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Abstract

The statistics of many MR magnitude images are described by the non-central chi (NCC) family 

of probability distributions, which includes the Rician distribution as a special case. These 

distributions have complicated negative log-likelihoods that are nontrivial to optimize. This paper 

describes a novel majorize-minimize framework for NCC data that allows penalized maximum 

likelihood estimates to be obtained by solving a series of much simpler regularized least-squares 

surrogate problems. The proposed framework is general and can be useful in a range of 

applications. We illustrate the potential advantages of the framework with real and simulated data 

in two contexts: 1) MR image denoising and 2) diffusion profile estimation in high angular 

resolution diffusion MRI. The proposed approach is shown to yield improved results compared to 

methods that model the noise statistics inaccurately and faster computation relative to commonly-

used nonlinear optimization techniques.
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I. Introduction

This paper considers model-based statistical estimation involving noisy images with 

statistics described by a non-central chi (NCC) distribution. Model-based statistical 

estimation methods are becoming increasingly prevalent in MRI [1], due to enhanced 

capabilities for accurately modeling MRI data acquisition physics and new possibilities for 

incorporating prior information into image reconstruction and parameter estimation. These 

approaches have proved useful in many applications, including reconstruction from 

sparsely-sampled data [2]–[9], image denoising [10]–[20], quantitative parameter estimation 

[21]–[30], and artifact correction [31]–[34].

Accurate noise modeling is essential for model-based statistical estimation. It is well known 

that thermal noise in single-channel complex-valued MRI k-space data samples can be 
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modeled as independent and identically distributed (i.i.d.) zero-mean Gaussian with equal 

variances in the real and imaginary parts [35], [36]. For this noise model, conventional 

maximum likelihood (ML) and penalized ML (PML) estimation reduce to solving simple 

least-squares (LS) or regularized LS problems. Due to the prevalence and simplicity of 

regularized LS cost functions, a growing set of fast and efficient algorithms exist that 

specifically target these optimization problems.

However, while the noise in MRI k-space data is Gaussian, the images retrieved from MRI 

scanners frequently have non-Gaussian statistics, primarily due to nonlinear processing 

operations that are applied when imaging data is reconstructed and saved [37], [38]. This 

work focuses on the NCC distributions, which arise when taking the root sum-of-squares 

(rSoS) of multiple Gaussian-distributed complex images. The rSoS operation is frequently 

used for combining multiple MRI images acquired from a phased-array of receiver coils 

[39]. An important special case of the NCC distribution is the Rician distribution, which 

occurs when taking the magnitude (i.e., discarding the phase) of a Gaussian image [35], 

[40]–[43].

NCC distributions are well-approximated as Gaussian when the signal-to-noise ratio (SNR) 

is high [39], [43], and LS-based methods are often applied to NCC data in the high-SNR 

regime with negligible error. However, low-SNR images obeying an NCC distribution 

behave quite differently. Specifically, NCC noise perturbations have nonzero mean, leading 

to a bias in signal intensity. In addition, the bias and variance of NCC images depend 

nonlinearly on the (spatially-varying) noiseless signal amplitude. It has been observed in a 

variety of contexts that treating NCC data as if it were Gaussian can substantially degrade 

performance [10]–[20], [22]–[30], [33].

While there are clear advantages to accurate noise modeling, the optimization of NCC-based 

PML cost functions is considerably more complicated than solving a regularized LS 

problem. Previous methods for optimizing NCC negative log-likelihoods (NLLs) have relied 

on the use of generic numerical optimization techniques [44] such as the Newton-Raphson 

[22], quasi-Newton [20], Nelder-Mead [23], brute-force grid search [33], and Levenberg-

Marquardt methods [25], [29]. However, as demonstrated in this work, the NLL for the 

NCC distribution is non-convex, meaning that many of these numerical optimization 

methods might not converge to the global optimum. In addition, the repeated evaluation of 

the NLL and its gradient requires computationally-expensive Bessel function evaluations, 

which can slow the optimization.

Partly due to computational issues, suboptimal approximations of ML and PML estimation 

are still widespread. Gaussian approximation is quite common, and there are a number of 

methods that are designed to reduce the noise bias without directly optimizing the NCC 

NLL. Examples include approximately transforming the NCC distribution to a Gaussian 

distribution [26], [30] and various simplified forms of nonlinear bias compensation [10], 

[12], [14], [18], [28], [41]–[43]. While these simplifications improve computation speed, 

performance is typically worse than would be obtained from the statistically-optimal ML or 

PML solutions.
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This work introduces a novel and simple quadratic tangent majorant for the NCC 

distribution, which is used to develop a general majorize-minimize (MM) [45] optimization 

framework for solving NCC PML estimation problems. The primary advantage of this 

framewok is that the complicated NCC PML optimization problem can be replaced with a 

series of easy-to-solve regularized LS problems. The ubiquity of efficient algorithms for 

solving regularized LS problems makes our approach particularly attractive. Preliminary 

versions of portions of this work were originally presented in [46], [47].

