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ABSTRACT Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear
unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two
attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection
approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures
epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection
approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for
outcrossing species.
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EPISTASIS has long been recognized as an important com-
ponent in dissecting genetic pathways and understanding

the evolution of complex genetic systems (Phillips 2008). It is
hence a biologically influential component contributing to
the genetic architecture of quantitative traits (Mackay
2014). The influence of epistasis on genome-wide QTL map-
ping ranges from limited (e.g., Buckler et al. 2009; Tian et al.
2011) to high (e.g., Carlborg et al. 2006; Würschum et al.
2011; Huang et al. 2014). These discrepancies can be ex-
plained by the complexities of the examined traits, which
are controlled by many loci exhibiting small effects entailing
a low QTL detection power. In addition, the estimation of
QTL main and interaction effects is very likely biased (Beavis
1994), which makes it challenging to reliably elucidate the
role of epistasis through genome-wide QTL mapping studies.

Genomic selection has been suggested as an alternative to
tackle complex traits that are regulated by many genes, each
exhibiting a small effect (Meuwissen et al. 2001). Genomic
selection approaches based on additive and dominance
effects have been successfully applied to predict complex

traits in human (Yang et al. 2010), animal (Hayes et al.
2009), and plant populations (Jannink et al. 2010; Zhao
et al. 2015). Moreover, several genomic selection approaches
have been developed tomodel bothmain and epistatic effects
(Xu 2007; Cai et al. 2011; Wittenburg et al. 2011; Wang et al.
2012). While in some studies prediction accuracies increased
(Hu et al. 2011), in others modeling epistasis adversely af-
fected prediction accuracies (Lorenzana and Bernardo 2009).

Despite these first attempts, epistasis is often ignored in
genomic selection approaches using parametric models
mainly because of the high associated computational load,
especially if a large number of markers are available. An
attractive solution to reduce the computational load is to
extend genomic best linear unbiased prediction (G-BLUP)
models (VanRaden 2008) by adding marker-based epistatic
relationship matrices [extended genomic best linear unbi-
ased prediction (EG-BLUP)]. Dating back to Henderson
(1985), EG-BLUP enables the estimation of epistatic compo-
nents of the genotypic values without explicitly assessing in-
dividually epistatic effects. Applied to predicting daily gain in
pigs and the total height of pine trees, EG-BLUP outper-
formed G-BLUP (Su et al. 2012; Muñoz et al. 2014). The
equivalence between G-BLUP and genomic selection approaches,
with explicit relevance for modeling marker main effects, has
been demonstrated (Habier et al. 2007). However, the asso-
ciation between EG-BLUP and genomic selection approaches
explicitly modeling marker main and interaction effects has
not been studied.
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The use of semiparametric reproducing kernel Hilbert
space (RKHS) regression models has been promoted as an
alternative powerful option to capture epistasis in genomic
selection (Gianola et al. 2006; Gianola and Van Kaam 2008).
The RKHS model outperformed linear models that focused
exclusively on marker main effects in a number of studies
based on simulated data (e.g., Gianola et al. 2006; Howard
et al. 2014) and empirical data (e.g., Perez-Rodriguez et al.
2012; Rutkoski et al. 2012; Crossa et al. 2013). Choosing an
appropriate kernel, which can be interpreted as a relationship
matrix among genotypes (i.e., individuals), is a central element
of model specification in RKHS regression (De Los Campos
et al. 2010). Among all possible kernels, the Gaussian kernel
has been extensively used and is assumed to implicitly portray
the genetic effects including epistasis (Gianola and Van Kaam
2008; Morota and Gianola 2014). The exponential function
involved in the Gaussian kernel is a nonlinear transformation
of the additive inputs,which encodes a type of epistasis (Gianola
et al. 2014). Nevertheless, it has not been clarified how RKHS
regression based on Gaussian kernels explicitly models epistatic
effects among different markers.

In this study, we aimed at (1) explaining how the marker-
based epistatic relationshipmatrix used in EG-BLUPmodels is
related toepistatic effects amongmarkers, (2)unravelinghow
the RKHS model based on a Gaussian kernel takes epistatic
effects among different markers into account, and (3) com-
paring the prediction abilities of three models (G-BLUP, EG-
BLUP, and RKHS), using several published experimental data
sets.

