fitness, Wself;  x and Wout;  x

are the average fitnesses of individuals produced by selfing
and by outcrossing in deme x (respectively), Wbetween is the
average fitness of offspring produced by crosses between
parents from two different demes, and Ex stands for the av-
erage over all demes x. In the present modelWmax ¼ 1;while
the assumption of random mating within demes yields
Ex½Wout;  x� ¼ �W: The definition of inbreeding depression
given by Equation 15 is equivalent to the “within-deme in-
breeding depression” dIS in Roze and Rousset (2004) (or d1 in
Whitlock 2002). Note that Theodorou and Couvet (2002) use
a slightly different definition of within-deme inbreeding de-

pression: d ¼ 12Ex½Wself;  x�=Ex½Wout;  x�; however, we will see
that both expressions often yield very similar results.

File S2 shows how approximations for L, d, and H can be
derived, assuming that deme size N is large, while the migra-
tion rate m and strength of selection s are small. As in the
previous section, the total population size is supposed very
large (large number of demes), so that the effects of drift at
the whole population level can be neglected. In a first step, I
show that improved approximations for L, d, andH generated
by mutation at a single locus can be obtained by combining
previous results (Glémin et al. 2003; Roze and Rousset
2004). Then, I extend these results to the case of deleterious
alleles occurring at a large number of loci, incorporating
effects of pairwise associations among loci.

Single-locus results

As shown in File S2 (see also Whitlock 2002; Glémin et al.
2003; Roze and Rousset 2004) the mutation load, inbreeding
depression, and heterosis generated by a single deleterious
allele in a subdivided population (with random mating
within demes) are approximately

L � 2sh  pþ sð12 2hÞFST   p (16)

d � 1
2
  sð122hÞð12 FSTÞp (17)

H � sð12 2hÞFST   p; (18)

where p is the frequency of the deleterious allele in the whole
population, and FST measures the average genetic diversity
within demes, relative to the genetic diversity in the whole
metapopulation (Wright 1969). As the number of demes
tends to infinity, FST becomes equivalent to the probability
that two genes sampled from the same deme are identical by

Figure 4 Inbreeding depression as a function of the
selfing rate a: same as Figure 3 with fully recessive
deleterious alleles (h ¼ 0) and different values of the
deleterious mutation rate U.
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descent (e.g., Rousset 2002), that is, that their ancestral line-
ages coalesce in a finite number of generations—which is
possible only if these lineages stay in the same deme until
coalescence occurs, since it takes an infinite time for lineages
present in different demes to coalesce.

Assuming N is large while s andm are small, the change in
frequency of the deleterious allele due to selection is approx-
imately (see File S2)

Dsp � 2shp2 sð12 3hÞFST   pþ sð12 2hÞg   p; (19)

where g is the probability that three genes sampled from the
same deme are identical by descent (i.e., that their ancestral
lineages coalesce before migrating to different demes). To
compute Dsp in terms of the model parameters (s, h, N, m),
we may then assume that under weak selection FST and g

remain close to their equilibrium values under neutrality and
replace FST and g by these values in Equation 19 (Whitlock
2002, 2003; Wakeley 2003; Roze and Rousset 2003, 2004).
While this approximation yields accurate results as long as
s � m; it generally fails when s$m; as the effect of selection
on FST and g cannot be neglected (Roze and Rousset 2003,
2004). However, File S2 shows that when N is sufficiently
large, FST and g can be approximated by

FST � 1
1þ 4Nðmþ shÞ;

g � 1
½1þ 2Nðmþ shÞ�½1þ 4Nðmþ shÞ�  :

(20)

Replacing FST and g by these expressions in Equation 19
yields, at mutation–selection equilibrium,

p � ð1þ 2GÞð1þ 4GÞ
2Gð1þ 4GhÞ

u
s

(21)

with G ¼ Nðmþ shÞ and where u is the mutation rate toward
the deleterious allele. From Equations 16–18, we then obtain

L � ð1þ 2GÞð1þ 8GhÞ
2Gð1þ 4GhÞ   u (22)

d � ð12 2hÞð1þ 2GÞ
1þ 4Gh

  u (23)

H � ð12 2hÞð1þ 2GÞ
2Gð1þ 4GhÞ   u : (24)

When s � m (so thatG � Nm), Equations 21–24 become equiv-
alent to the results obtained using expressions for FST and g

under neutrality (e.g., equations 35–39 in Roze and Rousset
2004). As shown in Figure 6, however, taking into account
the effect of selection on FST and g (by using Equation 20)
greatly improves analytical predictions when m# s: Interest-
ingly, the expression for FST given by Equation 20 was already
obtained by Glémin et al. (2003), using a method developed by
Ohta and Kimura (1969, 1971) to compute moments of allele
frequencies in finite populations (equation 11a in Glémin et al.
2003). However, Glémin et al. (2003) neglected the effect of
population structure on the mean allele frequency p (assuming
that selection is strong relative to local drift) and thus replaced p
by u=ðs  hÞ in Equations 16–18. In effect, Equations 21–24 thus
combine the results of Glémin et al. (2003), which take into
account the effect of selection on FST but neglect the effect of
population structure on mean allele frequency, and the results
of Roze and Rousset (2004), which take into account the effect
of population structure onmean allele frequency but neglect the
effect of selection on FST: Figure S7 compares these different
approximations and shows that Equations 21–24 lead to signif-
icant improvement over these previous results.

Finally, we can note that when themigration ratem is set to
zero, the model represents an infinite number of replicates of
a single population of size N. The above results thus predict
that the variance in frequency of a deleterious allele due to
drift in a single finite population should be �   �p�q=ð1þ 4NshÞ
as long as the average frequency �p of the deleterious allele

Figure 5 (Top) Distributions of s and h assuming
a log-normal distribution of s with m � 23:316 and
s ¼ 0:8 (so that �s ¼ 0:05) and fixed heterozygous
effects of deleterious alleles u � 0:00659 (so that
�h ¼ 0:25). See text for more explanations. (Bottom)
Mean fitness and inbreeding depression as a function
of the selfing rate a. Black circles, simulations results,
using the distributions of s and h shown at the top;
black curves, analytical predictions for fixed h, set to �h
(from Equations 11 and 14); red curves, analytical pre-
dictions for varying h (from Equations A56 and A57 in
File S1); dashed/solid curves, neglecting/including the
effects of identity disequilibria. The mutation rate is set
to U ¼ 0:5; in the simulations, N ¼ 20;000 and
R ¼ 10 M:
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remains small (from Equation 20, with �q ¼ 12 �p). Further-
more, expressions for the average allele frequency, mutation
load, and inbreeding depression are obtained by settingm ¼ 0
in Equations 21–23. Figure 7 shows that these approximations
are indeed accurate as long as N is not too small (so that the
deleterious allele stays rare in the population).

Effects of interference between selected loci

In the multilocus case, population structure generates different
types of associations between alleles at different loci, either from
the same individual or from different individuals from the same
deme.As shown in File S2, selection against deleterious alleles is
affected by these associations, through extra terms that appear
in Equation 19 (see Equation B33 in File S2) and also through
the fact that FST and g at each locus are affected by interactions
between loci. Assuming large deme size andweak selection and
migration (so that 1=N;m, and s are of order e, where e is a small
term), fixed s and h, and freely recombining loci, we obtain

FST � 1
1þ 4Nðmþ shÞ

"
12 sð122hÞ 8Nm

½1þ 4Nðmþ shÞ�2  
X
j
pj

#
;

(25)

which is equivalent to equation 79 in Roze and Rousset
(2008) when sh � m; while

g � 1
½1þ 2Nðmþ shÞ�½1þ 4Nðmþ shÞ�

3  

�
12 sð12 2hÞ 4Nm½3þ 8Nðmþ shÞ�

½1þ 2Nðmþ shÞ�½1þ 4Nðmþ shÞ�2  
X
j
pj

#

(26)

(where pj is the frequency of the deleterious allele at locus j in
the metapopulation).