During the preparation of [46], we discovered existing methods that can be obtained as 

special cases of our general MM-based optimization framework [48], [49]. Solo and Noh 

[48] derived an expectation maximization (EM) algorithm for activation detection in Rician 

functional MRI data. Zhu et al. [49] derived a similar EM algorithm for estimating the 

parameters of nonlinear image contrast models from Rician data. In both cases, tangent 

majorants for the Rician distribution were implicitly obtained in the expectation step of the 

EM algorithm by treating the missing phase information as latent variables.

Interestingly, our MM framework yields identical optimization algorithms when applied to 

the same cost functions considered in previous EM-based work, though our majorants are 

derived using different methods that have distinct advantages. For example, the previous 

EM algorithms were only derived for the Rician distribution, not for the broader class of 

NCC distributions that we consider.1 In addition, the EM derivations provide limited insight 

into the structure of the NCC NLL, while our derivations directly demonstrate that the NCC 

NLL is generally not a convex function. Finally, the previous work was narrowly focused on 

specific applications and only considered ML estimation. In contrast, our proposed 

framework can be applied generally to arbitrary ML and PML cost functions. In the context 

of PML estimation, a key contribution of our work is that the rapidly expanding range of 

regularized LS optimization algorithms can now be directly used to efficiently solve NCC-

based PML problems. This paper also provides the first empirical evidence that statistically 

optimal approaches can have substantial advantages relative to some of the simplified noise 

modeling strategies [41], [43] used in previous PML scenarios.

This paper is organized as follows. After establishing notation and background in Sec. II, 

our proposed majorants are presented in Sec. III. Next, Secs. IV and V respectively illustrate 

the proposed MM approach in the context of regularized image denoising and regularized 

diffusion profile estimation in high angular resolution diffusion imaging (HARDI). 

Discussion and conclusions are provided in Secs. VI and VII.

II. Notation and Background

A. ML and PML Estimation

Model-based statistical estimation addresses the following problem: find a good estimate 

of an unknown length-P parameter vector of interest x, given a length-M vector of measured 

1If applying the EM approach to a general (non-Rician) NCC distribution, it is nontrivial to compute the integrals involved in the 
expectation step due to complicated expressions involving a large number of latent phase variables.
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data y and a likelihood function p (y|x) describing the probability of y conditioned on x. The 

classical PML estimator is obtained by choosing  according to

(1)

where ℒ (y|x) = − ln p (y|x) is the NLL and R(x) is a user-defined regularizing penalty. ML 

is obtained when R (x) ≡ 0.

B. The Gaussian and NCC Distributions

With Gaussian noise, data measurement can be modeled as

(2)

where the  operator is the ideal (noiseless) mapping between x and y, and e is a length-M 

zero-mean i.i.d. complex Gaussian noise vector. Assuming the real and imaginary parts of 

the noise each have variance σ2, the NLL is given by

(3)

where we use the notation [a]j to denote the jth entry of the vector a, ‖ · ‖2 is the standard 

Euclidean norm, and we have neglected an additive constant. Note that (1) with this NLL is 

a simple regularized LS optimization problem.

If the phase information from (2) were missing, i.e.,

(4)

then the data vector y follows the Rician distribution. The NLL for this case is given 

(neglecting additive constants) by

(5)

where IN(·) is the Nth-order modified Bessel function of the first kind.

In the rSoS scenario, the data model extends to

(6)
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where N is the number of measurements being combined by rSoS (e.g., the number of coils 

in phased-array coil combination [39]), and the n operators and en vectors are the natural 

generalizations of the  operator and e vector to the rSoS context. Assuming that the en 

vectors are i.i.d. with the same statistical characteristics as e, then y will follow an NCC 

distribution with NLL given (neglecting additive constants) by

(7)

where (x) is a length-M vector with entries . Note that 

ℒncc (y|x) reduces to ℒrice (y|x) when N = 1.

The likelihood for the NCC distributions is 0 (and the NLL will be infinite) whenever (x) 

is negative, since magnitude and rSoS data can never be negative. Therefore, when solving 

(1) for NCC distributions, it is necessary to restrict optimization to the set Ω = {x : [  (x)]m 

≥ 0, m = 1, 2, …, M}.

C. Majorize-Minimize Algorithms

Consider an arbitrary cost function J(x) that we wish to minimize. Instead of directly 

minimizing J(x), the MM approach [45] sequentially minimizes surrogate cost functions 

 known as tangent majorants. This can greatly accelerate computations if the 

 are easier to optimize than J(x). The MM procedure is described by Alg. 1.

Algorithm 1 Majorize-Minimize Procedure

1) Initialize .

2) for i = 0, 1, 2, … until convergence

 Set .

To be a valid tangent majorant, each  should satisfy  for ∀x, with 

. Under these conditions, the iterates  are guaranteed to monoton-ically 

decrease the original cost function, i.e., . See [50] for a detailed 

description of MM convergence.

