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Abstract

Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles 

(AgNPs) are used in consumer products intended for use by children or in the home. Children may 

be especially affected by the normal use of consumer products because of their physiological 

functions, developmental stage, and activities and behaviors. Despite much research to date, 

children’s potential exposures to AgNPs are not well characterized. Our objectives were to 

characterize selected consumer products containing AgNPs and to use the data to estimate a 

child’s potential non-dietary ingestion exposure. We identified and cataloged 165 consumer 

products claiming to contain AgNPs that may be used by or near children or found in the home. 

Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a 

tiered analytical approach to determine silver content, form (particulate or ionic), size, 
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morphology, agglomeration state, and composition. Silver was detected in all products except one 

sippy cup body. Among products in a given category, silver mass contributions were highly 

variable and not always uniformly distributed within products, highlighting the need to sample 

multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this 

data, a child’s potential non-dietary ingestion exposure to AgNPs when drinking milk formula 

from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and 

types of consumer products containing silver and the concentrations of silver in these products in 

order to more accurately predict children’s potential aggregate and cumulative exposures to 

AgNPs.
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Introduction

Silver nanoparticles (AgNP) are the most common nanomaterial found in consumer products 

because of their antifungal, antibacterial, antiviral, and antimicrobial properties. They are 

reportedly being used in many different types of consumer products intended for use by 

children and/or in the home, including baby bottles, pacifiers, plush toys, blankets, clothing, 

paints and coatings, and cleaning products (Benn et al., 2010; Klaine et al., 2008; Morones 

et al., 2005; Project on Emerging Nanotechnologies, 2014; Sun et al., 2005; Wijnhoven et 

al., 2009; Weir et al., 2008; Yoon et al., 2008).

Because many different types of consumer products contain AgNPs, it is important to 

understand their release from products, their potential for human exposure, and their 

environmental fate and effects. Few studies have evaluated the release of AgNPs from 

consumer products found in the residential environment to better understand their potential 

for human exposure. One set of leaching experiments by Quadros et al. (2013) reported that 

among 13 products selected for testing, fabrics, a plush toy, and cleaning products were 

most likely to release silver, resulting in the potential for human exposure.

Most studies reported in the literature have focused on release to the environment and 

ecological effects (Benn and Westerhoff, 2008; Benn et al., 2010; Cleveland et al., 2012; 

Farkas et al., 2011; Hagendorfer et al., 2010; Quadros and Marr, 2011; Som et al., 2011). 

For example, Benn et al. (2010) evaluated the likelihood of several different consumer 

products (shirt, medical mask and cloth, toothpaste, shampoo, detergent, towel, teddy bear, 

two humidifiers) to release AgNPs into environmental media (air, water, soil) when washed 

with water. Silver was released in quantities up to 45 μg Ag/g product, and scanning electron 

microscopy confirmed the presence of AgNPs in most of the products evaluated, as well as 

the wash water. Earlier, Benn and Westerhoff (2008) evaluated the release of silver from 

socks and its fate in waste water treatment plants. Cleveland et al. (2012) evaluated the 

environmental impact of AgNP-containing consumer products (wound dressing, sock, teddy 

bear) on an estuarine mesocosm system. Numerous in vitro studies have shown that AgNPs 

are toxic to viruses (Xiang et al., 201 ), bacteria (Choi and Hu, 2009), aquatic and soil 
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organisms (Griffitt et al., 2008; Hayashi et al., 2012; Navarro et al., 2008; Roh et al., 2009), 

and mouse, rat, and human cells (Arora et al., 2009; Braydich-Stolle et al., 2005; Hussain et 

al., 2005; Mukherjee et al., 2012). A mini-review by de Lima et al. (2012) discussed the in 

vivo cytotoxicity and genotoxicity of AgNPs in different organisms, including Daphnia, fish, 

rats, and mice. Despite these research efforts, children’s potential exposures to AgNPs are 

not well characterized.

Children may be especially affected by the normal use of consumer products designed 

specifically for them (e.g., milk bottles, pacifiers, toys) or used in home environments (e.g., 

cleaners, paints, coatings) due to their physiological functions, developmental stage, and 

activities and behaviors. All of these, as well as other factors, may influence their exposure 

to agents found in their environment (Cohen Hubal et al., 2000). The use of AgNPs in 

consumer products used in the home has resulted in the need to evaluate children’s potential 

exposures to AgNPs through the dermal, ingestion, and inhalation routes of exposure.