Equations 25 and 26 show that FST and g at a given locus
are decreased by partially recessive deleterious alleles seg-
regating at other loci: this effect stems from the fact that
offspring from migrant individuals tend to be more heterozy-
gous and thus have higher fitness than offspring from phil-
opatric individuals when deleterious alleles are partially
recessive (heterosis). This increases the effective migration
rate and thus reduces genetic correlations between individu-
als within demes (e.g., Ingvarsson and Whitlock 2000). As
shown by Equation 19, a lower FST decreases selection
against deleterious alleles when h,1=3 (and increases se-
lection otherwise), while a lower g increases selection
against deleterious alleles when h, 1=2 and increases it oth-
erwise. As a result, the effects of between-locus interactions
on FST and g may either increase or decrease the efficiency of
selection against deleterious alleles, depending on parameter
values. Furthermore, File S2 shows that all other effects of
between-locus interactions should be negligible when 1=N; s,
and m are small, h 6¼ 0:5, and assuming each deleterious
allele remains rare in the metapopulation (pj small). From
Equations 19, 25, and 26, we obtain for the mean number of
deleterious alleles per haplotype at equilibrium (to the sec-
ond order in U)

n � ð12 I3Þ ð1þ 2GÞð1þ 4GÞ
2Gð1þ 4GhÞ

U
s
; (27)

where I3 represents the effect of interactions between loci:

I3 ¼ ð12 2hÞ
�
Nm
G

�
1þ 8G½h2 ð12 3hÞG�
Gð1þ 4GÞð1þ 4GhÞ2   U: (28)

Note that the sign of I3 depends on parameter values: while
I3 is always positive when 1=3, h, 1=2; it may become
negative when h, 1=3; in particular if G is large. Therefore,

Figure 6 Equilibrium values of FST; mutation load L
(divided by its value in a panmictic population, 2u),
heterosis, and inbreeding depression in a subdivided
population, when selection acts at a single locus. The
x-axes show the migration rate between demes (on
a log scale), and the different colors correspond to
different values of s: 0.005 (orange), 0.01 (green),
0.05 (blue), and 0.1 (red). Colored curves, predictions
from Equations 20 and 22–24; circles, one-locus sim-
ulation results (30 replicates of 107 generations; error
bars are smaller than the size of circles); black curves,
predictions from Roze and Rousset (2004) (obtained by
replacing G by Nm in Equations 20 and 22–24). Other
parameter values: h ¼ 0:2; N ¼ 100; u ¼ 1025; in the
simulations the number of demes is set to 200, and
back mutations occur at rate 1027:
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interference between loci may either increase or decrease the
frequency of deleterious alleles. Furthermore, we obtain for
the mutation load

L � 12 exp
�
2ð12 I4Þ ð1þ 2GÞð1þ 8GhÞ

2Gð1þ 4GhÞ   U
�

(29)

with

I4 ¼ ð12 2hÞ
�
Nm
G

�
1þ 8Gh½12 ð12 4hÞG�
Gð1þ 4GhÞ2ð1þ 8GhÞ   U: (30)

Again, the sign of I4 (representing the effect of interactions
between loci) depends on parameter values: I4 is always pos-
itive if 1=4, h, 1=2 (in which case interactions reduce the
load), but becomes negative if h,1=4 and G is sufficiently
large.

By contrast, the sign of the expressions obtained for the
effects of interactions between loci on heterosis and inbreed-
ing depression stays constant when h, 1=2: Indeed, we ob-
tain for heterosis (see File S2 for derivation)

H � 12 exp
�
2
�
12 I5

� ð12 2hÞð1þ 2GÞ
2G½1þ 4Gh�   U

�
(31)

with

I5 ¼ ð12 2hÞ
�
Nm
G

�
1þ 8Ghð1þ GÞ
Gð1þ 4GhÞ2   U; (32)

showingthat interactionsbetweenlocialwaysdecreaseheterosis
when h, 1=2: Finally, inbreeding depression is given by

d � 12 exp
�
2ð1þ I6Þ

ð12 2hÞð1þ 2GÞ
1þ 4Gh

  U
�

(33)

with

I6 ¼ 2ð122hÞ2
�
Nm
G

�
1

Gð1þ 4GhÞ2   U; (34)

showing that interactions between loci always increase in-
breeding depression within demes. Indeed, heterosis and
inbreeding depression scale with FST   n and ð12 FSTÞn; re-

spectively (from Equations 17 and 18), and we obtain from
Equations 25 and 27 that the effect of between-locus inter-
actions on these products stays constant as long as h, 1=2
(to the second order in U). As shown by Figure 8, simulation
results confirm that interactions between loci tend to increase
inbreeding depression and decrease heterosis, fitting reason-
ably well with predictions from Equations 31 and 33 (al-
though discrepancies appear when m is very small). The
effects of interactions between loci on inbreeding depression
stay rather small for the parameter values used in Figure 8A,
but become more important for lower values of s and h or
higher values ofU, as shown by Figure 8, C andD. As an aside,
File S2 also shows that defining inbreeding depression as
12 Ex½Wself;  x�=Ex½Wout;  x� or as 12 Ex½Wself;  x=Wout;  x� (where
again Ex stands for the average over all demes x, whileWself;  x

and Wout;  x are the mean fitnesses of offspring produced by
selfing and by outcrossing in deme x) should yield very similar
results under our assumptions (N large, s and m small, and pj
small), since the variance ofWout;  x and the covariance between
Wself;  x andWout;  x across demes remain small under these con-
ditions. Indeed, bothmeasureswere used in the simulations and
gave nearly undistinguishable results (not shown).

Discussion

Theoretical predictions regarding the effect of the mating
system of organisms on the mutation load and inbreeding
depression are often based on single-locus models. However,
as previously shown by Lande et al. (1994), some of these
predictions may not hold when considering more realistic
situations involvingmultiple selected loci. In particular, when
the genomic mutation rate toward recessive deleterious
alleles is sufficiently high, inbreeding depression is main-
tained at high levels irrespective of the selfing rate of indi-
viduals (contrary to the predictions of single-locus models),
unless selfing exceeds a threshold value. This selective inter-
ference effect has been invoked by Scofield and Schultz
(2006) and by Winn et al. (2011) to explain the lack of evi-
dence of purging in meta-analyses comparing species with
intermediate selfing rates to species with a low selfing rate
(while species with high selfing rates show reduced inbreed-
ing depression): for example, Winn et al. (2011) observed

Figure 7 Variance of deleterious allele frequency
(scaled by �p�q) and inbreeding depression in a single
finite population, as a function of population size N
(on a log scale). Solid curves correspond to predictions
obtained from numerical integration over the standard
diffusion result for the distribution of allele frequency
(e.g., equation 9.3.4 in Crow and Kimura 1970; see
also Bataillon and Kirkpatrick 2000), while dashed
curves correspond to 1=ð1þ 4NshÞ (left) and to the
expression obtained by replacing G by Nsh in Equation
23 (right). Circles, one-locus simulation results (aver-
ages over 30 replicates of 108–109 generations). Pa-
rameter values: s ¼ 0:005; 0.01, 0.05, 0.1 (from right
to left); h ¼ 0:3; u ¼ 1025; back mutation rate,
v ¼ 1027:
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that species with intermediate selfing rates (between 0.2 and
0.8) present similar levels of inbreeding depression to those
of species with lower selfing rates (,0.2). Furthermore, it has
been proposed that this effect may allow the stable mainte-
nance of mixed mating systems (involving both selfing and
outcrossing), since the classical prediction that only complete
selfing or complete outcrossing should be evolutionarily sta-
ble (Lande and Schemske 1985) is based on the assumption
that inbreeding depression is a decreasing function of the
selfing rate.

Most previous studies of selective interference were based
on Kondrashov’s (1985) simulation model, representing del-
eterious alleles occurring at an infinite number of unlinked
loci, in an infinite population. Lande et al. (1994) considered
the case of fully (or almost fully, i.e., h ¼ 0:02) recessive
lethal mutations (s ¼ 1) and found that selective interference
becomes important when the genomic deleterious mutation
rate is sufficiently high (0.2–1). Kelly (2007) showed that
strong homozygous effects of deleterious alleles are not nec-
essarily needed for interference to occur (the effect being
actually stronger with s ¼ 0:1 than with s ¼ 1), while h has
to be sufficiently low to observe interference. Winn et al.
(2011) modeled transitions from outcrossing to partial self-
ing and showed that increased selfing leads to lower levels of
inbreeding depression (purging) when s ¼ 0:05 and h ¼ 0:2
and when s ¼ 0:001 and h ¼ 0:4; but not when s ¼ 1 and
h ¼ 0:02 (for a genomic mutation rate of 1), inbreeding de-
pression staying close to 1 in the last situation.

To date, no analytical model has explored themechanisms
of selective interference. In this article, I showed that analyt-
ical approximations can be obtained in regimes where in-
terference stays moderate, by considering the effects of
pairwise interactions between selected loci and assuming
weak selection. As we have seen, the mechanisms underlying

interference in partially inbred populations depend on the
form of inbreeding considered. In a single, large population
undergoing partial selfing, interference between loci ismainly
driven by identity disequilibria between those loci (as long as
the fitness of heterozygotes departs from the average of both
homozygotes a each locus, i.e., h 6¼ 0:5). However, identity
disequilibria affect inbreeding depression through several
mechanisms: correlations in homozygosity directly reduce
d, but also indirectly decrease homozygosity at each locus
(which also reduces d) and decrease the efficiency of selec-
tion against deleterious alleles, allowing them to be main-
tained at higher frequencies (thereby increasing d). This
last effect (which predominates over the first two) corre-
sponds to the verbal explanation proposed previously to ex-
plain selective interference (purging is prevented by identity
disequilibria, e.g., Lande et al. 1994; Winn et al. 2011). How-
ever, we have seen that this effect itself involves three dif-
ferent mechanisms: reduction of the effective dominance
coefficient of deleterious alleles, decrease in homozygosity
at each locus, and positive correlations between the presence
of a deleterious allele at a given locus and heterozygosity at
other loci. The results presented here also show that inter-
ference is affected little by the strength of selection against
deleterious alleles (at least as long as selection is weak to
moderate) or by linkage, as long as genome map length is
sufficiently high—in agreement with the simulation results
obtained by Charlesworth et al. (1992), showing that the
effect of linkage on mean fitness and inbreeding depression
in partially selfing populations often remains slight.