III. Quadratic Tangent Majorants for ℒncc (y|x)

With the preliminaries out of the way, we are now prepared to present the main theoretical 

results of this paper:

Theorem 1. For x ∈ Ω, the function ℒncc (y|x) defined in (7) has the quadratic tangent 

majorant
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(8)

where  is the length-M vector defined by

(9)

and Ci is an iteration-dependent constant.

For practical implementation, note that  for N ≥ 1.

Combining Theorem 1 with the MM procedure leads to Alg. 2, our proposed MM-based 

estimation algorithm.

Algorithm 2 MM Algorithm for NCC Data

1) Initialize .

2) for i = 0, 1, 2, … until convergence

 Set .

Algorithm 2 involves the iterative solution of regularized LS problems. As a result, our 

proposed MM framework enables us to directly leverage existing fast regularized LS 

algorithms.

Our proof of Theorem 1 makes use of another result that is of independent interest:

Theorem 2. Let N be a non-negative integer and α ∈ ℛ be a positive scalar. Then −ln (x−N 

IN (αx)) is strictly concave.

Theorem 2 implies that ℒncc (y|x) is generally not a convex function of x, since (7) is the 

linear combination of strictly-convex quadratic terms and strictly-concave negative log-

Bessel functions. This accentuates the potential difficulties in optimizing the NCC NLL, and 

to the best of our knowledge, the convexity of this NLL has not been previously examined.

The fact that ℒncc (y|x) is the sum of strictly-convex and strictly-concave terms also implies 

that we could use the concave-convex procedure [51] to minimize NCC NLLs.2 It turns out 

that applying this procedure to NCC-based ML optimization leads to exactly the same 

iterations as Alg. 2. As a result, the convergence theory for the concave-convex procedure 

[51] can also have relevance to our MM framework.

2Thanks to Dr. D. Ruan for pointing out this connection.
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Proofs of Theorems 1 and 2 are given in the Supplementary Material.3 The following two 

sections illustrate and evaluate our general MM framework in different application contexts.

IV. Example Application: Denoising

Our first example concerns the well-studied problem of denoising MR magnitude and rSoS 

images [10]–[20]. Specifically, we are given the voxels of a noisy NCC image y, and are 

asked to find an estimate  of the noiseless image. For this case,  is an identity operator, 

and the MM iteration is:

(10)

For simplicity, we show 2D examples with R(x) chosen as the edge-preserving total 

variation (TV) penalty [52]

(11)

where Dh and Dv are sparse matrices that respectively compute first-order finite differences 

between adjacent voxels (approximating the image derivative) along the horizontal and 

vertical directions, and λ is a regularization parameter.4

As enabled by our new MM framework, we solve (10) using a modern fast algorithm 

designed for solving LS problems with TV regularization. Specifically, we use the fast first-

order primal-dual proximal algorithm of Chambolle and Pock [56] to solve (10) at each 

iteration. Note that we can neglect the positivity constraint x ≥ 0 when solving (10), because 

the unconstrained solution will always be positive (y and  are always positive, and the 

regularization will have the effect of locally-smoothing these positive images). The results 

we show later in this section are based on the initialization .

For reference, we compare our PML results to those obtained using common non-ML 

regularization strategies. Specifically, we compare against:

• Gaussian Approximation (GA). We solve:

(12)

which we obtain by replacing the true NCC NLL with the LS function appropriate 

for Gaussian noise [43].

• Squaring Transformation (ST). We solve:

3Supplementary materials are downloadable from http://ieeexplore.ieee.org
4Note that other popular denoising methods such as non-local means (NLM) [53] are also easily incorporated into our MM framework 
using the regularization frameworks described in [54], [55].
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(13)

where y2 denotes the sum-of-squares image obtained by squaring each element of 

the rSoS image y. This choice is motivated by the fact that y2 has a constant, 

signal-independent noise bias equal to 2Nσ2. After obtaining , we “debias” it 

(subtracting 2Nσ2 and setting negative elements to 0) and obtain a denoised image 

 by taking the elementwise square-root. Many existing non-ML denoising 

methods are based on this kind of approach, e.g., [10], [12], [14], [18], [41]–[43].

A. Simulations

The proposed approach was first evaluated with simulated data. Complex white Gaussian 

noise was added to a synthetic phantom containing features with different intensities and 

different spatial scales. The noiseless synthetic image is not piecewise constant, and thus is 

not perfectly suited to TV.

Noisy Rician magnitude images (N = 1) and NCC rSoS images (N = 4) were synthesized at 

several different SNRs (SNR = 1, 2, 5, and 10, with SNR defined as the ratio between the 

median value of the noiseless single-channel image magnitude and σ). TV denoising was 

performed using the MM, GA, and ST approaches described above, using perfect knowledge 

of the true value of σ2. Five different noise realizations were generated at each SNR. For 

each method and each SNR, the TV regularization parameter λ was optimized to yield the 

smallest possible error with respect to the gold-standard noiseless image. Error was 

measured using the normalized root mean-squared error (NRMSE) metric, defined as 

, where  and xgold are the estimated and gold-standard 

images, respectively. NRMSE was also used to quantify the performance of the different 

denoising methods. Since NRMSE has certain limitations [57], we also performed 

qualitative visual comparisons.