In 2010, the U.S. Consumer Product Safety Commission (CPSC) entered into inter-agency 

agreements with the U.S. Environmental Protection Agency (EPA) and the U.S. National 

Institute for Occupational Safety and Health (NIOSH) in response to the Commission’s 

interest in developing reliable methods for quantifying and characterizing the release of 

AgNPs from commercially available products within its jurisdiction. EPA, in turn, teamed 

with Virginia Tech and NIOSH researchers to perform the work reported in this manuscript.

The objectives of this research project were to develop tools, approaches, and protocols to 

characterize selected consumer products containing AgNPs and to use the data to estimate a 

child’s potential non-dietary ingestion exposure to AgNPs. In this manuscript we describe 

the product inventory and a tiered analytical strategy to detect and characterize AgNPs in a 

variety of consumer products.

Materials and methods

Product inventory

Through a search of the Internet, peer-reviewed literature, direct marketing, and The Project 

on Emerging Nanotechnologies database (Project on Emerging Nanotechnologies, 2014), we 

identified and cataloged 165 consumer products claiming to contain AgNPs that may be 

used by or near children or found in the home. Each agency worked independently to create 

a database and then worked with CPSC to prioritize products within CPSC’s jurisdiction that 

should be included for further testing. Once a product was selected and obtained, each 

agency independently used a tiered approach (illustrated in Fig. 1) to answer the following 

questions. For a given product, does it contain silver? If the answer was yes, we then asked 

whether the form was particulate or ionic. If the silver was particulate, we characterized it to 

determine the size, morphology, agglomeration state, and chemical composition. In our 

studies, we used multiple complementary and confirmatory techniques to characterize the 

silver content of textiles, liquids, and plastics, including inductively coupled plasma (ICP) 

spectroscopy (mass and atomic emission), electron microscopy (scanning (SEM)/

transmission (TEM)), energy dispersive X-ray analysis (EDX), electron energy loss 

spectroscopy (EELS), high-angle annular dark-field microscopy (HAADF), UV−vis 
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absorption spectroscopy, dynamic light scattering (DLS), and ion selective electrode (ISE) 

detection (Fig. 1).

We identified 165 consumer products as potentially containing AgNPs. In consultation with 

CPSC, we selected 19 products for further analysis. These products were classified as a 

children’s toy (1), personal care product (1), textiles (8), storage containers (2), household 

cleaning products (5), dietary supplement (1), or control particles (1) for which 

characterization information was provided by the manufacturer. To report results from our 

analyses, the products were grouped by their physical matrix (textile, liquid, or plastic) 

rather than by their intended function. In addition, two products (t-shirt and toothbrush) that 

did not contain AgNPs were included in the analyses for quality control.

Chemical analysis for detection of total silver

Because no legislation in the United States regulates or requires labeling of products to 

disclose the presence of AgNPs, it is possible that some products claiming to be nano-

enabled do not actually contain nanomaterials (and that other products not labeled nano-

enabled could be nano-enabled). Thus, the first step was to verify the presence of silver in 

the selected consumer products. In this study, we selected inductively coupled plasma (ICP) 

spectroscopy to detect the presence of silver in products because it is a robust, sensitive, and 

relatively inexpensive detection method that is widely available. We used thermally assisted 

nitric acid sample digestion followed by quantification using ICP-MS (mass spectrometry) 

and ICP-AES (atomic emission spectroscopy). Details of the analytical techniques used to 

characterize the silver content for each matrix type are summarized in Table 1.

Electron microscopy methods

Silver particle size was measured using the freely available ImageJ software (http://

rsbweb.nih.gov/ij/download.html). A thermal ashing approach was used to isolate particles 

for electron microscopy analysis. Details of the electron microscopy techniques used to 

measure the size of the silver particles for each matrix type are summarized in Table 1.

Results and discussion

Detection of silver in selected consumer products

The total silver content of the selected textile, plastic, and liquid products, as determined by 

ICP, is summarized in Tables 2–4, respectively. Silver was detected in all textile and liquid 

products and in all plastic products, except one sippy cup body. Among products in a given 

category, silver mass contributions were highly variable, as shown by the large 

concentration ranges reported in Tables 2–4. For example, among textile products, the total 

silver content ranged from 4 to 1100 mg/kg (Table 2); and for plastic products, the content 

spanned from <1 to >800 mg/kg (Table 3). The least variation in total silver content was 

observed for the liquid products (Table 4), whose concentrations were similar to those 

reported by the manufacturer.