When inbreeding results from limited dispersal (popula-
tion structure), interference effects are more complicated as
they involve associations between loci as well as between
different individuals from the same spatial location. However,
we have seen that when selection and migration are weak

Figure 8 Inbreeding depression (A, C, and D) and het-
erosis (B) when deleterious mutations occur at a large
number of loci, as a function of the migration rate
between demes (on a log scale). Circles, multilocus
simulation results; solid curves, predictions from Equa-
tions 31 and 33; dotted curves, predictions ignoring
effects of interactions between loci (setting I5 and I6
to zero in Equations 31 and 33). Parameter values:
(A and B) U ¼ 0:5; h ¼ 0:2; s ¼ 0:05 (squares, top
curves in A, bottom curves in B), s ¼ 0:01 (circles, bot-
tom curves in A, top curves in B); (C) U ¼ 0:5; h ¼ 0:1;
s ¼ 0:01; and (D) U ¼ 1; h ¼ 0:2; s ¼ 0:01: Deme size:
N ¼ 100: In the simulations the number of demes is set
to 200 and genome map length to R ¼ 20 M.
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while deme size is large, the main effect of interference
between loci (assuming partially recessive deleterious alleles)
is to increase the effective migration rate at each locus
(Ingvarsson and Whitlock 2000), thereby reducing probabil-
ities of identity between alleles present in different individu-
als from the same deme. This may either increase or decrease
the strength of selection against deleterious alleles, depend-
ing on parameter values, but it always increases inbreeding
depression within demes, while reducing heterosis between
demes. In contrast to the case of partial selfing in a single
population, this effect does not involve identity disequilibria
(correlations in homozygosity across loci), but does involve
other types of associations between alleles present in differ-
ent individuals from the same deme (moments of linkage
disequilibrium and allele frequencies, see Equations B44
and B45 in File S2). Furthermore, an important difference
between partial selfing and population structure is that the
mutation load and inbreeding depression in a structured pop-
ulation may be affected by the strength of selection against
deleterious alleles (in particular when migration is weak, see
Figure 6). The effects of interference between loci also de-
pend on the strength of selection, being more marked for
lower values of s.

Is selective interference likely to have important conse-
quences in natural populations? Confirming previous results,
we have seen that interference leads to substantial deviations
from single-locus results for parameter values leading to
strong inbreeding depression (high U, low h), independently
of the strength of selection against deleterious alleles. In par-
ticular, the total absence of purging as the selfing rate
increases (up to a threshold value) is observed only when
inbreeding depression is close to 1 (while for lower values
of d, interference only dampens the decline of inbreeding
depression with selfing). As observed by Winn et al. (2011),
this condition may be fulfilled in gymnosperms, which show
very high levels of inbreeding depression. In contrast, angio-
sperms show lower values of inbreeding depression (on
average), for which selective interference may not be suffi-
ciently strong to prevent purging. According to the results
shown here, interference between deleterious alleles may
thus not represent a sufficient explanation for the lack of
evidence for purging in angiosperms in Winn et al.’s (2011)
meta-analysis (for selfing rates between 0 and 0.8). Other
possible explanations may be a lack a sufficient power to de-
tect purging or synergistic epistasis between deleterious
alleles, which tends to flatten the relationship between in-
breeding depression and the selfing rate (Charlesworth et al.
1991). Note also that, as discussed by Winn et al. (2011),
most estimates of inbreeding depression compiled in their
data set were obtained under greenhouse conditions and
may thus be biased downward if inbreeding depression tends
to be stronger in harsher environments (Armbruster and
Reed 2005). More empirical studies of inbreeding depression
in different sets of conditions are thus needed to assess the
potential importance of interactions between loci on selec-
tion against deleterious alleles.

Finally, because the suppression of purging due to inter-
ference occurs only when inbreeding depression is maximal,
this mechanism does not seem a likely explanation for the
evolutionary maintenance of mixed mating systems (as pro-
posed in previous articles), since selfing should be strongly
disfavored when d is close to 1. Nevertheless, the effects of
associations between loci on the evolution of mating systems
remain little explored (but see Kamran-Disfani and Agrawal
2014). Besides affecting inbreeding depression, between-locus
associationsmaymodulate the advantage of selfers due tomore
efficient purging (e.g., Uyenoyama andWaller 1991; Epinat and
Lenormand 2009) and possibly generate additional selective
forces acting on amodifier locus affecting the selfing rate. These
effects are still waiting for analytical exploration.
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FILE S1: PARTIAL SELF-FERTILIZATION

I consider a very large (effectively infinite) population with discrete genera-

tions. Individuals are hermaphroditic, and a parameter α measures the proportion of

offspring produced by selfing (while the other 1 − α are produced by random union

of gametes). Deleterious mutations occur at a rate U per haploid genome per gene-

ration. I assume for simplicity that all deleterious alleles have the same selection (s)

and dominance (h) coefficients, although this assumption will be relaxed at the end.

Throughout, the effects of deleterious alleles at different loci are assumed to be multi-

plicative (no epistasis).

Genetic associations. Following previous work (Barton and Turelli, 1991; Kirk-

patrick et al., 2002), genetic associations within and between loci may be defined as

follows. The frequencies of the deleterious allele at locus i on the first and second

haplotype of an individual are denoted Xi(1) and Xi(2), respectively (these variables

equal 0 or 1, depending on whether the deleterious allele is present or not on this

haplotype). Centered variables ζi(1) and ζi(2) are defined as:

ζi(1) = Xi(1) − pi, ζi(2) = Xi(2) − pi (A1)

where pi is the frequency of the deleterious allele at locus i in the whole population.

The association between the sets S and T of loci present in the two haplotypes of the

same individual is defined as:

DS,T = E [ζS,T] (A2)

D. Roze 1 SI



where E stands for the average over the whole population, and where

ζS,T =
ζS(1) ζT(2) + ζS(2) ζT(1)

2
,

ζS(1) =
∏
i∈S

ζi(1), ζT(2) =
∏
i∈T

ζi(2)

(A3)

(note that DS,T = DT,S). Associations between genes present on the same haplotype

of an individual (DS,∅) will be simply denoted DS. For example, Di,i = E
[
ζi(1) ζi(2)

]
measures the departure from Hardy-Weinberg equilibrium at locus i, while Dij =

E
[
ζi(1) ζj(1) + ζi(2) ζj(2)

]
/2 is the linkage disequilibrium between deleterious alleles at

loci i and j. Finally, associations with repeated indices (such as Dii,j) usually appear

when deriving recursions; however, these repeated indices can be eliminated using the

relation:

DSii,T = piqiDS,T + (1− 2pi)DSi,T (A4)

(e.g., equation 5 in Kirkpatrick et al., 2002). In particular, Dii,j = (1− 2pi)Di,j.

Recursions on genetic associations. General expressions for the effects of selection,

reproduction (recombination and gamete fusion, with selfing rate α) and mutation on

genetic associations can obtained using the methods developed by Barton and Turelli

(1991) and Kirkpatrick et al. (2002). In particular, DS,T after selection (denoted Ds
S,T)

is given by:

Ds
S,T = D•S,T +

∑
X⊂S

∑
Y⊂T

D•S\X,T\Y
∏
i∈X

(−∆spi)
∏
j∈Y

(−∆spj) (A5)

where

D•S,T = E

[
W

W
ζS,T

]
. (A6)

In the expressions above, W and W stand for the fitness of an individual and the

average fitness of the population. The sums in the second term are over all subsets X

D. Roze 2 SI



and Y of the sets S and T (including the empty set), while S\X stands for the set S,

from which the elements of the set X have been removed. Finally, ∆spi is the change

in frequency of the deleterious allele at locus i due to selection.

Associations after recombination and fertilization (denoted Dr
S,T) are given by:

Dr
S,T =

∑
XY=S

∑
UV=T

tX,YtU,V

[
(1− α)Ds

X,YD
s
U,V +

α

2

(
Ds

XU,YV +Ds
XV,YU

)]
(A7)

where (X,Y) is a partition of the set S, and tX,Y is the probability that loci in the set

X come from one of the haplotypes of the parent, and loci in the set T come from the

other haplotype (when S contains only one locus i we have ti,∅ = 1, while when S = ij,

we have tij,∅ = 1 − rij and ti,j = rij, where rij is the recombination rate between the

two loci).

Finally, the effect of mutation on associations writes:

D′S,T = (1− u)|S|+|T|DS,T (A8)

where u is the deleterious mutation rate per locus, and |S| is the number of elements

in the set S. However, in the following we will neglect the effect of mutation when

deriving recursions on genetic associations, as it only has a negligible effect on expres-

sions at equilibrium (as long as u� s).