Quantitative results from these simulations are shown in Fig. 1, while qualitative visual 

results are shown in Figs. 2 and 3 and Supplementary Figs. S1 and S25 (Figs. 2 and 3 show 

the Rician case, while Supplementary Figs. S1 and S2 show the rSoS case with N = 4). 

These results show that for all SNRs, the MM and ST images have substantially less error 

and bias than the GA images. This is not surprising because GA is based on an inaccurate 

noise model that completely neglects the noise bias, while MM and ST both incorporate 

information about the noise bias. Comparing MM and ST, both methods are effective at 

removing noise bias, though the MM results have smaller NRMSE values. This is also not 

surprising, since MM optimally models the full noise distribution, while the ST approach 

only models the bias.

While the NRMSE differences between MM and ST are relatively small in this simulation, 

the denoised images generated by these two approaches have an important qualitative 

5Supplementary materials are downloadable from http://ieeexplore.ieee.org
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difference. Specifically, we observe from Fig. 2 and Supplementary Fig. S1 that the ST 

approach smooths low-intensity image regions more strongly than high-intensity regions 

(i.e., image features in low-intensity regions look more blurred, while high-intensity image 

regions still have a speckled noisy appearance), while the MM approach appears to smooth 

all regions of the image in a scale-invariant manner. This behavior is especially evident at 

low SNRs, as highlighted in Supplementary Fig. S3 (which shows zoomed regions from Fig. 

2). The uniform smoothing achieved by the MM approach should be expected, since TV is 

theoretically a scale-invariant regularization function [58]. On the other hand, applying TV 

leads to scale-variant behavior in the ST approach because the squaring and square-rooting 

operations used in ST are not scale-invariant.

B. Real Data

The proposed approach was also evaluated with real Rician and rSoS brain data. A high-

resolution MPRAGE image (0.5×0.5×0.8 mm3 voxels with a matrix size of 384×384×192) 

was acquired with a 3T scanner and a 32-channel head coil. Fully-sampled raw k-space data 

was obtained for five different repetitions of the acquisition, and images were reconstructed 

using the standard Fourier transform. Denoising experiments were performed on a single-

coil magnitude image and an rSoS image generated from the first repetition, while all five 

datasets were complex averaged to generate a “noiseless” gold standard reference images. 

We applied the unregularized ST approach to reduce any noise bias remaining in the gold 

standard images.

The proposed approach requires prior knowledge of σ2 and N. We performed ML estimation 

of σ2 based on data from background regions of the noisy images. Due to noise correlations 

between the different receiver coil elements in an rSoS image, the parameter N of the NCC 

distribution should not be chosen as the number of coils unless the receiver channels are 

prewhitened [18], [38]. As a result, we also performed ML estimation of N for the rSoS data, 

yielding an estimated value of N = 9. As shown in Supplementary Fig. S4, our estimated 

noise models match the empirical noise distributions quite accurately.

As in the simulations, TV denoising was performed using the MM, GA, and ST approaches, 

with regularization parameters for each method chosen to achieve a minimum NRMSE. 

Quantitative and qualitative results for Rician denoising are shown in Figs. 4 and 5, while 

rSoS results are shown in Supplementary Figs. S5 and S6. Consistent with the simulation 

results, both MM and ST substantially outperform the GA approach. In addition, MM yields 

smaller NRMSE and more uniform spatial smoothing than ST.

V. Example Application: HARDI Estimation

Our second example involves the estimation of diffusion profiles from HARDI data [59], 

[60]. Briefly,6 HARDI acquisitions sample the diffusion-weighted MR signal on the surface 

of a sphere, with one set of spherical samples available for each imaging voxel. It is 

common to fit a spherical harmonic representation to this data to yield a continuous 

representation of the diffusion profile for each voxel [62]– [64]. The spherical harmonic 

6See [61] for a detailed discussion of this problem and its typical solutions.
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basis for signals defined on the sphere is analogous to the Fourier series basis for periodic 

functions, and provides a convenient orthonormal basis that is widely used in a variety of 

applications. In HARDI, the fitted spherical harmonic representation can then be used to 

estimate the orientations of fiber structures within each voxel (useful for tracking white 

matter or muscle fibers through a process called tractography), and to estimate quantitative 

diffusion characteristics for each voxel like mean diffusivity (MD) and generalized 

fractional anisotropy (GFA). Parameters like MD and GFA provide insight into tissue 

microstructure and biomarkers for disease [60].