In general, the total silver content was relatively homogeneous within an individual textile 

product, as shown by the standard deviations reported in Table 2. However, for some textile 
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products (e.g., the gloves), the measured silver content depended upon where a sample was 

collected from the product. For example, for the gloves, silver concentrations were lowest 

on the cuffs (3.8 ± 1.5 mg/kg) and outer side of the thumbs (6.9 ±3.4 mg/kg), and highest on 

the fingertips (593 ±118 mg/kg), inside of the thumbs (985 ±163 mg/kg), and palm (1070 

±140 mg/kg). Silver content of the sippy cup product ranged from <MDL (method detection 

limit) to 24 mg/kg, depending on the part of the cup analyzed. These data illustrate that 

silver content maybe heterogeneously distributed within a product and highlight the need to 

sample multiple regions of a product.

The silver concentration differed by about a factor of two between the wound dressing and 

the 7-day wound dressing, even though both were produced by the same manufacturer. The 

wound dressing is constructed of three layers; the outer layers are polyethylene net coated in 

silver and the middle layer is adsorbent rayon/polyester. Analysis of both silver-containing 

layers yielded 1133 mg/kg. The 7-day wound dressing has five layers with the outer and 

middle interior layers consisting of polyethylene net coated in silver; the other two interior 

layers are adsorbent rayon/polyester. Analysis of just one outer layer from one side of the 7-

day dressing yielded 627 mg/kg.

Among the products analyzed, four were labeled with their nominal (manufacturer provided) 

silver content (Table 4). For these products, a dietary supplement, spray cleaner, disinfecting 

spray, and the commercial silver nanoparticles, the values measured using ICP closely 

matched the nominal silver content on the container labels (e.g., disinfecting spray: 

measured: 25.8 mg/kg; nominal: 20 mg/kg).

Characteristics of silver in selected consumer products

Selected consumer products that contained measurable amounts of total extracted silver 

were further characterized using the suite of techniques identified in Fig. 1 to determine the 

form of silver, and if particulate, to determine its size, morphology, agglomeration state, and 

composition.

Electron microscopy

Figs. 2–8 are electron microscopy images of particles identified as silver by energy 

dispersive X-ray analysis (EDX) in the various selected consumer products. The surfaces of 

the gray fibers in the white fabric of the underwear (Fig. 2a) were coated with a hard 

material that contained many nanoscale particles composed of silver (visible as brighter 

spots on the fiber surface). The average silver particle size was 83 ± 37 nm with an aspect 

ratio of 1.4, indicating semi-spherical AgNP shapes. Fibers in the wet wipes were composed 

of cellulose and had a smooth appearance (Fig. 2b) with clusters of discrete primary 

particles composed of silver and chlorine that were generally larger than 100nm in size. No 

silver particles were identified on surfaces of fibers from either the polyester pants (data not 

shown) or the fingertips of the gloves (Fig. 2c); EDX analysis of fibers from both products 

identified only calcium and sulfur. Images of the wound dressing and 7-day wound dressing 

showed a high density of primary particles aggregated into micron-scale clusters; EDX 

analysis identified these particles as silver (data not shown).
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Some investigators report thermally ashing textiles at 550–600°C to isolate particles for 

electron microscopy analysis (Benn and Westerhoff, 2008; Kulthong et al., 2010). We used 

a thermal ashing approach to break down the glove textile matrix because chemical analysis 

showed it contained silver (Table 2), but SEM/EDX did not reveal silver on the surfaces of 

fibers. Fig. 3 is an SEM micrograph of particles in the ash of glove palm fabric which 

illustrates the presence of sub-micron scale silver particles (composition confirmed by EDX 

analysis). Silver is often added to textiles during finishing or masterbatch processing. 

Finishing (applicable for all fabric types) involves applying the silver by itself or in a matrix 

to the fibers after manufacture (Fig. 2a). In contrast, masterbatch processing is used for 

synthetic materials and involves embedding the silver in the fiber plastic during 

manufacture, a process that results in lower release of silver from a product and, hence, less 

potential for exposure (Stefaniak et al., 2014). In the case of the gloves, inspection of fiber 

surfaces using SEM did not identify any particles; however, ICP analysis indicated variable 

silver concentrations, and silver particles were identified in the textile ash. Collectively, 

these data indicate that for this product, the silver particles were incorporated into the 

polymer fibers, not applied to their surfaces (masterbatch process). As noted by Kulthong et 

al. (2010), it is possible that AgNPs may sinter into larger particles during ashing. To 

determine whether our ashing process was sintering AgNPs into larger particles, we treated 

a control fabric with AgNPs synthesized in Virginia Tech’s laboratory, ashed a sample of 

the treated fabric, and collected EDX spectra of several particles using high-resolution TEM 

imaging. The EDX spectra confirmed the presence of silver. Additionally, comparisons of 

our image with a TEM image of the synthesized AgNPs showed that the single primary 

particles remained unaltered, but the aggregated particles were sintered into larger particles. 