Theory

Throughout this article, we use the following notations: Let n
be the number of genotypes, m be the number of genotypes
having phenotypic records, and p be the number of markers.
Let X ¼ ðxijÞ be the n3 p matrix of SNP markers, where xij
equals the number of a chosen allele at the jth locus for the ith
genotype. Let xi be the ith row of the matrix X, which is the
marker profile for the ith genotype. Let pj be the allele fre-
quency of the jth marker. We do not necessarily assume
Hardy–Weinberg equilibrium in the population.

The G-BLUP model with additive relationship matrix

The baseline model for comparison was the standard G-BLUP
model focusing on additive effects,

y ¼ 1mmþ Zgþ e; (1)

where y refers to the m-dimensional vector of phenotypic
records, 1m is an m-dimensional vector of ones, m is the pop-
ulation mean, g is an n-dimensional vector of additive geno-
typic values, Z ¼ ðzijÞ is the corresponding m3 n design
matrix allocating phenotypic records to genotypes (i.e.,
zij ¼ 1 if the jth entry of g corresponds to the ith observation
in y, and zij ¼ 0 otherwise), and e is anm-dimensional vector
of residual terms.

Without loss of generality, we subsequently assume that
m ¼ n and that Z is the identity matrix, leading to the simpler
form of the model,

y ¼ 1nmþ gþ e; (2)

where y, 1n; m; and e are the same as defined in (1). We
assume that m is a fixed parameter, and g, e are random
parameters with e � Nð0; Is2

e Þ and g � Nð0;Gs2
gÞ: G denotes

the n3 n genomic relationship matrix among all genotypes,
calculated following VanRaden (2008) as G ¼ WW9=g;
where g ¼ 2

Pp
k¼1pkð12 pkÞ andW ¼ ðwijÞ is an n3 pmatrix

with wij ¼ xij 2 2pj: It was proved that the matrix G
approaches the well-known numerator relationship matrix
A as the number of markers increases (Habier et al. 2007).

EG-BLUP: an extended G-BLUP model comprising
additive and additive 3 additive relationship matrices

Focusing exclusively on additive3 additive epistasis, the EG-
BLUP model has the form

y ¼ 1nmþ g1 þ g2 þ e; (3)

where y, 1n; m; and e are the same as defined in (2). For each
genotype, not only the additive genotypic values but also
epistatic genotypic values are included in the model. Namely,
g1 is an n-dimensional vector of additive genotypic values,
and g2 is an n-dimensional vector of additive 3 additive ep-
istatic genotypic values. We assume that m is a fixed param-
eter, e � Nð0; Is2

e Þ; g1 � Nð0;Gs2
1Þ; g2 � Nð0;Hs2

2Þ; and
Covðg1; g2Þ ¼ Covðg1; eÞ ¼ Covðg2; eÞ ¼ 0: Here the matrix
G is the same as in the G-BLUP model. In an infinitesimal
model, Henderson (1985) suggested using the Hadamard
product of the additive relationship matrix by itself to obtain
the epistatic relationship matrix H. Translated to genomic
relationship, this yields

H ¼ G#G: (4)

This extended G-BLUP model was recently used by Su et al.
(2012) and Muñoz et al. (2014).

When the number of markers is large, we proved that EG-
BLUP is equivalent to the model EG-BLUP* with explicit ep-
istatic effects of markers (see the Appendix),

y ¼ 1nmþ
Xp
i¼1

Wiai þ
Xp21

i¼1

Xp
j¼iþ1

ðWi �WjÞvij þ e; (5)

where y, 1n; m; and e are the same as before; Wi is the ith
column of the matrix W; ai is the additive effect of the ith
marker; Wi �Wj is the element-wise product of the two vec-
torsWi andWj; vij is the additive3 additive epistatic effect of
the ith and the jthmarker; and e is the vector of residual terms.
We assume that m is a fixed parameter; ai � Nð0;s2

1=gÞ;
vij � Nð0; 2s2

2=g
2Þ; e � Nð0; Is2

e Þ; and no covariance among
ai; vij; and e. The basic setting of EG-BLUP* in Equation 5
appeared in Wittenburg et al. (2011) with different assump-
tions on the parameters.
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Note that the parameters in EG-BLUP* should be consid-
ered in the framework of Fisher (1918). Namely, m is the
population mean, ai is the average effect of an allele for the
ith locus, defined as the regression coefficient of the geno-
typic values on the number of the allele, and vij ði 6¼ jÞ is the
epistatic deviation for the ith and the jth loci.