Effects of genetic associations on mean fitness. Using the notations defined

above, the fitness of an individual can be written as:

W =
∏
i

[
1− sh

(
Xi(1) +Xi(2)

)
− s (1− 2h)Xi(1)Xi(2)

]
(A9)

Expressing in terms of ζi(1), ζi(2) variables and rearranging, one obtains:

W =
∏
i

[
1 + Ti + ai

(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)]
(A10)
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where

Ti = −2sh pi − s (1− 2h)
(
pi

2 +Di,i

)
ai = −s [h+ (1− 2h) pi] , ai,i = −s (1− 2h) .

(A11)

Through the following, I assume that deleterious alleles stay at low frequency in the

population (pi small), so that Ti ≈ −2sh pi − s (1− 2h)Di,i and ai ≈ −sh. From

equation A10, and assuming that s is small, log-fitness is given by:

lnW ≈
∑
i

[
Ti + ai

(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)]
. (A12)

Therefore, the mean log-fitness is approximately:

lnW ≡ E [lnW ] ≈
∑
i

Ti ≈ −
∑
i

(2sh pi + s (1− 2h)Di,i) . (A13)

Note that terms in pi
2 should be included in the equations above to deal with the effects

of fully recessive deleterious alleles (h close to zero) under panmixia, since Di,i = 0

when mating is random; however, in the following we will assume that either h or α is

significantly greater than zero.

Assuming that the variance in fitness in the population remains small, mean

fitness W ≡ E [W ] can be expressed in terms of the mean and variance in log-fitness

through the following argument. Denoting z = lnW , z = lnW and dz = z − z, we

have:

W = E [ez] = E
[
ez+dz

]
, (A14)

and a Taylor series to the second order in dz yields:

W ≈ elnW
(

1 +
Var [lnW ]

2

)
. (A15)

Using a similar reasoning, one obtains for the variance in fitness (neglecting terms in

Var [lnW ]2):

Var [W ] ≈ e2lnW Var [lnW ] . (A16)
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From equations A12 and A13, the variance in log-fitness is given by:

Var [lnW ] = E

(∑
i

(
ai
(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

)))2


= E

[∑
i,j

(
ai
(
ζi(1) + ζi(2)

)
+ ai,i

(
ζi(1)ζi(2) −Di,i

))
×
(
aj
(
ζj(1) + ζj(2)

)
+ aj,j

(
ζj(1)ζj(2) −Dj,j

))]
(A17)

where the last sum is over all i and j, including i = j. Equation A17 finally yields:

Var [lnW ] ≈ 2 (sh)2
∑
i,j

(Dij +Di,j) + 2s2h (1− 2h)
∑
i,j

(Dij,i +Dij,j)

+ s2 (1− 2h)2
∑
i,j

(Dij,ij −Di,iDj,j) .

(A18)

In an infinite, randomly mating population, all associations within and between loci

should be zero at equilibrium, and using the fact that Dii = piqi and Dii,ii = (piqi)
2

(from equation A4), equation A18 simplifies to the classical expression for the variance

of a quantitative trait in the absence of epistasis, under random mating: 2 (sh)2
∑

i piqi+

s2 (1− 2h)2
∑

i (piqi)
2 (e.g., Lynch and Walsh, 1998, p. 69). At mutation-selection bal-

ance, and assuming again that h is significantly greater than zero, pi ≈ u/ (hs) (where

u is the deleterious mutation rate per locus), and the variance in log-fitness is thus

approximately 2shU (neglecting terms in pi
2).

With inbreeding, all the associations that appear in equation A18 differ from

zero at equilibrium. However, we will see that under weak selection, different types

of associations are of different orders of magnitude: Di,i and Dij,ij are generated by

inbreeding (even in the absence of selection), Dij,i is generated by inbreeding and by

selection acting on locus j and is of order s, while Dij, Di,j are generated by inbreeding

and by selection acting on both loci, and are of order s2. Neglecting associations

generated by selection, and noting from equation A4 that Dii,i = (1− 2pi)Di,i while
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Dii,ii = (piqi)
2 + (1− 2pi)

2Di,i, which are both approximately equal to Di,i when pi is

small, one obtains (to the first order in pi):

Var [lnW ] ≈ 2 (sh)2
∑
i

pi + s2
(
1− 2h2

)∑
i

Di,i

+ s2 (1− 2h)2
∑
i 6=j

(Dij,ij −Di,iDj,j) .

(A19)

Because Di,i and Dij,ij are proportional to pi and to pipj, respectively (for pi, pj small),

while pi and pj are proportional to u/s at equilibrium, the terms on the first line of

equation A19 are proportional to sU , while the term on the second line is proportional

to U2. Because we will focus on situations where s � U (so that many deleterious

alleles may be present in a single genome, and interactions between these alleles may

thus have noticeable effects), in the following we will neglect the terms on the first line

of equation A19. Although the expression obtained for Var [lnW ] may not be accurate

when the average number of mutations per genome is low or when h is close to 0.5,

the term in Var [lnW ] in equation A15 should be negligible in these situations. Using

this approximation, one obtains (from equations A13, A15 and A19):

W ≈ e−2sh
∑

i pi−s(1−2h)
∑

iDi,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(Dij,ij −Di,iDj,j)

]
. (A20)

Interference between loci appears in the terms between brackets in equation A20, but

also affects the equilibrium values of Di,i and pi. We now derive expressions for these

different terms to the order U2, that is, neglecting the effects of higher-order interac-

tions (between three or more loci), which would generate terms of higher order in U .

Expressions for genetic associations under neutrality. As mentioned before,

the term Dij,ij − Di,iDj,j is generated by partial selfing even in the absence of se-

lection. Recursions for Di,i and Dij,ij under neutrality are obtained from equation
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A7:

D′i,i =
α

2
(Di,i + piqi) (A21)

D′ij,ij =
α

2

[
[1− 2rij (1− rij)] (Dij,ij + pqij)

+ 2rij (1− rij) (piqiDj,j + pjqjDi,i)
] (A22)

with pqij = piqipjqj. At equilibrium, one obtains:

Di,i = F piqi, Dij,ij = φij pqij (A23)

with

F =
α

2− α
, φij =

α

2− α
2− α− 2 (2− 3α) rij (1− rij)

2− α [1− 2rij (1− rij)]
. (A24)

Therefore,

Dij,ij −Di,iDj,j = Gij pqij ≈ Gij pipj (A25)

(assuming pi, pj small), where Gij = φij − F 2 is the identity disequilibrium between

loci i and j. Under free recombination (rij = 1/2), Gij simplifies to:

G =
4α (1− α)

(4− α) (2− α)2
. (A26)

Because Gij is only weakly dependent on rij, it is often close to G even when rij < 1/2.

Associations Di,i and Dij,j to the first order in s. The effect of identity dis-

equilibria on the term in
∑

iDi,i (which appears in the exponential in equation A20)

can be obtained as follows. From equations A12 and A20, we have to the first order

in s:

W

W
≈ −sh

∑
j

(
ζj(1) + ζj(2)

)
− s (1− 2h)

∑
j

(
ζj(1)ζj(2) −Dj,j

)
. (A27)

From equation A5, the association Di,i after selection is given by:

Ds
i,i = E

[
W

W
ζi(1)ζi(2)

]
− (∆spi)

2 . (A28)
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However, (∆spi)
2 is of order s2 and can be neglected. Using equation A27, one obtains:

Ds
i,i ≈ −2sh

∑
j

Dij,i − s (1− 2h)
∑
j

(Dij,ij −Di,iDj,j) . (A29)

The sums in equation A29 are over all loci j, including j = i; however we may neglect

terms with j = i when the number of segregating loci is large (s� U). Furthermore,

the first term of equation A29 is of order s2, since Dij,i is of order s. Neglecting these

terms, one obtains the following recursion for Di,i:

D′i,i ≈
α

2

[
piqi +Di,i − s (1− 2h)

∑
j 6=i

(Dij,ij −Di,iDj,j)

]
. (A30)

Therefore, at equilibrium:

Di,i ≈ F

[
1− s (1− 2h)

∑
j 6=i

Gij pj

]
pi . (A31)

In order to calculate allele frequencies at mutation-selection balance, we will

also need an expression for associations Dij,j at equilibrium, to the first order in s.

From equation A5, we have (to the first order in s):

Ds
ij,j = E

[
W

W

ζij,j + ζj,ij
2

]
− (∆spi)Dj,j . (A32)

Furthermore,

∆spi = E

[
W

W

Xi(1) +Xi(2)

2

]
− pi = E

[
W

W

ζi(1) + ζi(2)
2

]
(A33)

and thus, to the first order in s (using equation A27):

∆spi = −sh pi − s (1− h)Di,i . (A34)

From equations A27, A32 and A34, one obtains:

Ds
ij,j ≈ Dij,j − s (1− h) (Dij,ij −Di,iDj,j) . (A35)
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A recursion for Dij,j over the whole life cycle (to the first order in s) is given by:

D′ij,j ≈
α

2
Ds
ij,j ≈

α

2
[Dij,j − s (1− h) (Dij,ij −Di,iDj,j)] (A36)

giving at equilibrium:

Dij,j ≈ −s (1− h)F Gij pipj (A37)

(assuming pi, pj small).

