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Abstract

In simultaneous EEG/fMRI acquisition, the ballistocardiogram (BCG) artifact presents a major 

challenge for meaningful EEG signal interpretation and needs to be removed. This is very 

difficult, especially in continuous studies where BCG cannot be removed with averaging. In this 

study, we take advantage of a high-density EEG-cap and propose an integrated learning and 

inference approach to estimate the BCG contribution to the overall noisy recording. In particular, 

we present a special-designed experiment to enable a near-optimal subset selection scheme to 

identify a small set (20 out of 256 channels), and argue that in real-recording, BCG artifact signal 

from all channels can be estimated from this set. We call this new approach “Direct Recording 

Temporal Spatial Encoding” (DRTSE) to reflect these properties. In a preliminary evaluation, the 

DRTSE is combined with a direct subtraction and an optimization scheme to reconstruct the EEG 

signal. The performance was compared against the benchmark Optimal Basis Set (OBS) method. 

In the challenging nonevent-related EEG studies, the DRTSE method, with the optimization-based 

approach, yields an EEG reconstruction that reduces the normalized RMSE by approximately 13 

folds, compared to OBS.
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I. Introduction

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) provides complementary yet functionally linked information 

about underlying brain activity with different temporal and spatial resolutions. However 

ballistocardiogram (BCG) artifacts appearing in the EEG data recorded inside the MR 

scanner still present daunting obstacles, especially when examining continuous (non-event-

related) brain activity under high field strength, where the effect of BCG cannot be 

alleviated by averaging among a large number of event-triggered segments. Suggested to be 

related to cardiac pulsation and breathing, the BCG artifacts exhibit variation in both time 

and space, with a magnitude ten times that of normal brain signals when imaging at 

moderate to high magnetic field strengths. As the most widely used method for BCG 

removal, the Optimal Basis Sets method (OBS) [1], suppresses the BCG artifacts through 
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channel-wise principal component analysis (PCA). The first few (default 3) principal 

components then are regressed out of the original data on a heartbeat-by-heartbeat basis.

The recent development of MR-compatible EEG hardware with denser channels provides an 

opportunity to acquire BCG-only signal from some channels by insulating them from the 

scalp, and use such knowledge to help denoise EEG for other channels [2]. Because the 

BCG artifact is related to the movement of conductive liquid, e.g., surface blood flow or 

movement of electrodes from breathing or pulsation of blood vessels, we expect adjacent 

channels to share similar BCG behaviors. Based on this first principle, we proposed 

previously [4] to surround each channel with a neighborhood of insulated channels in which 

the BCG artifacts are observable to ensure access to at least one proper prior. This approach, 

though it performs well, has two limitations: (1) one needs to determine which channel to 

examine, and to tailor the neighborhood insulation accordingly; and (2) the large number of 

insulated channels compromises the improved spatial resolution from of a dense EEG net. 

For the purpose of exploring brain activity patterns, in contrast to local probing, a sparse and 

stable insulation pattern is highly desirable.

To this end, we consider two seemingly conflicting aims: to (1) minimize the number of 

insulated channels, and (2) to denoise the EEG signals in the remaining channels with high 

accuracy. In an optimization framework, we jointly seek to insulate an optimal subset of a 

small cardinality, and learn an inference model to estimate the BCG components for the 

other channels based on the insulated readings. We propose a greedy scheme based on 

orthogonal matching pursuit and report its performance in comparison with both the 

benchmark OBS method and two alternative ad hoc insulation schemes.

II. Method

A. Generative model for contaminated EEG data

It is reasonable to assume that the BCG artifacts and the normal brain EEG signals are 

generated from independent sources. The voltage recording at each EEG channel can be 

considered as the linear superposition of these two components, subject to noise 

contamination

(1)

B. Experimental setup

We acquire signals (256-channel, Electrical Geodesic Inc. GES300MR) sampled at 250 Hz 

from both inside and outside the scanner (Siemens Trio MRI). To obtain a BCG-only 

recording at a specific channel location, we insert two additional layer between the scalp and 

the EEG net, as illustrated in Fig. 1. The first one, a plastic insulating layer in contact with 

the scalp, blocks any brain signals; the second, a semi-conductive layer in contact with the 

electrodes, permits collection of any signals not arising from the brain. When the MRI 

gradients are not operating, we collect BCG artifacts (with potential electronic noise) from 

those insulated EEG electrodes inside the scanner.
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C. General inference logic and work flow

We speculate that the correlation among the BCG signals are approximately consistent, even 

though the signal traces themselves are temporally nonstationary. Consider a subset of the 

channels, represented by INS for “insulated”, and the complementary by NINS = SCLP \ 

INS. Then,

(2)

where the first and second dimension of data indicates space (channel indexing) and time 

respectively.