Consequently, the sizes determined from ashed samples (Figs. 3 and 4a and b) cannot be 

interpreted to be representative of the particles in the textiles in situ.

The ashing process was also used to identify AgNPs derived from the plush toy interior 

foam using high-angle annular dark-field (HAADF) microscopy (Fig. 4a). The particles 

were confirmed to be silver by electron energy loss spectroscopy (EELS). AgNPs were also 

observed in a HAADF micrograph of the ashed baby blanket (Fig. 4b). A limited surface 

analysis of the sippy cup rubber ring by SEM/EDX identified one isolated micron-sized 

silver particle. In the absence of additional observations, it is difficult to know if this is 

associated with any intent to enhance the product with AgNPs.

Analysis of the disinfecting spray by TEM showed the presence of individual and 

aggregated nanoscale silver particles (Fig. 5). Analysis of 253 particles using ImageJ 

software yielded AgNPs, ranging in size from 5 to 30 nm, with an average of 13.8 ±0.4 nm 

(clusters not included) (Fig. 6a). Elemental analysis by EDX showed the presence of both 

silver and chlorine in the nanoscale particles (Fig. 6b), suggesting the presence of nanoscale 

silver chloride (AgCl) particles. TEM analysis of the dietary supplement showed slightly 

larger particles that appeared to be slightly aggregated with a sintered appearance (Fig. 7a). 

EDX analysis also showed the presence of silver and chlorine; however, when compared to 

the antivirus spray, the silver features were more prominent than the chlorine features, 

suggesting the presence of both silver and AgCl particles (Fig. 7b).
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Fig. 8a is a TEM micrograph of the AgNPs in the antibacterial spray. Both individual 

nanoparticles and clusters are visible in the micrograph. A total of 302 particles were sized 

from three images; the size of individual AgNPs (clusters were not sized) ranged from 3 to 

75 nm with an average diameter (±standard deviation) of 18.5 ±9.4 nm. The average 

calculated circularity of the individual nanoparticles was 0.92 (a value of 1.0 is equivalent to 

a perfect circle).

UV−vis absorption spectroscopy

UV−vis absorption spectroscopy was used to confirm the SEM size and morphology results 

(Kelly et al., 2003; Zook et al., 2011). AgNPs have a surface plasmon resonance (SPR) 

peak, which causes a peak absorbance in the wavelength range of 390 to 420 nm for 

unagglomerated particles (silver oxide and salts do not exhibit an SPR). As AgNPs increase 

in size, or if the particles agglomerate, the absorption peak will shift toward longer (red) 

wavelengths (Kelly et al., 2003; Zook et al., 2011).

The UV−vis absorption results from the textile products are included in Table 2. Textile 

sections from the inside and outside of the thumbs and palms of the gloves were analyzed, 

with the resultant spectra identical at each location (weak maximum absorption peak at 414–

416 nm). The underwear textile exhibited a peak at 425–430 nm, consistent with the 

presence of AgNPs larger than 50nm in this product. No SPR absorption peak was observed 

in the scan of the wet wipes, consistent with EDX data indicating that silver was present in 

salt form (chloride, iodide, and/or sulfur). Both wound dressing textiles exhibited strong 

broad absorption spectracentered at 593–616 nm; the observed shift in absorption wave-

length confirms that silver particles in these products were not nanoscale.

Four of the six liquid products (disinfecting spray, antibacterial spray, dietary supplement, 

and commercial silver nanoparticles) exhibited absorption maxima at 390–400 nm which 

indicated the presence of AgNPs. As shown in Fig. 8b, the un-sonicated antibacterial spray 

displayed two absorption peaks (one near 400 nm and the other at 650 nm) indicative of un-

agglomerated and agglomerated AgNPs, respectively (Zook et al., 2011). Importantly, if the 

sample preparation step alters the aggregation property being measured, this process must be 

characterized. Ultrasonic agitation is a technique that is commonly used to disperse 

nanoparticles in suspension prior to analysis. Fig. 8b also shows UV−vis spectra for a 1:1 

dilution of antibacterial spray in water after ultrasonic agitation with a probe tip sonicator 

for 30, 40, 50, 60, 70, and 80 min; samples were kept cool during sonication using an ice 

bath. The spectra clearly illustrate that the AgNP agglomerates in the antibacterial spray 

were increasingly dispersed with longer sonication times. After 30min of sonication, the 

intensity of the original (no sonication) absorption peak at 650 nm had disappeared and a 

new peak had formed at 580 nm. After 80 min of sonication, the 580 nm absorption peak 

had largely disappeared and the amount of un-agglomerated AgNPs had increased 

(corresponding to a two-fold increase in absorption intensity at 400 nm).