Allele frequencies. To take into account the effects of between-locus interactions

on equilibrium allele frequencies, we need to express W/W to the second order in s.

From equations A12 and A20, this is:

W

W
≈ 1− sh

∑
j

(
ζj(1) + ζj(2)

)
− s (1− 2h)

∑
j

(
ζj(1)ζj(2) −Dj,j

)
+ (sh)2

∑
i<j

(
ζi(1) + ζi(2)

) (
ζj(1) + ζj(2)

)
+ s2h (1− 2h)

∑
i 6=j

(
ζi(1) + ζi(2)

) (
ζj(1)ζj(2) −Dj,j

)
+ s2 (1− 2h)2

∑
i<j

[(
ζi(1)ζi(2) −Di,i

) (
ζj(1)ζj(2) −Dj,j

)
− (Dij,ij −Di,iDj,j)

]
(A38)

From equations A33 and A38, neglecting terms in pi
2 and neglecting terms in sU

relative to terms in U2, one obtains:

∆spi = −sh pi − s (1− h)Di,i − s (1− 2h)
∑
j 6=i

Dij,j

+ s2 (1− h) (1− 2h)
∑
j 6=i

(Dij,ij −Di,iDj,j) .

(A39)

Using equations A25, A31 and A37, this is:

∆spi = −s

[
h+ (1− h)F − s (1− h) (1− 2h) (1 + 2F )

∑
j 6=i

Gijpj

]
pi . (A40)
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while the change in pi due to mutation is approximately u. Assuming unlinked loci

(Gij = G), one obtains for the average number of deleterious alleles per haploid

genome, n =
∑

i pi, to the order U2:

n ≈ U

s [h+ (1− h)F ]

[
1 +

U (1− h) (1− 2h) (1 + 2F )G

[h+ (1− h)F ]2

]
(A41)

or in terms of the selfing rate α:

n ≈ U (2− α)

s [2h+ α (1− 2h)]

[
1 +

4U (1− h) (1− 2h)α (1− α) (2 + α)

(2− α) (4− α) [2h+ α (1− 2h)]2

]
. (A42)

Finally, equations A20, A25, A26, A31 and A42 yield the following expressions for

mean fitness:

W ≈ (1 + I2) exp

[
−U 4h+ α (1− 4h)

2h+ α (1− 2h)
(1 + I1) +

2α

2− α
I2

]
(A43)

with:

I1 = 2U (1− h) (1− 2h)
2 + α

2− α
T, I2 = U2 (1− 2h)2 T (A44)

and

T =
2α (1− α)

(4− α) [2h+ α (1− 2h)]2
. (A45)

Furthermore, from equations A13, A16, A19, A25, A31 and A42, one obtains for the

variance in fitness:

Var [W ] ≈
(
sU

4h2 (1− α) + α

2h+ α (1− 2h)
+ 2I2

)
exp

[
−2U

4h+ α (1− 4h)

2h+ α (1− 2h)
(1 + I1) +

4α

2− α
I2

]
(A46)

simplifying to 2shUe−4U when α = 0, and sUe−2(2−α)U when h = 1/2. Note that

a term in sU2 has been neglected in the first parenthesis of equation A46, this term

being given by:

sU2 (1− 2h)
4α (1− α) [8h2 (1− h) + α (1− 2h) (2− 4h2 + αh)]

(2− α) (4− α) [2h+ α (1− 2h)]3
. (A47)
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Inbreeding depression. Using the same reasoning as for the derivation of equation

A20 above, one obtains that the mean fitness of selfed offspring is given by:

W self ≈ e−2shn−s(1−2h)
∑

iD
self
i,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(
Dself
ij,ij −Dself

i,i D
self
j,j

)]
(A48)

where Dself
i,i and Dself

ij,ij correspond to the averages of ζi,i and ζij,ij over selfed offspring.

Because the same quantities averaged over outcrossed offspring equal zero, the mean

fitness of outcrossed offspring is simply W out ≈ e−2shn, and therefore:

δ = 1− W self

W out

≈ 1− e−s(1−2h)
∑

iD
self
i,i

[
1 +

1

2
s2 (1− 2h)2

∑
i 6=j

(
Dself
ij,ij −Dself

i,i D
self
j,j

)]
.

(A49)

Finally, noting that Dself
i,i = 1

2
(piqi +Di,i), while under free recombination Dself

ij,ij =

1
4

(pqij +Dij,ij + piqiDj,j + pjqjDi,i), one obtains after simplification:

δ ≈ 1−
(

1 +
I2
4

)
exp

[
−U 1− 2h

2h+ α (1− 2h)
(1 + I1) +

α

2− α
I2

]
(A50)

where I1 and I2 are given by equation A44.

Variable selection and dominance coefficients across loci. The above ana-

lysis can easily be extended to the case where s and h vary across loci, if we can

assume that drift remains negligible at most loci. Denoting si and hi the selection and

dominance coefficient of the deleterious allele at locus i, equation A13 becomes:

lnW ≈ −
∑
i

si (2hi pi + (1− 2hi)Di,i) (A51)

while from equation A19, the variance in log-fitness is approximately

Var [lnW ] ≈
∑
i 6=j

si (1− 2hi) sj (1− 2hj) (Dij,ij −Di,iDj,j) (A52)
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when α > 0 and h 6= 1/2. Furthermore, first order expressions for Di,i and Dij,j at

equilibrium (equations A31 and A37 above) become:

Di,i ≈ F

[
1−

∑
j 6=i

sj (1− 2hj)Gij pj

]
pi (A53)

Dij,j ≈ −si (1− hi)F Gij pipj . (A54)

From this, one obtains the following expression for the frequency of the deleterious

allele at locus i at mutation-selection balance, taking into account effects of identity

disequilibria:

pi ≈
u

si [hi + (1− hi)F ]

[
1 +

(1− hi) (1 + 2F )G

hi + (1− hi)F
∑
j 6=i

u (1− 2hj)

hj + (1− hj)F

]
. (A55)

From equations A15 and A51 – A55, and assuming that the total number of loci is

large, one obtains that mean fitness and inbreeding depression are approximately given

by:

W ≈ exp
[
−U
[
Λ1 +GU ((1 + 2F ) Λ2 − F Λ3) Λ3

]](
1 +

1

2
GU2Λ2

3

)
(A56)

δ ≈ 1− exp
[
−U
[
1 + F +GU ((1 + F ) (1 + 2F ) Λ2 − F Λ3)

]Λ3

2

]
×
(

1 +
1

8
GU2Λ2

3

) (A57)

where Λ1, Λ2 and Λ3 are integrals over the distribution of h across loci, ψ (h):

Λ1 =

∫
ψ (h)

2h+ (1− 2h)F

h+ (1− h)F
dh, (A58)

Λ2 =

∫
ψ (h)

(1− h) [2h+ (1− 2h)F ]

[h+ (1− h)F ]2
dh, (A59)

Λ3 =

∫
ψ (h)

1− 2h

h+ (1− h)F
dh . (A60)

Figure 5 in the main text has been obtained by calculating numerically these integrals

using the NIntegrate function of Mathematica.
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FILE S2: POPULATION STRUCTURE

In order to explore the effects of population subdivision, I use the infinite island

model of population structure: the population consists in an infinite number of demes,

each containing N hermaphroditic, diploid adults. These individuals produce a very

large (effectively infinite) number of gametes, which fuse at random to form diploid ju-

veniles. Each juvenile then migrates (to any other deme) with probability m. Finally,

N individuals are sampled randomly from each deme to form the next adult generation.