We propose a two-step procedure. In a model-building stage, all channels are insulated for 

the purpose of understanding the correlation relationship - the subset INS is selected and the 

inference weights W in Eq. 2 is estimated. In the acquisition stage, the channels in the subset 

INS remain insulated, while the remainder of the channels measure normal recording of the 

brain signal; their BCG components which are estimated via Eq. 2 with the weights from the 

model-building stage.

D. Channel selection

To preserve the benefit of high-density EEG recordings, we wish to minimize the number of 

channels used for BCG estimation; here we choose a “budget” of insulating |INS| = 20 out of 

the |SCLP| = 256 channels by cross-validation. We devised two ad hoc patterns: a “lines” 

pattern containing 4 groups of 5 channels arranged in a line, as shown in Fig. 2(a); and a 

“patches” pattern containing 4 groups of 5 channels arranged in a circle, as shown in Fig. 

2(b).

As an alternative, we can choose the subset with the best inference performance by solving 

the minimization-minimization problem

(3)

where we use W (INS) to indicate explicitly the dependence of the optimal W on the set 

INS. Note that the inner problem of solving for W given INS is easy, but the outer set 

selection problem is NP-hard. We note also that by introducing an identity map on the 

insulated portion W̃ = [I;W], Eq. 3 can be converted to

(4)

which has a regression goal independent of the insulation set INS.

For practical purposes, we adopt a greedy Orthogonal Matching Pursuit (OMP) approach [3] 

as follows.

1. Equalize X = Xbcg[SCLP, :] so that it has unit ℓ2-norm for each row (channel).

2. Initialize k ← 0; INS(k) ← ∅;W(k) ← 0;
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Where R(k) is the residual signal that is not yet explained by regressing on the 

selected set INS(k).

3. Increment the selected subset : At step k (k ≥ 1), (k − 1) channels have been 

selected from previous steps, and the weight matrix W(k−1) is of dimension SCLP × 

(k − 1). A channel i is added to the INST set if it explains the residual best

Upon this selection, everything is updated:

Continue until |INS| reaches budgeted size.

4. Store the final selected set INS = INS(k) and the inference matrix W = W(k).

E. Reconstruction of BCG and EEG

We report two methods for reconstruction: a direct subtraction approach and an 

optimization-based approach.

1) Direct subtraction—When noise contamination in Eq. 1 is low, one may obtain 

directly an estimate of Xeeg by removing the estimated BCG component from the recorded 

superposition Y:

2) Optimization-based reconstruction—Recently we have developed an optimization-

based [4] scheme for temporally concatenated segments to incorporate the EEG basis 

learned from the out-of-scanner experiment and the group sparse structure of the EEG 

coefficients. At the heart of this approach is the estimation of the coefficient Ceeg for the 

learned basis Be_prior by minimizing

(5)

where Yeeg is noisy observation of the EEG component after subtracting the estimated BCG 

from the contaminated data. The scalar parameter μ balances the contribution from each 
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energy term. Subsequently, the temporally concatenated EEG component is recovered with 

multiplying the learned basis with the estimated EEG coefficients.

III. Results

We report the estimation performance regarding either the BCG reconstruction and the 

ultimate EEG recovery with channel-wise normalized root mean squared error nRMSEi = ‖X. 

− X̂.‖2/|X.‖2, and a spatial collective average over a domain Ω with ave 

. The former will be displayed with tomographic maps for 

visualization.