This bimodal spectrum is consistent with the TEM image which shows a range of particle 

sizes in this product (Fig. 8a). Neither the antivirus spray nor the spray cleaner products 

displayed absorption peaks near 400 nm. The UV−vis spectrum for the antivirus spray 

confirmed the TEM-EDX results, which indicated the presence of AgCl particles. 
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Interestingly, the UV−vis spectrum from the spray cleaner, by itself, was insufficient to 

characterize the form of silver in this product − either the silver in the product was all in 

ionic form or it was present in particulate form as an oxide or salt. This limitation of UV−vis 

absorption spectroscopy illustrates the importance of not relying on a single analytical 

technique for characterization and supports the need for multiple complementary and 

confirmatory analyses.

Ionic silver concentration of selected liquid products

An ion selective electrode (ISE) was used to determine whether any of the liquid products 

contained silver in ionic (Ag+) form and these results are summarized in Table 4. The Ag+ 

concentrations of the disinfecting spray, antibacterial spray, and dietary supplement were 

lower than the total silver concentrations determined using ICP. Hence, these products 

contain silver in both particulate and ionic form. The Ag+ concentration of the spray cleaner, 

29.8 ± 0.6 mg/L, matched the nominal silver concentration reported on the bottle label 

(30mg silver/L). The total silver content of the spray cleaner determined by ICP was similar 

to the Ag+ content measured by the ISE, which indicated that silver in this product was in 

dissolved form (not particulate). Therefore, for the spray cleaner, a combination of ICP, UV

−vis, and ISE analyses was necessary to accurately characterize the form and amount of 

silver in this product.

Hydrodynamic diameter of particles in selected liquid products

The size of particles in the liquid products was analyzed by dynamic light scattering (DLS) 

using cumulants analysis (Nano ZS90, Malvern Instruments, Worcestershire, UK). This 

technique calculates the hydrodynamic equivalent diameter (DH) of particles in suspension. 

The calculated DH values for the liquid products ranged from about 60 nm (disinfecting 

spray, dietary supplement) to 250 nm (antivirus spray) (Table 4). The measured DH is an 

equivalent particle size based on its diffusion in liquid and provides useful information on 

the behavior of nanoparticles in liquids. DH is a measure of the size of the particle core itself 

and the hydration shell surrounding the particle, ligands bound to particle surfaces for 

stabilization (e.g., citrate), and adsorption of ions in the suspending medium. Hence, values 

of DH will always be larger than the size of the dry core particle determined using high 

vacuum techniques such as TEM where this shell is collapsed.

Utility of a tiered approach

We described a tiered approach for detecting and characterizing AgNPs in commercially 

available consumer products. In this study, we chose ICP to provide information on the 

presence and amount of silver in fabric, liquid, and plastic samples (Tables 2–4). ICP is a 

reasonable technique for detecting silver in products because it has advantages of 

widespread availability, low cost, and, with appropriate sample preparation, good sensitivity 

and robustness for a wide range of consumer product materials. In lieu of ICP, other 

researchers have used acid-assisted digestion procedures followed by analysis via 

volumetric titration (Perelshtein et al., 2008) or X-ray fluorescence spectroscopy (Geranio et 

al., 2009) for solids such as textiles. Whether titration or X-ray fluorescence spectroscopy 

provide comparable sensitivities and cost efficiency to ICP for similar consumer product 
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materials is not clear. Compilation of such data would be useful for identifying appropriate 

analytical techniques for the detection of silver (and other metals) in consumer products.

For the characterization step, we used electron microscopy and UV−vis spectroscopy for all 

product matrices, as well as DLS and ISE for liquid products. Electron microscopy is a 

powerful tool used to characterize particle dimensions. Electron microscopy, in conjunction 

with detection techniques such as EDX and EELS (used in this study) or selected area 

electron diffraction (Glover et al., 2011), provide verification that any observed nanoscale 

particles contain silver, as well as information on silver binding states and crystallinity, 

depending on the detector. However, electron microscopy cannot identify AgNPs if they are 

embedded in a product matrix like the synthetic fibers of the gloves (Fig. 2c). UV−vis 

spectroscopy is also a robust technique for characterizing AgNPs in a broad range of 

matrices by measuring SPR absorption; however, this technique is limited to metallic silver 

and will not respond to silver-containing particles with other chemical compositions, such as 

the silver salts found in the wet wipes (Table 2). For textiles, plastics, and other types of 

solids, investigators have used atomic force microscopy (Glover et al., 2011; MacCuspie et 

al., 2011), X-ray diffraction (Perelshtein et al., 2008; Sotiriou and Pratsinis, 2010; Rogers et 

al., 2012), and X-ray photoelectron spectroscopy (Levard et al., 2011). Although these 

techniques can yield detailed speciation information, this level of detail was outside the 

scope of the current study.