Recursions on genetic associations. The methods developed in Roze and Rousset

(2008) and Roze (2009) can be used to define genetic associations, and derive recursions

representing the effects of selection, recombination, migration and coalescence within

demes on allele frequencies and genetic associations. For this, Xi(xy1) and Xi(xy2) are

defined as indicator variables that equal 1 if individual y in deme x carries a delete-

rious allele at locus i on its first or second haplotype (respectively). Calling pi the

frequency of the deleterious allele at locus i in the whole metapopulation, centered

variables ζi(xy1) and ζi(xy2) are defined as:

ζi(xy1) = Xi(xy1) − pi, ζi(xy2) = Xi(xy2) − pi . (B1)

As before, genetic associations between genes present on the same or on different

haplotypes of an individual are defined as:

DS,T = E
[
ζS,T(xy)

]
(B2)
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where E stands for the average over all demes x and all individuals y, and where

ζS,T(xy) =
ζS(xy1) ζT(xy2) + ζS(xy2) ζT(xy1)

2
,

ζS(xy1) =
∏
i∈S

ζi(xy1), ζT(xy2) =
∏
i∈T

ζi(xy2)

(B3)

(as before, DS,∅ will be simply denoted DS). Additionally, we need to define associa-

tions between genes present in different individuals from the same deme. The associa-

tion between the sets S and T of genes present on the first and second haplotype of an

individual, and the sets U and V of genes present on the first and second haplotype of

a different individual from the same deme is denoted DS,T/U,V, and defined as:

DS,T/U,V = E
[
ζS,T(xy)ζU,V(xz)

]
(B4)

where E stands for the average over all demes x and all pairs of individuals y, z,

with y 6= z. Associations between genes present in three or more individuals from the

same deme (such as DS,T/U,V/X,Y) can be defined similarly. In the following we will

also consider associations between genes from individuals sampled with replacement

from the same deme, denoted DS,T
a
/U,V and defined as in equation B4, excepts that the

average is over all individuals y and z including y = z. Note that we have:

DS,T
a
/U,V =

DSU,TV +DSV,TU

2N
+

(
1− 1

N

)
DS,T/U,V . (B5)

Finally, because we assume random fusion of gametes within demes, it will be conve-

nient to define associations at the gamete stage, since these will only involve haploid

“individuals” (where an individual now corresponds to a gamete). These are denoted

Dg
S, Dg

S/T... and are defined as above, except that averages are taken over all demes

and all gametes (note that because we assume an infinite number of gametes per deme,

we have Dg

S
a
/T

= Dg
S/T).
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Recursions describing the effects of migration, recombination and coalescence

within demes can be obtained by considering the possible origins of genes in a given

set at the previous generation (see Roze and Rousset, 2008; Roze, 2009 for general

expressions). For example, Dg
i/i measures the association between two genes at locus i,

sampled from two different gametes from the same deme. In the absence of selection,

these gametes have been produced by the same parent with probability 1/N , and by

two different parents with probability 1− 1/N ; therefore:

Dg
i/i = D

i
a
/i

=
piqi +Di,i

2N
+

(
1− 1

N

)
Di/i (B6)

where associations D
i
a
/i

, Di,i and Di/i are measured in the diploid parents. Two genes

present on different haplotypes of a parent were carried by two gametes produced in

the same deme at the previous generation; the same is true for two genes present in

different parents, if these parents come from the same deme (while the association

between two genes sampled from two different demes is zero, due to our assumption of

an infinite number of demes). Therefore, a recursion for Dg
i/i under neutrality is given

by:

Dg
i/i
′ =

piqi +Dg
i/i

2N
+

(
1− 1

N

)
(1−m)2Dg

i/i (B7)

When N is large and m small, this is approximately:

Dg
i/i
′ ≈ piqi

2N
+

(
1− 1

2N
− 2m

)
Dg

i/i, (B8)

which gives at equilibrium:

Dg
i/i ≈

piqi
1 + 4Nm

(B9)

that is, FST piqi (Roze and Rousset, 2008). Finally, selection can be incorporated by

weighting each parent by its fitness. For example assuming soft selection, so that
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the fitness of parent y in deme x only depends on the number of gametes it produces

(denoted Wxy), relative to the average number of gametes produced in deme x (denoted

Wx), the change in allele frequency pi due to selection is given by:

∆spi = E

[
Wxy

Wx

Xi(xy1) +Xi(xy2)

2

]
− pi = E

[
Wxy

Wx

ζi(xy1) + ζi(xy2)
2

]
(B10)

where again the average is over all demes x and individuals y. Furthermore, the

association between genes at locus i present in two different gametes (Dg
i/i) can be

expressed in terms of genetic associations among parents from the relation:

Dg
i/i = E

[(
Wxy

Wx

ζi(xy1) + ζi(xy2)
2

)(
Wxz

Wx

ζi(xz1) + ζi(xz2)
2

)]
− (∆spi)

2 (B11)

where the average is over all demes x and all pairs of parents y and z (including y = z).

Assuming weak selection, equations B10 and B11 can then be expressed in terms of

associations among parents, as shown in the next section.

A single selected locus. We will first consider the case of a single locus (denoted

i) and assume that the fecundity (number of gametes produced) of heterozygous in-

dividuals is reduced by a factor 1 − hs relative to wild type individuals, while the

fecundity of homozygous individuals for the deleterious allele is reduced by a factor

1 − s. As shown in the single population case (equation A10 in Supplementary File

A), the fecundity Wxy of individual y in deme x can be written as:

Wxy ≈ 1 + Ti − sh
(
ζi(xy1) + ζi(xy2)

)
− s (1− 2h)

(
ζi,i(xy) −Di,i

)
(B12)

with Ti = −2sh pi − s (1− 2h)Di,i (assuming that the frequency of the deleterious

allele in the metapopulation pi is small). The average fecundity in deme x is thus

given by:

Wx ≈ 1 + Ti − 2sh ζi(x) − s (1− 2h)
(
ζi,i(x) −Di,i

)
(B13)
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where ζS,T(x) stands for the average over all individuals y of ζS,T(xy). From this, we have

to the first order in s:

Wxy

Wx

≈ 1− sh
(
ζi(xy1) + ζi(xy2) − 2ζi(x)

)
− s (1− 2h)

(
ζi,i(xy) − ζi,i(x)

)
. (B14)

From equations B10 and B14, the change in frequency of the deleterious allele due to

selection is given by:

∆spi ≈ −sh
(
piqi +Di,i − 2D

i
a
/i

)
− s (1− 2h)

(
Dii,i −Di,i

a
/i

)
(B15)

where Dii,i = (1− 2pi)Di,i ≈ Di,i when pi is small. Expressing Di,i, Di
a
/i

and D
i,i

a
/i

in

terms of associations between gametes produced by parents of the previous generation,

one obtains:

∆spi ≈ −sh
(

1− 1

N

)[
piqi +

[
1− 2 (1−m)2

]
Dg

i/i

]
− s (1− 2h)

(
1− 1

N

)(
Dg

i/i − (1−m)2Dg
i/i/i

)
.

(B16)

A similar expression is derived in Roze and Rousset (2003) and Roze and Rousset

(2004). In these previous works, an approximation of ∆spi to the first order in s

is then obtained by replacing associations Dg
i/i and Dg

i/i/i in equation B16 by their

equilibrium values under neutrality — a similar method has been used by Whitlock

(2002, 2003) and Wakeley (2003). While the expression obtained is generally accurate

as long as m� s, it may greatly overestimate the effect of population structure when

m is of the same order of magnitude as s or lower (Roze and Rousset, 2003, 2004), as

selection may generate important deviations of genetic associations from their neutral

values. The methods of Roze and Rousset (2008) can be used to compute the effect of

selection on genetic associations (assuming weak selection), but this leads to an infinite

system of recursions (as the recursion for Dg
i/i depends on Dg

i/i/i and Dg
i/i/i/i, which in

D. Roze 5 SI



turn depend on associations between genes present in 5 or 6 different gametes from

the same deme, and so on). When 1/N � m and s, however, associations between

genes present in two different gametes from the same deme should be of order 1/N ,

while associations between genes present in 3, 4, ... gametes should be of order 1/N2,

1/N3, ... (as these associations are ultimately generated by identity-by-descent, and

probabilities of identity by descent between genes present in 2, 3... gametes are of order

1/N , 1/N2...). To leading order in 1/N , one may thus neglect associations involving 3

or more gametes in the recursion for Dg
i/i (and similarly, neglect associations involving

4 or more gametes in the recursion for Dg
i/i/i). As we will see, the results obtained by

doing so improve considerably the approximations obtained by replacing associations

by their neutral equilibrium values, even when 1/N , m and s have the same order of

magnitude. Through the following, we assume that 1/N , m and s are of order ε, and

derive recursions to leading order in ε. From equations B11 and B14, one obtains to

the first order in ε (neglecting associations between genes from 3 or more gametes, and

neglecting terms in pi
2):

Dg
i/i ≈ (1− 2sh)D

i
a
/i

(B17)

wich, together with equation B7, yields:

Dg
i/i
′ ≈ pi

2N
+

(
1− 2sh− 1

2N
− 2m

)
Dg

i/i . (B18)

Thus, at equilibrium:

Dg
i/i ≈

pi
1 + 4N (m+ sh)

. (B19)

Interestingly, the same result has been obtained by Glémin et al. (2003) using a method

developed by Ohta and Kimura (1969, 1971) to compute moments of allele frequencies
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in finite populations (equation 11a in Glémin et al., 2003). Similarly, one obtains:

Dg
i/i/i

′ ≈ 3

2N
Dg

i/i +

(
1− 3sh− 3

2N
− 3m

)
Dg

i/i/i (B20)

giving at equilibrium:

Dg
i/i/i ≈

pi
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]

. (B21)

Expressing equation B16 to the first order in ε, we have:

∆spi ≈ −sh pi − s (1− 3h)Dg
i/i + s (1− 2h)Dg

i/i/i (B22)

which, together with equations B19 and B21 gives at mutation-selection equilibrium:

pi ≈
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]u

2Ns (m+ sh) [1 + 4Nh (m+ sh)]
. (B23)