The extension of Equation 3 to include also higher-order
additive3 additive genotypic values can be deduced using the
same method as in Henderson (1985). We need only to note
that the (k2 1)th-order epistatic relationshipmatrix is given by
G#k ¼ G#G# � � �#G (theHadamard product of k copies ofG).

The RKHS regression model based on a Gaussian kernel

We consider the following model that is equivalent to RKHS
regression (De Los Campos et al. 2010):

y ¼ 1nmþ gþ e: (6)

The notations are the same as in (2) and the assumptions
are e � Nð0; Is2

e Þ; g � Nð0;Ks2
gÞ; where K ¼ ðkðxi; xjÞÞ is an

n3 n kernel matrix whose entries are functions of marker
profiles of pairs of genotypes. It is required that K satisfies
the semipositive definite property

P
i; jaiajkðxi; xjÞ$ 0; for all

real numbers ai; aj: Mathematically, a number of matrices
would satisfy this property. For example, we may choose
K ¼ G whereby the RKHS model is equivalent to G-BLUP.

In this study,weconsideronly theGaussiankernel (Gianola
and Van Kaam 2008),

kðxi; xjÞ ¼ exp

"
2
kxi 2 xjk2

h

#
; (7)

where k�k denotes the norm in the Euclidean space and h is
a bandwidth parameter. As the matrix K serves as a genetic
relationship matrix among genotypes, the parameter h con-
trols how fast the relationship between two genotypes decays
as the distance between the corresponding pairs of marker
vectors increases. The choice of the bandwidth parameter can
be optimized by applying a cross-validation or a Bayesian
approach, treating h as a random variable. Throughout this
study, we assume that h is known.

An explicit explanation of why the RKHS model
captures epistasis

We start by inspecting the kernel matrix (7) in more detail.
Recall that the entries in W are defined as wij ¼ xij 2 2pj:
Hence we have

kxi2xjk2 ¼
Xp
k¼1

ðxik2 xjkÞ2

¼
Xp
k¼1

ðwik2wjkÞ2 ¼
Xp
k¼1

w2
ik þ

Xp
k¼1

w2
jk22

Xp
k¼1

wikwjk:

Recall that G ¼ WW9=g: Thus the ði; jÞth entry of G is
Gij ¼

Pp
k¼1 wikwjk=g: Write bl ¼

Pp
k¼1w

2
lk; for all 1# l# n:

Then we obtain

kðxi; xjÞ ¼ exp
�
2
bi
h

�
exp
�
2
bj

h

�
exp
�
2gGij

h

�
:

Let 1n3n be the n3 n matrix of ones and let L ¼
diagðexpð2ðb1=hÞÞ; . . . ; expð2ðbn=hÞÞÞ: Note that in terms
of power series, expðxÞ ¼ 1þPN

k¼1ðxk  =k!Þ (Levi 1968). Re-
writing the above steps in matrix form, we have

K ¼ L~HL; (8)

where

~H ¼ 1n3n þ
XN
k¼1

ð2gÞk
hkk!

G#k: (9)

Therefore, we can see that the epistatic relationship matrices
G#k (for each k$ 2) used in EG-BLUP are all involved in the
Gaussian kernel for the RKHSmodel. In this sense, the Gauss-
ian kernel indeed carries the information of additive 3 addi-
tive epistasis up to any order. But note that in the Gaussian
kernel, the proportions of the additive and each epistatic re-
lationship matrix G#k in the total matrix ~H are fixed, once the
bandwidth parameter is chosen. In contrast, in EG-BLUP, the
proportion of G#k in H depends on the corresponding vari-
ance component, which is an unknown parameter to be
estimated.

Based on the above observations, we can actually formu-
lateamodelwithexplicit epistasis effectsofmarkersandprove
that it is equivalent to the RKHS model with the Gaussian
kernel. Let us consider the followingmodel,which seems to be
ill-posed as infinitely many unknown parameters are in-
cluded. But we immediately show that it is equivalent to
the RKHS model with Gaussian kernel,

y ¼1nmþ L1nn þ
Xp
i¼1

LWiai

þ
XN
s¼2

X
1# i1, i2,⋯, is# p

L

 Ys
t¼1

Wit

!
vi1i2⋯is þ e; (10)

where the notations y, 1n; m; Wi; ai; and e are the same as in
(4).