The use of magnitude images is especially prevalent in diffusion MRI, due to the fact that 

image phase is highly sensitive to subject motion in the presence of diffusion encoding. This 

leads to phase inconsistencies for in vivo data. In addition, the physics of the diffusion 

encoding process also means that diffusion MR images typically have low-SNR [17], [19], 

[20], [24], [25]. This combination of characteristics means that PML-based NCC modeling 

should be particularly attractive. However, most current HARDI studies denoise the data 

prior to estimation [17], [19], [20], and PML estimation has only been investigated to a 

limited extent [24]. Ref. [24] concluded that the PML approach is generally too 

computationally expensive to be worthwhile relative to simpler non-ML debiasing 

approaches. In this section, we demonstrate the potential value offered by our MM 

framework to enable computationally efficient PML HARDI estimation. It should be noted 

that [24] solved a maximum entropy spherical deconvolution problem for HARDI data, 

which is related but not identical to the more-common formulation based on Laplace-

Beltrami regularized spherical harmonic estimation problem described below. To the best of 

our knowledge, this paper is the first work to evaluate PML methods for this formulation of 

the problem.

Given a data vector y of diffusion profile samples from a single voxel, commonly-used 

fitting procedures [61]–[64] estimate the spherical harmonic representation by solving

(14)

where the columns of the matrix A correspond to sampled versions of the truncated 

spherical harmonic basis functions,7 x is the unknown vector of spherical harmonic 

coefficients, λ is a regulation parameter, and L is either the identity matrix (to penalize 

signals with large ℓ2-norm [63]) or the Laplace-Beltrami operator (to penalize non-smooth 

signals [64]).

Comparing with (1), Eq. (14) can be viewed as a GA-based form of spherical harmonic 

estimation. This GA estimator is easily computed using the noniterative linear LS solution 

[64]

7In our implementation, we use the modified (real-valued and symmetric) spherical harmonic basis functions proposed in [64].
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(15)

Instead of GA estimation, we investigate the use of NCC PML estimation as enabled by our 

proposed MM framework, by iterating according to:

(16)

Equation. (16) has the simple solution  when  is non-negative. When non-

negativity is violated, we solve (16) as a standard quadratic programming problem using 

Matlab's quadprog function. The results we show later in this section are initialized by 

setting  equal to the non-negativity constrained solution to (14).

Our proposed MM approach was compared against the GA and ST approaches. For this 

problem, the ST approach debiases each measurement sample independently by subtracting 

the noise bias from magnitude-squared samples as described in the previous section, and 

then applies the standard GA estimator to the “debiased” data.

Laplace-Beltrami regularization was used in all cases, and the regularization parameter λ 

was individually optimized for each case to yield the smallest NRMSE.

A. Simulations

Noiseless diffusion data was simulated at M = 200 different points on the sphere, based on a 

two-tensor model given by

(17)

for m = 1, 2, …, M, where S(qm) is the mth noiseless sample, S0 is the signal without 

diffusion weighting, the diffusion encoding value is b =2,000 s/mm2, the qm are length-3 

unit vectors describing the spherical sampling locations, and D1 and D2 are diffusion tensors 

[65] with identical eigenvalues (λ1 = 1.4 × 10−3 mm2/s, λ2 = λ3 = 0.2 × 10−3 mm2/s) but 

different orientations. The angle between the principal eigenvectors of the two tensors was 

systematically varied from 0° to 90°. Complex Gaussian noise was added to the diffusion 

signal, and Rician data was obtained by taking the magnitude. Noisy data was simulated at 

SNR=3, 6, and 10, with SNR defined as S0/σ. Estimation was performed 1000 times (using 

different noise realizations) for each case.

Estimation results were evaluated qualitatively and quantitatively. Quantitative performance 

was assessed using:

• Spherical Harmonic Error. Computed as the NRMSE of the estimated spherical 

harmonic coefficients with respect to those estimated from noiseless data.

• Mean Diffusivity (MD). Quantitative MD was computed according to [62]
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(18)

where ε is a small regularization parameter used to reduce the sensitivity of the 

logarithm to small perturbations when  is near 0. This parameter was 

adjusted independently for each algorithm to yield minimal NRMSE.

• Generalized Fractional Anisotropy (GFA). The quantitative GFA diffusion 

measure was computed as [66]

(19)

where  is the spherical harmonic representation of the Funk-Radon Transform of 

[60], and the first spherical harmonic coefficient [c]1 corresponds to the isotropic 

spherical harmonic basis function.

Quantitative simulation results are shown in Fig. 6 and Supplementary Fig. S7. Consistent 

with our previous results, Fig. 6 shows that the proposed MM method has the smallest 

spherical harmonic error at all SNRs, while Supplementary Fig. S7 shows that the MM 

method frequently yields MD and GFA estimates with the smallest bias. However, it should 

also be noted that MM can yield MD and GFA estimates with higher variance than GA or 

ST. This behavior (lower bias but higher variance) is consistent with previous studies 

involving the Rician distribution and the diffusion tensor model [25].

Qualitative results are shown in Fig. 7. We observe that all the methods work well at high 

SNR. As before, this is not surprising, since the Gaussian approximation is accurate at high 

SNR, while accurate noise modeling becomes more important at low SNR. At lower SNRs, 

both MM and ST yield substantially less bias than GA, while MM has slightly less bias than 

ST. These results further validate the potential benefits of using PML estimation with the 

MM framework.