For liquid products, we used ISE to selectively measure free silver ion concentrations (Table 

4). Use of ISE in conjunction with ICP provided information on the fraction of total silver in 

a product that was in free ion form versus particulate-associated form. Note that ICP can be 

used as a standalone technique to selectively quantify silver ions in liquids provided an 

appropriate fractionation protocol is used to remove particulate silver from the sample prior 

to analysis. Also, ISE only measures free silver ion in solution and will not account for any 

silver ions that are adsorbed to particle surfaces. DLS is another useful technique for liquid 

characterization; however, it is not chemical-specific, so additional complementary analyses 

are needed to verify the presence of silver. In addition to ISE and DLS, there are several 

other techniques that, with appropriate sample preparation, are useful for characterizing 

silver in liquids, including atomic force microscopy (Vasilev et al., 2010; MacCuspie et al., 

2011), X-ray diffraction (Liu et al., 2010), nanoparticle tracking analysis (Geranio et al., 

2009; Farkas et al., 2011; MacCuspie et al., 2011), zeta potential (El Badawy et al., 2011; 

Levard et al., 2011), small-angle X-ray scattering (MacCuspie et al., 2011), and atomic 

stripping voltammetry (Morones et al., 2005). Among these techniques, only X-ray 

diffraction, small-angle X-ray scattering, and atomic stripping voltammetry are chemical-

specific; for all others, a complementary technique capable of identifying silver is necessary.

Example of children’s potential exposures to AgNPs

We used the data reported here and in Quadros et al. (2013) to illustrate a child’s potential 

non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup. 

This example is intended to show one approach and the associated data inputs needed to 

estimate a child’s potential non-dietary ingestion exposure. With the limited data presented 

in this manuscript, it is not possible to make conclusions on what the non-dietary ingestion 
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exposure estimate means. However, this approach may have utility for complex datasets 

containing data on several consumer products where the data are presented with an intended 

purpose of estimating potential exposures.

For each microactivity resulting in non-dietary ingestion, exposure over a 24-h period can be 

defined as:

(1)

where x = sippy cup spout cover; End = non-dietary ingestion exposure from a specific 

mouthing event over a 24-h period [μg/day]; Cx = total AgNP loading in x [μg/cm2]; TEx = 

transfer efficiency, fraction transferred from x to mouth [unitless]; SAx = surface area of x 

that is mouthed [cm2/event]; EF = frequency of mouthing events over a 24-h period [event/

day] (Tulve et al., 2002). The microenvironment is the kitchen of a residential dwelling 

where a 24-month-old female child (weight = 13.5 kg) spends 1 h playing and drinking from 

her sippy cup (μe.t = K.1 h). In this example, the concentration of AgNPs leached from the 

sippy cup spout cover is 0.159 μg Ag/cm2 [0.93 mg silver/kg plastic (Quadros et al., 2013) × 

4.104 g plastic/spout cover ×1 kg/1000 g × 1/24 cm2 (area of spout cover) × 1000 μg/1 g]. 

Additionally, the following assumptions are made: (1) the child’s mouth comes into contact 

with 90% of the spout cover of the sippy cup during any mouthing event [SAspout cover = 24 

cm2 × 0.9 = 21.6cm2/event]; (2) the amount of AgNPs leached from the spout of the sippy 

cup are constant as a function of time; and (3) TEspout cover is 50%. Using data available in 

Tulve et al. (2002), EF is 12 events/h. The child’s potential exposure is computed as 

follows:

Taking into account the time in the microenvironment and the child’s body mass, her 

potential non-dietary ingestion exposure is:

To obtain an estimate of this child’s total non-dietary ingestion exposure to Ag, potential 

exposure from all activities in all microenvironments where she spends time would have to 

be computed and summed. To place this example estimate of a child’s Ag exposure/intake 

from drinking milk formula from the sippy cup into context, we can estimate what the 

exposure would be if the cup contents were at a concentration of 0.1 mg/L, the EPA 