Qs
t¼1Wit is the element-wise product of the vectors Wit

for 1# t# s: vi1i2⋯is are the sth-order epistatic effects among
the i1; i2; . . ., and the is loci. We assume that m is fixed, v
is an extra random intercept term with n � Nð0;s2

0Þ;
ai � Nð0; ð2=hÞs2

0Þ; vi1i2⋯is � Nð0; ð2s=hsÞs2
0Þ; e � Nð0; Is2

e Þ;
and there is no covariance among n; ai; vi1i2⋯is ; and e.

Now, let a be the p-dimensional vector ðaiÞ1#i#p; v
ðsÞ be the� p

s

�
-dimensional vector ðvi1i2⋯isÞ1# i1,i2,⋯,is#p; and UðsÞ be

the n3
� p
s

�
matrix whose columns consist of the

vectors
Qs

t¼1Wit for all 1# i1; i2; . . . ; is # p: Here
� p
s

�
¼

ðpðp2 1Þ⋯ðp2 sþ 1ÞÞ=s! denotes the binomial coefficient.
With the above notations, Equation 6 can be rewritten in
matrix form as
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y ¼ 1nmþ L1nn þ LWaþ
XN
s¼2

LUðsÞvðsÞ þ e; (11)

with assumptions n � Nð0;s2
0Þ; a � Nð0; ð2=hÞIs2

0Þ;
vðsÞ � Nð0; ð2s=hsÞIs2

0Þ; and e � Nð0; Is2
e Þ and all covari-

ance terms are zero.
Then we have

V ¼ varðyÞ ¼ ðL1n3nLÞs2
0 þ

2
h
LWW9Ls2

0

þ
XN
s¼2

2s

hs
LUðsÞUðsÞ9Ls2

0 þ Is2
e :

Recall thatG ¼ WW9=g:Weneed to calculateUðsÞUðsÞ9 for any
s$ 2: Note that in the case of s ¼ 2; we have shown in the
Appendix that limp/Nð2Uð2ÞUð2Þ9=g2Þ ¼ limp/NG#G: This re-
sult can be easily generalized for s. 2; using the same
method. That is, for any s$ 2; we have

lim
p/N

s!UðsÞUðsÞ9
g s ¼ lim

p/N
G#s:

Thus, when p is very large, we can approximately treat

UðsÞUðsÞ9 � g s

s!
G#s:

Then we can deduce that

V ¼ varðyÞ � L

 
1n3n þ

XN
s¼1

ð2gÞs
hss!

G#s

!
Ls2

0 þ Is2
e

¼ �L~HL
�
s2
0 þ Is2

e :

Note that the matrix L~HL is exactly the Gaussian kernel
K (Equation 8) and that the variance–covariance matrix
V ¼ varð yÞ is exactly the same as in the RKHS model with
Gaussian kernel.

Using the same approach as in the Appendix, it is straight-
forward to deduce that themodified RKHS (Equation 11) and
the RKHS models give the same predictions for the total ge-
notypic values. Thus, we gave a complete explanation onwhy
the RKHS model takes epistasis into account.

Comparing G-BLUP, EG-BLUP, and RKHS, using
experimental data

We used two published data sets each in wheat and maize
for our study. The first data set consisted of 599 wheat lines
genotyped by 1447 diversity array technology (DArT)
markers (Crossa et al. 2010). The second data set com-
prised 254 advanced wheat breeding lines genotyped by
1576 single-nucleotide polymorphism (SNP) markers
(Poland et al. 2012). The third data set consisted of 300
maize lines with 1148 SNP markers (Crossa et al. 2010).
The fourth data set comprised two large half-sib maize
panels from the flint and dent heterotic pools (Bauer
et al. 2013). The dent (flint) panel consists of 847 (833)

lines with 31,498 (29,466) SNPs. The phenotypic trait on
which we focused in this study was grain yield. More
details on the data sets are provided in supporting infor-
mation, File S1.