B. Real Data

We also applied the MM approach to the 32-channel multi-shell diffusion imaging data from 

[17], with shells at b-values of 1,000, 2,000, 3,000, and 4,000 s/mm2 and M = 30 samples 

per shell. Unlike [17] (which performed specialized k-space based denoising of the data), we 

used standard Fourier reconstruction of the data, with the complex images from each coil 

combined using rSoS.

Diffusion profiles from each shell were estimated separately within the HARDI framework 

using the MM, GA, and ST approaches. Noise parameters N and σ2 were estimated as in 

Sec. IV-B. Since no gold standard is available, results were assessed qualitatively.

Results are shown in Fig. 8. It can be seen that both MM and ST are able to substantially 

reduce noise bias relative to GA. However, we also observe that the high b-value ST images 

possess much fewer low-intensity image structures relative to the MM and GA approaches, 
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suggesting that it is less effective than MM at accurately preserving the diffusion profile. 

These results indicate that noise modeling during spherical harmonic estimation has 

potential benefits, and can complement the traditional approach where diffusion images are 

denoised prior to spherical harmonic estimation [17], [19], [20].

C. Comparisons with Traditional Optimization Algorithms

Our previous results focused on the benefits of using PML estimation instead of widely-used 

simplifed noise models. In this section, we compare the computational efficiency of our 

proposed MM approach against generic optimization algorithms that have been previously 

applied to solve NCC optimization problems. Specifically, we compared against standard 

quasi-Newton and Levenberg-Marquardt methods [44]. These algorithms were implemented 

using Matlab's fminunc and lsqnonlin functions, respectively, while our MM approach 

was evaluated using our own (relatively unoptimized) Matlab implementation. All 

algorithms were implemented with the same stopping criterion (iterations halted when the 

estimated change in spherical harmonic coefficients was less than 10−6, leading to a 

different number of iterations for each voxel and each algorithm. The number of MM 

iterations was limited to at most 100). Computations were performed using the same NCC-

based cost function and 32-channel data from Sec. V-B, using a workstation with a quad-

core 2.27 GHz processor. Spherical harmonic coefficients were estimated for all voxels 

within the FOV, and compute times were saved for each algorithm. The results obtained 

using MM had the smallest overall cost function values, ensuring that our compute times are 

not biased in favor of the MM approach.

Table I shows the mean and median compute times for each voxel, as well as the standard 

deviation and the total compute time for the whole image. The MM-based algorithm was 

much faster than the other PML algorithms for this data. In particular, the proposed MM 

algorithm was more than 16 × faster than the Levenberg-Marquardt method and more than 

100× faster than the quasi-Newton method. Figure 9 compares the trade-off between 

compute time and statistical optimality between the PML and regularized non-ML methods. 

While the MM approach is not as fast as the non-ML GA and ST methods (with most 

compute times less than 4 ms per voxel), it yielded substantially smaller PML cost function 

values, providing a balance between quality and speed.

When interpreting these speed results, it should be noted that the computational efficiency of 

MM was dependent on the existence of efficient algorithms for solving regularized LS 

problems. For other cost functions where efficient regularized LS algorithms are not 

available, the MM approach may not be preferred. As with all optimization algorithms, 

computational efficiency is best examined individually for each context.

VI. Discussion

A. Initialization and Local Minima

Our empirical results indicate that the MM approach demonstrates better performance than 

the ST and GA methods for the applications we investigated. However, it is important to 

point out that the computational complexity of ST or GA is similar to the complexity of just 

one iteration of the MM approach, and that the MM approach needs to be initialized well for 
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the difference in computation time to be negligible. Good initializations are also important 

because our work showed that the NCC NLL is generally nonconvex, and therefore subject 

to local minima. We are also aware of one specific initialization that is particularly 

problematic: if  is chosen such that , then the corresponding , meaning 

that  will not depend in any way on the measured data y and that the MM framework can 

stagnate unless the regularization term R(x) specifically prefers nonzero solutions.

To empirically investigate convergence characteristics, we performed MM-based NCC 

image denoising as in Sec. IV-A for four different initializations: (i) initialization with the 

noisy image , (ii) initialization with the true noiseless image, (iii) initialization with the 

unregularized  result, and (iv) random initialization. For each initialization, we ran 500 

MM iterations while tracking the cost function value.

Figure 10 shows the results. It can be seen that the results of all the initializations converge 

to a similar cost function value, though different initializations converge faster than others. 

The resulting denoised images (not shown) are quite similar to one another, though do 

contain small differences in regions of the image where the true noiseless signal is zero. 

Even though the final results obtained from these different initializations only have minor 

differences for this denoising example, it is important to remember that there are 

initializations for which the MM approach will fail to come close to a useful solution (e.g., 

the all-zero initialization), and that other application contexts might be more severely 

impacted by nonconvexity. At least for this application, either the ST output or the noisy 

image seem like useful initializations for the MM approach, since both of these choices lead 

to fast convergence in Fig. 10.