National Secondary Drinking Water Standard (a suggested non-enforceable guideline level) 

(40 CFR 143.3). At this concentration, the estimated intake of Ag by a 24-month-old female 

child ingesting 23 mL/kg-d of drinking water (U.S. EPA, 2011) would be 2.3 μg Ag/kg [0.1 

mg Ag/L × 23 mL/kg-d × 1 d × 1 L/1000 mL × 1000 μg/1 mg]. Similar approaches can be 

used to estimate potential exposures to AgNPs for other vulnerable groups (e.g., pregnant 

women, adults with pre-existing diseases). More research is needed to understand the 
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number and types of consumer products containing silver and the concentrations of silver in 

these products in order to more accurately predict children’s potential exposures. As 

described in this manuscript, this tiered approach for detecting and characterizing AgNPs in 

commercially available consumer products is important for characterizing products in the 

marketplace to understand the potential for exposure to AgNPs. While these data are limited, 

they suggest that as more nanotechnology-enabled products are introduced into the 

marketplace, aggregate and cumulative exposures to silver could become a concern.

Conclusions

Recent advances in technology have allowed the production and incorporation of nanosilver 

particles into a range of consumer products, including products intended for use by or near 

children or used in the home. In this manuscript, we described the product inventory and a 

tiered analytical strategy to detect and characterize AgNPs in a variety of consumer 

products. To evaluate our objectives, we selected consumer products claiming to contain 

AgNPs that may be used by or near children or in the home and that pose a potential 

exposure risk; and we tested selected products for the presence, release (Quadros et al., 

2013), and speciation of silver in selected items from three product classes: fabrics, liquids, 

and plastics. We used the data to illustrate a child’s potential non-dietary ingestion exposure 

to AgNPs when drinking milk formula from a sippy cup. From a market survey, 165 

products were identified. Of these, 19 were selected for further analyses. The experimental 

approach used to understand whether nanosilver may be present involved the following 

steps: measurement of total extractable silver; determination of the presence of nanosilver 

using electron microscopy; and analysis using selected confirmatory and complementary 

techniques.
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Fig. 1. 
Tiered approach for the analysis of consumer products for AgNPs.
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Fig. 2. 
SEM micrographs and EDX spectra of fibers from: (a) underwear, (b) wet wipes, and (c) 

fingertip of gloves (note variation in scale bars). EDX spectra were obtained from random 

points within the field of view of the images.
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Fig. 3. 
SEM micrograph and EDX spectrum of ashed glove palm fabric. Particles were composed 

of silver and titanium, which was probably used as an inert carrier material for the silver 

metal particles.
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Fig. 4. 
(a) HAADF micrograph of ashed sample from the interior foam of the plush toy. (b) 

HAADF micrograph of ashed sample from the baby blanket (detail showing one 40nm 

AgNP). The sample is composed of many small (6–15 nm) silicon dioxide particles, 

probably a by product from the ashing of the fabric, and larger (~ 40 nm) multifaceted 

AgNPs.
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Fig. 5. 
TEM micrograph of the disinfecting spray.
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Fig. 6. 
(a) TEM micrograph of antivirus spray. (b) TEM micrograph and EDX spectrum of the 

antivirus spray collected from the central particle indicated by the dark ring in the image.
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Fig. 7. 
(a) TEM micrograph of the dietary supplement. (b) TEM micrograph and EDX spectrum of 

the dietary supplement.
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Fig. 8. 
Antibacterial spray. (a) TEM micrograph illustrating both individual and agglomerated 

AgNPs (dark spots). (b) UV−vis absorption spectra indicating the effect of sonication time 

on agglomerate dispersion.
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Table 1

Summary of detection and characterization methods used to evaluate silver content of consumer products.

Matrix Techniqueb Sample preparation and analysisa

EPA NIOSH

Textile

ICP

• Cut textile sample from fabric and weigh 
(500–1000 mg, air-dry mass)

• Submerge sample in 5 mL HNO3 

(concentrated, 69–71%, w/w) and 5 mL 
ultrapure water

• Cover beaker with watch glass, heat to ~ 
100°C

• Digest in HNO3

• Cool, add 3 mL H2O2 (30%)