Using the four data sets, we tested the option to increase
the predicting accuracy by modeling epistasis. To this end,
we estimated the prediction accuracy based on the G-BLUP,
EG-BLUP, andRKHSmodels, applyingfivefold cross-validations.
The prediction accuracywasmeasured as the Pearson product-
momentcorrelationbetweenpredictedandobservedgenotypic
valuesof the individuals in the test set(moredetailsonmethods
are included in File S1). We observed that the performance of
RKHSwas very similar to that of EG-BLUP (Table 1), which fits
well with our theoretical findings on the congruency of both
models. For the two reanalyzed maize data sets, EG-BLUP and
RKHS including epistasis did not outperform G-BLUP ignor-
ing epistasis. In contrast, in the two reanalyzed wheat data
sets, we observed that the prediction accuracies for RKHS and
EG-BLUP were consistently higher than that for the G-BLUP
model.

Data availability

This study was based on published datasets. Detailed de-
scription and the sources of all data sets were provided in
File S1.

Discussion

We focused in our study on digenic additive 3 additive
epistatic effects. Extending the EG-BLUP approach toward
additive 3 dominance and dominance 3 dominance
effects or to higher-order epistasis is straightforward
(Henderson 1985). It is important to note, however, that
based on the framework used to partition the genotypic
variance, additive 3 additive effects are expected to be
the prevailing epistatic effects (Fisher 1918; Lynch and
Walsh 1998).

EG-BLUP and RKHS are computational efficient
approaches to tackle epistasis in genomic selection

Extending genomic selection models toward epistasis is
often hampered by high computational load. We have
demonstrated that EG-BLUP is equivalent to genomic se-
lection approaches modeling explicitly epistatic effects
(EG-BLUP*, Equation 5). Moreover, RKHS can also be
reformulated as a genomic selection model with explicit
epistatic effects (modified RKHS, Equation 10). The com-
putational load of EG-BLUP and RKHS mainly depends on the
number of genotypes. In contrast, the computational load of
EG-BLUP* comprising additive as well as additive 3 additive
epistatic effects depends on the square of the number of
markers. Implementing the EG-BLUP and RKHS models for
a previously published maize data set (Bauer et al. 2013)
with 847 genotypes and 1000 randomly sampled markers
is, for instance, up to 130 times faster compared with the
corresponding RR-BLUP approach. Consequently, EG-BLUP
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and RKHS are promising models to routinely integrate epis-
tasis in genomic selection studies.

Modeling epistasis improved the prediction accuracy in
selfing but not in outcrossing species

We compared the cross-validated prediction accuracies, us-
ing the G-BLUP, EG-BLUP, and RKHS models based on four
published data sets. Interestingly, we observed contrast
trends for wheat compared with maize on the performance
of models including epistasis (EG-BLUP and RKHS) and
G-BLUP without considering epistasis. Namely, EG-BLUP
and RKHS were superior to G-BLUP for the wheat data sets
but not for the maize data sets (Table 1). Hence, our results
suggested that modeling additive 3 additive epistasis can
increase the prediction accuracy in genomic selection for
selfing but not for outcrossing species. This is in line with
recent findings that additive 3 additive epistasis substan-
tially affects midparent heterosis in the selfing species rice,
but contributes only marginally to heterosis in the outcross-
ing species maize (Garcia et al. 2008). Nevertheless, more
experimental data sets are required to examine the role of
epistasis in selfing and outcrossing species in more detail. In
particular, it seems attractive to study also the role of epis-
tasis involving dominance effects, which entails specific
designs such as factorial mating designs (Comstock and
Robinson 1952).

In theEG-BLUPmodel, both theadditiveand theadditive3
additive epistatic relationship matrices were derived from
molecular markers. If the markers under consideration are
in linkage equilibrium (LE), the additive and additive 3 ad-
ditive terms in EG-BLUP* are orthogonal in the sense of
Cockerham (1954), and hence the estimates of additive
and epistatic effects are independent (Álvarez-Castro and
Carlborg 2007). However, the assumption of linkage equi-
librium may never be true in reality unless only a few loci
sparsely distributed on the genome are considered. Hence,

we performed a simulation study to investigate whether
linkage disequilibrium (LD) among markers, which causes
nonorthogonality of the model, has an influence on the per-
formance of EG-BLUP.