Furthermore, from equation B12 the mutation load L is given by:

L = 1−W ≈ 2sh pi + s (1− 2h)Dg
i/i (B24)

which, from equations B19 and B23, becomes:

L ≈ [1 + 2N (m+ sh)] [1 + 8Nh (m+ sh)]u

2N (m+ sh) [1 + 4Nh (m+ sh)]
. (B25)

Heterosis H can be defined as the increase in fitness of offspring generated by crossing

parents from two different demes (denoted Wbetween), relative to the mean fitness of

offspring produced by random mating within demes, which is simply W (e.g., Whitlock

et al., 2000; Theodorou and Couvet, 2002; Roze and Rousset, 2004). From equation

B12, and using the fact that the average of ζi,i(xy) over offspring whose parents come

from different demes is zero, we have Wbetween ≈ 1− 2sh pi, yielding (to the first order

in s):

H = 1− W

Wbetween

≈ s (1− 2h)Dg
i/i . (B26)
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From equations B19 and B23, one obtains:

H ≈ (1− 2h) [1 + 2N (m+ sh)]u

2N (m+ sh) [1 + 4Nh (m+ sh)]
. (B27)

Finally, inbreeding depression δ may be defined as the decrease in fitness of selfed

offspring relative to offspring produced by random mating within demes (see equation

14 in the main text). From equation B12, and using the fact that the average of ζi,i(xy)

over selfed offspring is
(
pi +Dg

i/i

)
/2, one obtains:

δ ≈ 1

2
s (1− 2h)

(
pi −Dg

i/i

)
, (B28)

yielding:

δ ≈ (1− 2h) [1 + 2N (m+ sh)]u

1 + 4Nh (m+ sh)
. (B29)

When m � sh, equations B23, B25, B27 and B29 become equivalent to equations

35-39 in Roze and Rousset, 2004. Furthermore, the reasoning described above can be

generalized to the case where individuals self-fertilize at a rate α, which leads to the

same expressions as equations 35-39 in Roze and Rousset (2004), except that m is

changed to m+ sh.

Many selected loci. As in the single population case, I assume that all deleteri-

ous alleles have the same selection and dominance coefficients. The methods of Roze

and Rousset (2008) can be used to derive expressions for equilibrium allele frequencies,

mutation load, inbreeding depression and heterosis, taking into account the effects of

pairwise interactions between selected loci. For this, general expressions have been

implemented in a Mathematica notebook (available as a supplementary file) in order

to automatically generate recursions for allele frequencies and genetic associations in

a two-locus model. The results can then be extrapolated to many loci, neglecting
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higher-order interactions (involving three or more loci). The main steps of the deriva-

tions are shown in the following. As before, I assume that the equilibrium frequency

of deleterious alleles is small, so that terms in pi
2 can be neglected. I also assume that

1/N , m and s are small (of order ε). More general results can be derived for arbitrary

values of N and m, but the expressions obtained are cumbersome and thus not shown

here.

From equation A38 in Supplementary File A, the fecundity of individual y in

deme x (Wxy) relative to the average fecundity in the whole metapopulation (W ) can

be written as (to the second order in s):

Wxy

W
≈ 1− 2sh

∑
j

ζj(xy) − s (1− 2h)
∑
j

(
ζj,j(xy) −Dj,j

)
+ (sh)2

∑
i 6=j

(
ζij(xy) + ζi,j(xy)

)
+ 2s2h (1− 2h)

∑
i 6=j

(
ζij,j(xy) − ζi(xy)Dj,j

)
+

1

2
s2 (1− 2h)2

∑
i 6=j

(
ζij,ij(xy) − ζi,i(xy)Dj,j − ζj,j(xy)Di,i −Dij,ij + 2Di,iDj,j

)
(B30)

where ζU,V(xy) is given by equation B3. The mean fecundity is deme x (Wx) relative

to the average fecundity in the whole population is given by the same expression,

replacing each ζU,V(xy) by its average over all individuals in the deme x, ζU,V(x). From

this, one obtains the following expression for the ratio Wxy/Wx, to the second order
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in s:

Wxy

Wx

≈ 1− 2sh
∑
i

(
ζi(xy) − ζi(x)

)
− s (1− 2h)

∑
i

(
ζi,i(xy) − ζi,i(x)

)
+ s2h2

∑
i 6=j

[
ζij(xy) − ζij(x) + ζi,j(xy) − ζi,j(x) − 4

(
ζi(xy) − ζi(x)

)
ζj(x)

]
+ 2s2h (1− 2h)

∑
i 6=j

[
ζij,j(xy) − ζij,j(x) − ζi(xy)ζj,j(x) − ζj,j(xy)ζi(x) + 2ζi(x)ζj,j(x)

]
+

1

2
s2 (1− 2h)2

∑
i 6=j

[
ζij,ij(xy) − ζij,ij(x) − 2ζi,i(xy)ζj,j(x) + 2ζi,i(x)ζj,j(x)

]
.

(B31)

The change in frequency of the deleterious allele at locus i due to selection is given by:

∆spi = E

[
Wxy

Wx

ζi(xy)

]
(B32)

where the average is over all demes and all individuals. Using equation B31, one

obtains:

∆spi ≈− sh pi − s (1− 3h)Dg
i/i + s (1− 2h)Dg

i/i/i

− s (1− 2h)
∑
j 6=i

(
Dg

ij/j −D
g
i/j/j

)
+ s2 (1− 2h)

∑
j 6=i

[
(1− h)

(
Dg

ij/ij −D
g
i/i/j/j

)
− 4h

(
Dg

ij/i/j −D
g
i/i/j/j

)]
− s2 (1− 2h)2

∑
j 6=i

(
Dg

ij/ij/i +Dg
ij/j/i/i − 2Dg

i/i/i/j/j

)
.

(B33)

Note that equation B33 involves a term in spi (first line, which is equivalent to the

term derived in the single-locus model) and a sum over all loci j of terms in s2pipj, that

vanish when h = 1/2 (when h = 1/2, interactions between loci affect changes in allele

frequencies through terms in s4pipj, that are not considered here). In equation B33,

these terms are expressed to leading order in ε. Associations with at least two i and

two j indices (Dg
ij/ij, D

g
ij/i/j, D

g
i/i/j/j, D

g
ij/ij/i, D

g
ij/j/i/i and Dg

i/i/i/j/j) are generated
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by population structure (even in the absence of selection), while associations Dg
ij/j

and Dg
i/j/j are generated by population structure and by selection acting at locus i.

Recursions for the first series of associations to the first order in ε are given by:

Dg
i/i/j/j

′ ≈
(

1− 6

2N
− 4m− 4hs

)
Dg

i/i/j/j +
1

2N

(
piD

g
j/j + pjD

g
i/i + 4Dg

ij/i/j

)
(B34)

Dg
ij/i/j

′ ≈
(

1− 3

N
− 3m− 4hs

)[
(1− rij)Dg

ij/i/j + rijD
g
i/i/j/j

]
+

1

2N

[
piD

g
j/j + pjD

g
i/i + 3Dg

ij/i/j + (1− rij)Dg
ij/ij + rijD

g
i/i/j/j

] (B35)

Dg
ij/ij

′ ≈
(

1− 1

N
− 2m− 4hs

)[
(1− rij)2Dg

ij/ij + 2rij (1− rij)Dg
ij/i/j + rij

2Dg
i/i/j/j

]
+

1

2N

[
[1− 2rij (1− rij)]

(
pi +Dg

ij/ij

)
+ 2rij (1− rij)

(
piD

g
j/j + pjD

g
i/i

)]
(B36)

Dg
i/i/i/j/j

′ ≈
(

1− 5

N
− 5m− 5hs

)
Dg

i/i/i/j/j +
1

2N

(
pjD

g
i/i/i + 6Dg

ij/j/i/i + 3Dg
i/i/j/j

)
(B37)

Dg
ij/j/i/i

′ ≈
(

1− 6

N
− 4m− 5hs

)[
(1− rij)Dg

ij/j/i/i + rijD
g
i/i/i/j/j

]
+

1

2N

[
pjD

g
i/i/i + (1− rij)

(
6Dg

ij/j/i/i + 2Dg
ij/ij/i + 3Dg

ij/i/j

)
+ rij

(
5Dg

ij/j/i/i + 3Dg
i/i/i/j/j + 3Dg

i/i/j/j

)]
(B38)

Dg
ij/ij/i

′ ≈
(

1− 3

N
− 3m− 5hs

)
×
[
(1− rij)2Dg

ij/ij/i + 2rij (1− rij)Dg
ij/j/i/i + rij

2Dg
i/i/i/j/j

]
+

(1− rij)2

2N

(
pjD

g
i/i + 3Dg

ij/ij/i + 2Dg
ij/ij

)
+
rij (1− rij)

N

(
pjD

g
i/i/i +Dg

ij/j/i/i +Dg
ij/ij/i + 3Dg

ij/i/j

)
+
rij

2

2N

(
pjD

g
i/i + 2Dg

ij/j/i/i +Dg
ij/ij/i + 2Dg

i/i/j/j

)
.