A. Impact of model building length

For practical purposes, we desire the model building stage to be short. We first assess the 

impact of the model building length on the estimation accuracy. For a total of 13 minutes of 

full scalp BCG-only reading, we use the first few minutes for model building, and the 

remainder to evaluate the estimation accuracy on the full BCG recovery. Table I reports the 

BCG estimation performance as function of the duration of model building. It can be 

observed that (1) the OMP approach offers better estimation of BCG than the other two ad 

hoc patterns; and (2) the duration of model building sample has an identifiable but small 

impact on the estimation performance. This suggests the feasibility of a short model building 

duration, desirable for both efficiency and fast adaptation.

B. Consistency of the inference relationship

Note that because BCG signals is temporally nonstationary, our method relies on the 

consistency of the spatial inference relation instead. We validate this presumption by 

dividing the 13-minute full-scalp BCG signal into 13 segments of one minute each, and 

formulating the inference performance Fig. 3 whose (i, j)th entry contains the ave nRMSE 

for segment i based on the model built on segment j. The errors are uniformly bounded 

above by 10%, indicating general stability of the inference relationship. On the other hand, 

the (sub)diagonal structure suggests mild nonstatioinarity.

C. Performance evaluation on EEG signal reconstruction

To address the ultimate goal of reconstructing the EEG signal, we simulated the 

contaminated data based on Eq. 1 with EEG data acquired outside the scanner and BCG 

component from full-scalp insulation setting at a different time session within the imager. 

This provides us with access to ground-truth that is absent from normal acquisitions for 

calculating nRMSE. We compare the performance among the following three methods.

• OBS: EEGLab standard implementation is used with with 3 principal components.

• Inference + Direct Subtraction: the estimated BCG signals are subtracted from the 

contaminated EEG recordings to yield the reconstructed EEG signals.

• Inference + Optimization: the estimated BCG signals are subtracted from the 

contaminated data to generate (Yeeg = Y − X̂
bcg) in Eq. 5.
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For inference based approaches, the performance corresponding to the ad hoc “lines”, 

“patches” and the proposed OMP pattern is compared. Table II reports the spatial 

distribution and the average nRMSE for full-scalp and the occipital region where the EEG 

signal is of primary interest during rest state under continuous acquisition. The OMP 

approach combined with the optimization based reconstruction offers roughly 13 folds 

improvement from the OBS approach, reducing the ave nRMSE from 241.9% to 19.2% and 

from 114.6% to 8.5% in full scalp and the occipital region respectively.

IV. Discussions and Conclusions

We have developed an experimental platform, and a signal processing module, to 

reconstruct a BCG artifact map for the whole scalp, based on a small subset of insulated 

EEG channels.

The inference relationship is generally consistent, but degrades mildly as the model 

construction and the application are further apart. Fortunately, the OMP-based approach 

yields good estimate quickly (1 min), enabling fast adaptation of the inference map when 

necessary.

Compared to the conventional OBS method, even the ad hoc insulating patterns with direct 

subtraction provides notable improvement of about 6 ̃8 folds, demonstrating the value of 

informative priors obtained from the insulated subset. The OMP approach combined with 

the optimization-based reconstruction method reduces the error further by another fold.

Combined, these methods can do much to mitigate the serious artifacts that appear otherwise 

in combined EEG/fMRI recordings. The practical advantage of doing so may be very large 

and fills the void in BCG artifact removal in continuous recordings, necessary to study the 

tantalizing relationships between BOLD signal and brain EEG rhythms, as well as important 

disease entities such as epilepsy, where there is little opportunity to average EEG events.
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Figure 1. 
Experimental Setup: (a) Two-layer configuration for acquiring BCG artifacts; (b) Inserted 

two layers between the scalp and the EEG electrodes.
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Figure 2. 
Three patterns for insulating channel (solid black dots) selection: (a) the “lines’ pattern, (b) 

the “patches” pattern, and (c) a pattern determined by OMP.

Xia et al. Page 8

Int Workshop Pattern Recognit Neuroimaging. Author manuscript; available in PMC 2015 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Spatial ave nRMSE exhibits (sub)diagonal structure for model built on one segment and 

applied to another segment.
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Table I

BCG estimation error for different channel selection methods, as a function of the model building duration.
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Table II

Tomographic maps of nRMSE (in percentage). The spatially collective ave nRMSE pair correspond to Ω = 

occipital and Ω = whole scalp respectively.
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