Our simulation was based on the first wheat data set [599
wheat lines with 1447 markers (Crossa et al. 2010)] and the
dent panel of the second maize data set [847 lines with
31,498 markers (Bauer et al. 2013)]. We simulated two sce-
narios: (1) markers contributing to the trait are in LE and (2)
markers contributing to the trait are in LD. In all cases, both
additive and additive 3 additive epistatic effects were sim-
ulated. The heritability was set to be 0.7. Details for the
simulation procedure are presented in File S1. We observed
that the prediction accuracy of EG-BLUP was consistently
higher than that of G-BLUP in both data sets and both sce-
narios (Figure 1). Hence, we may conclude that LD among
markers has low influence on the effectiveness of EG-BLUP vs.
G-BLUP.

Another factor that may affect the performance of EG-
BLUP is inbreeding. In Henderson’s extended BLUP model
(Henderson 1985), the derivation of the epistatic relation-
ship matrix being the Hadamard square of the numerator
relationship matrix depends on the assumption of random
mating (Cockerham 1954), which may never hold for data
from plant breeding. In our study, the marker-derived ep-
istatic relationship matrix in EG-BLUP approximately
equals the Hadamard square of the marker-derived addi-
tive relationship matrix. This result relies only on the as-
sumption that the marker additive and epistatic effects are
independent. Maybe this assumption is more likely to
hold in noninbred than in inbred populations. If this is
true, the superiority of EG-BLUP over G-BLUP would be
more pronounced for noninbred than for inbred popula-
tions, provided that epistasis substantially contributed to
the trait. An investigation of this problem is interesting but
beyond the scope of this study. Nevertheless, our results in

Table 1 Cross-validated prediction accuracies and standard errors of three genomic selection models (genomic best linear unbiased
prediction with additive relationship matrix (G-BLUP), extended G-BLUP with additive and additive 3 additive relationship matrices
(EG-BLUP), and reproducing kernel Hilbert space regression based on the Gaussian kernel (RKHS)] in four data sets

Data set Trait–environmente G-BLUP EG-BLUP RKHS

Wheat_1a GY_E1 0.505 6 0.034 0.571 6 0.029 0.576 6 0.033
GY_E2 0.493 6 0.034 0.500 6 0.034 0.499 6 0.034
GY_E3 0.379 6 0.041 0.421 6 0.035 0.428 6 0.034
GY_E4 0.484 6 0.033 0.525 6 0.029 0.526 6 0.034

Wheat_2b GY_drought 0.435 6 0.058 0.445 6 0.056 0.444 6 0.054
GY_irrigated 0.537 6 0.046 0.550 6 0.046 0.556 6 0.042

Maize_1c GY_drought 0.429 6 0.044 0.440 6 0.045 0.449 6 0.043
GY_irrigated 0.537 6 0.038 0.546 6 0.037 0.544 6 0.037

Maize_2d dent DMY 0.632 6 0.030 0.627 6 0.031 0.619 6 0.032
Maize_2d flint DMY 0.651 6 0.020 0.649 6 0.021 0.643 6 0.021

The highest prediction accuracy for each trait in each data set is underlined.
a Data set previously described in Crossa et al. (2010); 599 lines and 1447 DArT markers were used.
b Data set previously described in Poland et al. (2012); 254 lines and 1576 SNP markers were used.
c Data set previously described in Crossa et al. (2010); 264 lines and 1135 SNP markers were used.
d Data set previously described in Bauer et al. (2013) and Lehermeier et al. (2014); 847 genotypes and 31,498 SNP markers were used for dent lines and 833 genotypes and
29,466 SNP markers were used for flint lines.

e GY, grain yield; DMY, dry matter yield.
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both simulation and empirical study indicated that EG-BLUP
can be effectively applied to noninbred plant data.

Enhancing prediction accuracy across a biparental
population through modeling epistasis