B. Accurate Noise Modeling

Using the NCC NLL from (7) relies on the prior knowledge of N and σ2, and assumes that 

noise is white and uncorrelated from voxel to voxel and from coil to coil. However, there are 

practical situations where these assumptions might be violated. For example, it is frequently 

inaccurate to assume that the noise between different coils is uncorrelated and has the same 

variance. Previous work has shown that in such cases, rSoS data is still modeled accurately 

by an NCC distribution, except that the parameter N might not equal the number of images 

that were combined using rSoS [38], [67]–[70]. For this case, it has been shown that ML 

estimation of N yields reasonable results [38], and for simplicity, we used this approach in 

the results we presented. Alternatively, another common approach would be to prewhiten 

the data from different coils using the noise correlation matrix [2], and apply rSoS to these 

instead.

Since we used fully-sampled data and traditional Fourier reconstruction, our assumptions 

(that N and σ2 were spatially invariant, and that noise in different voxels was uncorrelated) 

will be valid for all the results shown in this paper. This means that our noise modeling 

assumptions are expected to be accurate, as confirmed by Supplementary Fig. S3. However, 

depending on the provenance of the images, there are cases where the noise may be spatially 

correlated and/or spatially varying. For example, spatial noise correlations and spatially-

varying noise parameters can exist if images are reconstructed using parallel imaging 

Varadarajan and Haldar Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods like GRAPPA [71] or SENSE [2]. Spatially-varying σ2 values can also exist if 

images from multiple coils are combined using adaptive combination methods [72]. 

Fortunately, it has been observed that even if spatial noise correlation is neglected, there is 

still a benefit to modeling the data as if it were spatially-independent NCC [38]. In addition, 

there exist several schemes for directly estimating the parameters of spatially-varying noise 

fields from MRI images [38], [67]–[70], and there also exist methods for theoretically 

predicting noise parameters based on reconstruction parameters [73]. If spatially-varying 

noise parameters are known, the MM approach can be easily adapted: this would be 

achieved by replacing σ2 and N in (7) by appropriate spatially-varying values that depend on 

m.

To illustrate this, we used the same 32-channel MPRAGE dataset from Sec. IV-B to 

generate GRAPPA-reconstructed images (acceleration factor 3) from single-repetition data. 

Images from each coil were combined using both rSoS and adaptive coil combination [72]. 

The combined images were subsequently denoised using TV regularization and the MM, 

GA, and ST methods. For each method, the cost function was modified on a voxel-by-voxel 

basis to account for spatially varying noise. We used the pseudo multiple replica method to 

generate synthetic noise with the same statistics as the real noise [73], and estimated 

spatially-varying σ2 and N values using ML (with N = 1 for adaptively-combined data, since 

adaptively-combined images have Rician statistics). As before, the regularization parameter 

was tuned to yield minimum NRMSE for each method, with NRMSE calculated based on a 

fully-sampled 5×-averaged reference (debiased using ST).

Figs. 11 and 12 show the results for adaptively combined data, while Supplementary Figs. 

S8 and S9 show the rSoS results. As expected, the MM approach can successfully 

accommodate spatially-varying noise, and has better denoising performance than either GA 

or ST.

In many data processing pipelines, it is common to also perform multiple preprocessing 

steps that could influence the noise distribution in the images. For example, motion 

correction, distortion correction, and bias field correction will all modify the characteristics 

of the noise distribution of an MR image in potentially undesirable ways that could 

invalidate the NCC assumptions. There are several possible ways of addressing this issue. A 

simple option would be to apply the NCC modeling at the first stage of the data processing 

pipeline. This is the approach we used in this paper (none of our data was preprocessed). 

Another option would be to keep track of the effects of each preprocessing stage on the 

overall noise distribution. For example, bias field correction will lead to a simple spatially-

varying modification of σ2 that can easily be computed if the bias field correction 

parameters are known. A final option might be to implement all of the different traditional 

image processing operations into a single integrated step. This might also have other 

advantages, since there is empirical evidence that supports the idea that integrated 

approaches yield better performance than stagewise processing in a variety of contexts (e.g., 

[74]–[76]).

It should also be noted that certain types of image reconstruction (e.g., nonlinear image 

reconstruction from sparsely-sampled and/or noisy data [3], [20]) could result in images 
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with highly non-NCC statistical distributions. The proposed approach should be used with 

caution in such cases.

Consistent with previous reports [25], we observed that estimation using an accurate NCC 

model can decrease estimator bias, but can sometimes also increase variance. For 

applications where consistency is more important than systematic bias, approaches like GA 

might have certain advantages relative to accurate NCC modeling, and it is important to 

keep these trade-offs in mind when choosing a noise model for a specific MR application.