(B39)

D. Roze 11 SI



From this, one obtains at equilibrium, to leading order,

Dg
ij/ij ≈ Dg

ij/i/j ≈ Dg
i/i/j/j ≈

pipj

[1 + 4N (m+ sh)]2
(B40)

Dg
ij/ij/i ≈ Dg

ij/j/i/i ≈ Dg
i/i/i/j/j ≈

pipj

[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2
. (B41)

indicating that the last two lines of equation B33 are of order s2ε pi
∑

j pj (since these

lines cancel when equations B40 and B41 are used).

Recursions for Dg
ij/j and Dg

i/j/j to leading order are given by:

Dg
ij/j
′ ≈ 1

2N
Dg

ij/j +

(
1− 1

N
− 2m− 3hs

)[
(1− rij)Dg

ij/j + rijD
g
i/j/j

]
− sh

[
(1− rij)

(
Dg

ij/ij − 2Dg
ij/i/j +Dg

i/iD
g
j/j

)
+ rij

(
2Dg

ij/i/j − 3Dg
i/i/j/j +Dg

i/iD
g
j/j

)]
− s (1− 2h)

[
(1− rij)

(
Dg

ij/ij/j − 2Dg
ij/i/j/j +Dg

i/i/iD
g
j/j

)
+ rij

(
Dg

ij/i/j/j − 2Dg
i/i/i/j/j +Dg

i/i/iD
g
j/j

)]
− s (1− 2h)

(
Dg

ij/i/j −D
g
i/iD

g
j/j

)

(B42)

Dg
i/j/j

′ ≈ 1

N
Dg

ij/j +

(
1− 3

2N
− 3m− 3hs

)
Dg

i/j/j

− sh
(

2Dg
ij/i/j − 3Dg

i/i/j/j +Dg
i/iD

g
j/j

)
− s (1− 2h)

(
2Dg

ij/i/j/j − 3Dg
i/i/i/j/j +Dg

i/i/iD
g
j/j

)
− s (1− 2h)

(
Dg

i/i/j/j −D
g
i/iD

g
j/j

)
.

(B43)

From equations B34–B39 and B42–B43, one obtains that Dg
ij/j and Dg

i/j/j are both of

order s pipj at equilibrium. However, leading-order expressions for these associations

are identical, causing the term on the second line of equation B33 to cancel. Therefore,

the second line of equation B33 is also of order s2ε pi
∑

j pj.

D. Roze 12 SI



Finally, recursions for Dg
i/i and Dg

i/i/i taking into account effects of pairwise

interactions between loci are given by (to leading order):

Dg
i/i
′ ≈ pi

2N
+

(
1− 1

2N
− 2m− 2hs

)
Dg

i/i−2s (1− 2h)
∑
j 6=i

(
Dg

ij/i/j −D
g
i/i/j/j

)
(B44)

Dg
i/i/i

′ ≈ 3

2N
Dg

i/i +

(
1− 3

2N
− 3m− 3hs

)
Dg

i/i/i

− 3s (1− 2h)
∑
j 6=i

(
Dg

ij/j/i/i −D
g
i/i/i/j/j

)
.

(B45)

At equilibrium, and assuming freely recombining loci, one obtains:

Dg
i/i ≈

pi
1 + 4N (m+ sh)

[
1− s (1− 2h)

8Nm

[1 + 4N (m+ sh)]2

∑
j

pj

]
(B46)

Dg
i/i/i ≈

pi
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]

×

[
1− s (1− 2h)

4Nm [3 + 8N (m+ sh)]

[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2

∑
j

pj

]
.

(B47)

In order to obtain equations B46 and B47, the terms Dg
ij/i/j −D

g
i/i/j/j and Dg

ij/j/i/i −

Dg
i/i/i/j/j that appear in equations B44 and B45 must be expressed to the first order

in ε. From equations B34–B39, one obtains:

Dg
ij/i/j −D

g
i/i/j/j ≈

mpipj

rij [1 + 4N (m+ sh)]2
(B48)

Dg
ij/j/i/i −D

g
i/i/i/j/j ≈

mpipj

rij [1 + 2N (m+ sh)] [1 + 4N (m+ sh)]2
(B49)

(note that although these expressions diverge when rij tends to zero, expressions that

do not diverge can be obtained by assuming that rij is of order ε).

From equations B46 and B47, one can see that interactions between loci affect

the first line of equation B33 through a term of order s2 pi
∑

j pj, which is thus higher

in magnitude than the terms on the last three lines (which are of order s2ε pi
∑

j pj).
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Neglecting these terms, one finally obtains the following approximation for the mean

number of deleterious alleles per haplotype, n =
∑

i pi at equilibrium:

n ≈ (1− I3)
[1 + 2N (m+ sh)] [1 + 4N (m+ sh)]U

2Ns (m+ sh) [1 + 4Nh (m+ sh)]
(B50)

with:

I3 = (1− 2h)U
m

m+ sh

1 + 8N (m+ sh) [h− (1− 3h)N (m+ sh)]

N (m+ sh) [1 + 4N (m+ sh)] [1 + 4Nh (m+ sh)]2
. (B51)

From equation A20 in Supplementary File A, and neglecting the term in Dij,ij−Di,iDj,j

which is of order ε, we have:

W ≈ e−2shn−s(1−2h)
∑

i Di,i (B52)

From equations B46 and B50, one obtains:

W ≈ exp

[
− (1− I4)

[1 + 2N (m+ sh)] [1 + 8Nh (m+ sh)]U

2N (m+ sh) [1 + 4Nh (m+ sh)]

]
(B53)

with:

I4 = (1− 2h)U
m

m+ sh

1 + 8Nh (m+ sh) [1− (1− 4h)N (m+ sh)]

N (m+ sh) [1 + 4Nh (m+ sh)]2 [1 + 8Nh (m+ sh)]
. (B54)

As we have seen in the previous section, heterosis is defined as H = 1−W/W between,

where W between is the fitness of offspring obtained by crossing parents from two different

demes. Since W between ≈ e−2shn, we have H ≈ 1− e−s(1−2h)
∑

i Di,i , which yields:

H ≈ 1− exp

[
− (1− I5)

(1− 2h) [1 + 2N (m+ sh)]U

2N (m+ sh) [1 + 4Nh (m+ sh)]

]
(B55)

with:

I5 = (1− 2h)U
m

m+ sh

1 + 8Nh (m+ sh) [1 +N (m+ sh)]

N (m+ sh) [1 + 4Nh (m+ sh)]2
. (B56)

Finally, the average inbreeding depression within demes is given by:

δ = 1− Ex

[
Wself, x

Wout, x

]
(B57)
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where Wself, x and Wout, x are the average fitnesses of individuals produced by selfing and

by outcrossing in deme x (respectively), while Ex stands for the average over all demes

x (e.g., Whitlock, 2002; Glémin et al., 2003; Roze and Rousset, 2004). Assuming that

the variances of Wself, x and Wout, x across demes remain small, we have (e.g., Appendix

1 in Lynch and Walsh, 1998):

δ ≈ 1− Ex [Wself, x]

Ex [Wout, x]

[
1 +

Varx [Wout, x]

Ex [Wout, x]2
− Covx [Wout, x,Wself, x]

Ex [Wout, x] Ex [Wself, x]

]
(B58)

where Varx and Covx stand for the variance and covariance across demes. Expressions

for Varx [Wout, x] and Covx [Wout, x,Wself, x] can be computed using the same methods

as above. One obtains in particular:

Varx [Wout, x] ≈ s2 (1− 2h)2
∑
i 6=j

(
Dg

i/i/j/j −D
g
i/iD

g
j/j

)
(B59)

which is of order ε U2 when 1/N , m and s are of order ε, since from equation B40

Dg
i/i/j/j − D

g
i/iD

g
j/j is of order ε pipj. Similarly, one obtains that Covx [Wout, x,Wself, x]

is also of order ε U2. Neglecting these terms, we thus have:

δ ≈ 1− Ex [Wself, x]

Ex [Wout, x]
(B60)

where Ex [Wout, x] is equivalent to W ≈ e−2shn−s(1−2h)
∑

i Di,i , while Ex [Wself, x] is given

by e−2shn−s(1−2h)
∑

i D
self
i,i (where Dself

i,i is the average of ζi,i(xy) over selfed offspring).

Using the fact that Dself
i,i ≈ (pi +Di,i) /2, one obtains δ ≈ 1 − e−

s
2
(1−2h)(n−

∑
i Di,i).

From equations B46 and B50, this is:

δ ≈ 1− exp

[
− (1 + I6)

(1− 2h) [1 + 2N (m+ sh)]U

1 + 4Nh (m+ sh)

]
(B61)

with:

I6 = 2 (1− 2h)2 U
m

m+ sh

1

N (m+ sh) [1 + 4Nh (m+ sh)]2
. (B62)
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