Previous studies have shown that prediction accuracy is im-
paired when performing genomic selection across connected
biparental populations (Zhao et al. 2012; Riedelsheimer et al.
2013). This may be explained at least partially by epistatic
effects as the genetic relatedness across connected popula-
tions may be better exploited by modeling epistasis in addi-
tion to additive effects. Again we used a publishedmaize data
set (Bauer et al. 2013) and investigated whether the pre-
diction accuracy across connected biparental families can be
increased by modeling additive 3 additive epistasis. In our
scenario, genotypic values of the lines in one family were
predicted using lines from each of the other families. We
compared the mean and maximal prediction accuracies for
each family and observed no superiority for EG-BLUP and
RKHS (including epistasis) compared with G-BLUP (ignor-
ing epistasis; Figure 2). The sizes of the biparental popula-
tions were small, ranging from 17 to 133. This small
population size can substantially reduce prediction accuracy
exploiting epistasis, as has been shown previously for QTL
mapping (Carlborg and Haley 2004). In addition, maize as
an outcrossing species is likely to be influenced only little by

additive 3 additive epistasis in contrast to selfing species
(Garcia et al. 2008). Therefore, it will be interesting to in-
vestigate in future studies whether prediction accuracy
across connected biparental populations can be improved,
modeling epistasis using large biparental populations in
selfing species.
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Appendix: A Proof of the Equivalence Between EG-BLUP and EG-BLUP* When the Number of Markers Is
Large

Let us start with the EG-BLUP* model (Equation 5). Let a be the p-dimensional vector of the ai’s and v be the
pðp2 1Þ=2-dimensional vector of the vij’s. Let U be the n3 pðp21Þ=2 matrix whose columns are given by the vectors
ðWi �WjÞ: Then Equation 5 can be simply written as

y ¼ 1nmþWaþ Uvþ e;

with assumptions a � Nð0; Iðs2
1=gÞÞ; v � Nð0; Ið2s2

2=g
2ÞÞ; and e � Nð0; Is2

e Þ and all covariance terms are zero.
Then we have

V ¼ varð yÞ ¼ WW9

g
s2
1 þ

2UU9
g2

s2
2 þ Is2

e : (A1)

The matrix UU9 is an n3n matrix whose ði; jÞ entry is given by

X
1#k,s#p

ui;ksuj;ks ¼
X

1#k,s#p

wikwiswjkwjs ¼ 1
2

X
1#k;s#p

wikwiswjkwjs 2
Xp
k¼1

w2
ikw

2
jk

0
@

1
A

¼ 1
2

 Xp
k¼1

wikwjk

! Xp
s¼1

wiswjs

!
2
Xp
k¼1

w2
ikw

2
jk

" #
:

Then it is easy to deduce that

UU9 ¼ 1
2

��
WW9

�
#
�
WW9

�
2 ðW#WÞðW#WÞ9

	
:

Hence we have

2UU9
g2

¼ G#G2
ðW#WÞðW#WÞ9

g2
:

Now we claim that

lim
p/N

2UU9
g2

¼ lim
p/N

G#G;

which means that when p is very large, we can approximately treat
2UU9
g2 � G#G: For this purpose we need only to prove

lim
p/N

ðW#WÞðW#WÞ9
g2

¼ 0: (A2)

In fact, the ði; jÞth entry of the matrix ðW#WÞðW#WÞ9=g2 is

tij ¼
Xp

k¼1
w2
ikw

2
jk

4
�Xp

k¼1
pkð12 pkÞ

�2 ¼
Xp

k¼1
ðxik2 2pkÞ2ðxjk2 2pkÞ2

4
�Xp

k¼1
pkð12 pkÞ

�2 : (A3)

Note that we always exclude monomorphic markers in the analyses. So we can assume that p0 , pk , 12 p0; where p0 is the
threshold of minor allele frequency in the quality control (e.g., p0 ¼ 0:01 or 0:05). Then the numerator of (A3) is a sum of
p positive numbers, each belonging to the interval ½0; 16ð12 p0Þ2�;while the denominator is a sum of p2 positive numbers, each
in the interval ½4p20ð12 p0Þ2; 0:25�: Thus we have

0# lim
p/N

tij# lim
p/N

16ð12 p0Þ2p
4p20ð12 p0Þ2p2

¼ lim
p/N

4
p20p

¼ 0;
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which proved (A2).
Hence (A1) is simplified to the following:

V � Gs2
1 þ ðG#GÞs2

2 þ Is2
e :

The right-hand side of the above formula is exactly the same as the variance–covariance matrix varðyÞ for Equation 3 in
EG-BLUP.