• Heat to ~100°C, add H2O2 until effervescence 
is minimal

• Cool, filter through glass fiber filter

• Dilute with ultrapure water

• Analysis by ICP-MS

• Cut textile sample from garment and weigh

• Digest with 15.6 M HNO3 at 95 °C for 
70min

• Cool, add water + 30% H2O2

• Heat, add H2O2 until effervescence stops

• Continue to heat for 120 min

• Cool, add 12.1 M HCl

• Heat for 10 min

• Cool, dilute with di water

• Analysis by ICP-AES

• MDL = 0.7mg Ag/kg textile

SEM

• Cut small piece of fabric from product

• Adhere fabric to SEM stub with carbon tape

• Ash piece of material and dust onto carbon 
tape on SEM stub

• Sputter coat with ~50 Å gold

• Image at 10 kV accelerating voltage

• Remove individual fibers from garment 
using tweezers

• Mount fibers on carbon tape

• Sputter coat with ~50 Å gold/palladium

• Image at 20 kV accelerating voltage

• Cut textile sample from garment

• Ash at 350°C for 3 h in alumina crucible

• Disperse residue in deionized water

• Pass aliquot through 0.4 μm pore TEPC 
filter

• Section filter, mount on carbon tape

• Sputter coat with ~ 50 Å gold/palladium

• Image at 20 kV accelerating voltage

TEM

• Cut small piece of fabric from product

• Ash at <550 °C in muffle furnace

• Dust ashed sample onto carbon-coated TEM 
grids

• Suspend ashed sample in distilled water, 
immerse in sonicating bath, evaporate 
droplets on carbon-coated TEM grids

• Image at 120 kV using TEM

-

UV–vis

• Cut textile sample from garment

• Place sample in integrating sphere

• Measure absorption spectra from 350 to 700 
nm

• Cut textile sample from garment

• Place sample in integrating sphere

• Measure absorption spectra from 350 to 
700 nm
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Matrix Techniqueb Sample preparation and analysisa

EPA NIOSH

Liquids

ICP

• Gently shake product in original container

• Withdraw sample of known volume

• Dilute 1:10 with ultrapure water

• Dilute 1:100 with ultrapure water, add NHO3 

to acidify

• Analysis by ICP-MS

• Mix product and withdraw sample of 
known volume

• Digest as described for textiles

• Analysis by ICP-AES

• MDL = 0.001 mg Ag/L

SEM

- • Mix product

• Pass aliquot through 0.1 μm pore TEPC 
filter

• Section filter, mount on carbon tape

• Sputter coat with ~ 50 Å gold/palladium

• Image at 20 kV accelerating voltage

TEM

• Place 10 μL droplet onto carbon-coated grid

• Dry TEM grid in desiccator

• Repeat until total sample volume reaches 20 
μL

• Image at 120 kV accelerating voltage

• Mix product

• Place 4 μL drop onto carbon-coated grid

• Air dry

• Image at 80 kV accelerating voltage

UV–vis

• Gently shake product in original container

• Dilute liquid with deionized water (as 
necessary)

• Dispense sample in 1-cm path length plastic 
cuvette

• Measure absorption spectra from 350 to 700 
nm

• Mix product

• Dilute liquid with deionized water (as 
necessary)

• Dispense sample in 1-cm path length plastic 
cuvette

• Measure absorption spectra from 350 to 
700 nm

DLS

• Gently shake product in original container

• Pass sample through 1 μm hydrophilic Teflon 
filter

• Thermally equilibrate sample in instrument, 
analyze

• Mix product

• Add aliquot to 10 mM NaCl solution

• Pass sample through 0.7 μm membrane 
filter

• Thermally equilibrate sample in instrument, 
analyze

ISE

- • Mix product

• Dilute aliquot with deionized water (as 
necessary)

• Add ionic strength adjuster (5 M 
NaNO3)1:50

• MDL = 0.015 mg/L

Plastics ICP

• Cut sample from plastic and weigh (500–
1000 mg, air-dry mass)

• Digest as described for textiles

-

Int J Hyg Environ Health. Author manuscript; available in PMC 2015 October 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tulve et al. Page 24

Matrix Techniqueb Sample preparation and analysisa

EPA NIOSH

• Analysis by ICP-MS

SEM

• Cut small piece from plastic

• Prepare for microscopy as described for 
textiles

-

a
HNO3, nitric acid; H2O2, hydrogen peroxide; HCl, hydrochloric acid; MDL, method detection limit; TEPC, track-etched polycarbonate; NaCl, 

sodium chloride; NaNO3, sodium nitrate; -, matrix not evaluated.

b
ICP, inductively coupled plasma (AES, atomic emission spectroscopy; MS, mass spectroscopy); SEM, scanning electron microscopy; TEM, 

transmission electron microscopy; UV-vis, ultraviolet-visible absorption spectroscopy; DLS, dynamic light scattering (photon correlation 
spectroscopy); ISE, ion selective electrode.
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