By the results of Henderson (1975), the BLUPs of a and v are given by

â ¼ s2
1
g

W9V21ðy21nm̂Þ; v̂ ¼ 2s2
2

g2
U9V21ðy21nm̂Þ; (A4)

where

m̂ ¼ 19nV21y
19nV211n

: (A5)

On the other hand, the BLUPs of g1 and g2 in the EG-BLUP model are given by

ĝ1 ¼ s2
1GV

21ð y2 1nm̂Þ; ĝ2 ¼ s2
2ðG#GÞV21ð y21nm̂Þ; (A6)

where m̂ is the same as in (A5) as we have proved that the matrices V ¼ varðyÞ in EG-BLUP and EG-BLUP* are the same.
Comparing (A4) and (A6), we see that ĝ1 ¼ Wâ and ĝ2 ¼ Uv̂; confirming that EG-BLUP and EG-BLUP* give the same

predictions.
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Data sets 

In this study we used two published wheat and two published maize 

data sets. The first data set consisted of 599 wheat lines genotyped 

by 1,447 Diversity Array Technology (DArT) markers in the CIMMYT 

Global Wheat Breeding Program (Crossa et al. 2010). Genotypic and 

phenotypic data were downloaded from the corresponding 

supplementary materials.  

The second data set comprised 254 advanced wheat breeding 

lines from the CIMMYT wheat breeding program, genotyped using a 

genotyping-by-sequencing approach (Poland et al. 2012). Genotypic 

and phenotypic data were downloaded from the corresponding 

supplementary materials. 1,576 Single Nucleotide Polymorphism 

(SNP) markers with lowest missing rate (<0.15%) were selected in 

this study. Remaining missing values were imputed based on 

marginal allele frequencies. 

The third data set consisted of 300 maize lines from the 

Drought Tolerance Maize for Africa project of CIMMYT Global Maize 

Program genotyped with 1,148 SNP markers (Crossa et al. 2010). 

Genotypic and phenotypic data were downloaded from the 

corresponding supplementary materials. In this study we focused on 

grain yield, which was examined for 264 lines. 

The forth data set comprised two large half-sib maize panels 

from the flint and dent heterotic pools generated within the European 

PLANT-KBBE CornFed project (Bauer et al. 2013). The dent (flint) 

panel consisted of 10 (11) half-sib families with 847 (833) doubled 

haploid (DH) lines. Genomic data were downloaded from the website 

of National Center for Biotechnology Information (NCBI) Gene 
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Expression Omnibus as data set GSE50558 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558). 

After quality control for missing rate and minor allele frequency, the 

number of SNP markers used in this study was 31,498 for dent lines 

and 29,466 for flint lines. Field trials were described in Lehermeier et 

al. (2014) and the phenotypic data were downloaded from the 

corresponding supplementary materials.  

Simulation study 

The simulation was based on the first wheat data set (599 wheat 

lines with 1,447 markers, Crossa et al. 2010) and the dent panel of 

the second maize data set (847 lines with 31,498 markers, Bauer et 

al. 2013).  

For each data set we simulated traits in two scenarios: In the 

LE scenario, we randomly selected 100 markers with pairwise LD (r2) 

less than 0.06 as the causal QTL contributing to the trait. The 

additive effects of the 100 QTL were independently sampled as a 

normally distributed random variable with mean 0 and variance 1. 

Then, we randomly sampled 100 pairs (among 5,050 pairs) of 

markers as causal epistatic QTL pairs. The epistatic effects were 

independently sampled as a normally distributed random variable 

with mean 0 and variance 0.5. Setting the heritability to be 0.7, we 

calculated the variance of environmental errors and the error terms 

for each genotype were independently sampled as a normally 

distributed random variable. Finally, we obtained the simulated trait 

values by summing up the additive values, epistatic values and 

environmental errors. In the LD scenario, we just randomly sampled 

100 markers as causal QTL without considering LD and all other 

procedures are the same as the independent case. For each data set 

and each scenario, the simulation was repeated 50 times. 
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Evaluating prediction accuracies 

The prediction accuracies of the three genomic prediction models 

were evaluated by five-fold cross-validation with 20 replications. For 

experimental data sets, the Pearson product-moment correlation 

between predicted and observed total genotypic values of the 

individuals in the test set was used as the measure of prediction 

accuracy. For simulated data sets, the prediction accuracy was 

defined as the correlation between predicted and true genotypic 

values of the individuals in the test set. Standard errors of prediction 

accuracies were estimated based on a bootstrap approach following 

Rutkoski et al. (2012). All models were implemented using the R 

package BGLR (Pérez and de los Campos 2014). 
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