C. Choosing Images: Complex, Magnitude, or rSoS?

In principle, there are scenarios (e.g., when the original k-space data is available from each 

of multiple different receiver coils) in which investigators can choose whether to process 

multiple different Gaussian complex images, multiple different Rician magnitude images, or 

a single NCC-distributed rSoS image. It is natural to ask: which one of these options should 

be preferred? It is known from the data processing inequality [77] that we should 

theoretically expect for complex images to contain more information than magnitude 

images, and that magnitude images should contain more information than rSoS images, 

based on the fact that rSoS images can be computed from magnitude images, which 

themselves can be computed from complex images. Empirical confirmation of the advantage 

of complex images relative to Rician images for image denoising was shown in [17] and 

some of its references. However, Sijbers et al. [78] showed the surprising result that 

Gaussian complex images should only be preferred over Rician images in cases where the 

phase is relatively consistent, while estimation based on Rician distributed images can yield 

smaller RMSE when the phase is less predictable.

To the best of our knowledge, the question of whether to prefer complex images versus 

Rician images versus NCC images has never been addressed before. For this work, we 

performed a small-scale simulation study to provide insight. Specifically, we simulated a 4-

coil data acquisition, where the noiseless image for each coil had constant phase and the 

same magnitude as the image used in Sec. IV-A, and each coil was subject to i.i.d. complex 

Gaussian noise. We compared the following schemes: (i) each complex image was denoised 

idependently using Gaussian modeling with TV regularization, followed by rSoS coil 

combination; (ii) the magnitude images from each coil were denoised independently using 

Rician modeling with TV regularization, followed by rSoS coil combination; (iii) the images 

were combined via rSoS, and then denoised using NCC modeling with TV regularization. 

Regularization parameters were independently optimized for each scheme and SNR to 

achieve minimal NRMSE.

Representative results are shown in Fig. 13. The results confirm the earlier finding that 

complex Gaussian images should be preferred when phase is consistent. However, it is 

interesting to note that NCC modeling outperforms Rician modeling. This can be partially 

attributed to the fact that rSoS coil combination has the effect of noise averaging, while the 

independent Rician denoising problems each have relatively lower SNR. Our evaluation in 

this subsection was intentionally brief, and different reconstruction and/or coil-combination 

strategies could easily lead to different conclusions (e.g., joint reconstruction [79] or 

adaptive coil combination [72]). In addition, images with different phase characteristics 
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could yield very different results. For example, most MRI images have smooth phase, but 

spatial smoothing of complex images with rapidly varying phase would lead to poor results 

due to local phase cancellations. Despite the relatively small scope of the comparisons 

shown in Fig. 13, the main point we want to emphasize is that it's important to carefully 

consider how imaging data is stored and processed, since these decisions can have 

substantial impacts on the quality of the final results.

VII. Conclusions

This paper proposed a new MM framework for statistical estimation problems involving 

NCC NLLs. Although we showed that NCC NLLs are generally nonconvex, the MM 

approach allows the optimization problem to be reduced into a series of simpler regularized 

LS problems. This enables the use of algorithms from the extensive body of literature on 

regularized LS optimization. Our empirical results validated that the use of the true NCC 

NLLs can have substantial performance advantages over commonly-used estimation 

approaches such as GA and ST that solve simplified optimization problems. In addition, we 

demonstrated that our proposed MM approach can have substantially lower compute time 

relative to traditional methods that are invoked for solving nonlinear optimization problems. 

The computational efficiency we observed is consistent with results reported by another 

group [80], who used our proposed MM framework (as we initially described in [46]) to 

achieve more than a 15× reduction in compute time for the denoising method described in 

[20].

Though we've only investigated the proposed framework in a couple scenarios, we expect it 

to be useful in a broad range of applications. A few examples include distortion correction 

for EPI images [34], non-negative matrix factorization [81], and compressed sensing 

diffusion MRI [5]–[9], among many others. The proposed framework is also a nice 

complement to recent tools for optimally choosing regularization parameters when dealing 

with NCC data [82].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Quantitative results for the TV denoising simulations. Each plot shows the NRMSE of each 

denoising method as a function of SNR.
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Fig. 2. 
Representative results from TV denoising of simulated Rician data.
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Fig. 3. 
Root-mean-squared error images (computed based on five noise realizations) for the Rician 

TV denoising results shown in Fig. 2. For easier visualization, the image intensities for 

SNRs 1, 2, 5, and 10 were respectively scaled by factors of 1.5, 3, 6, and 10 relative to the 

images in Fig. 2.
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Fig. 4. 
Results from Rician TV denoising of real brain data. Also shown are the NRMSE values for 

each image.
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Fig. 5. 
Error images for the Rician TV denoising results shown in Fig. 4. For easier visualization, 

the error image intensities were scaled by a factor of 4 relative to the images in Fig. 4.
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Fig. 6. 
Quantitative spherical harmonic (SH) errors for the HARDI simulations. The lines and error 

bars respectively correspond to the means and standard deviations of the NRMSE values 

across 1000 noise realizations.
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Fig. 7. 
Diffusion profile 2D cross-sections (passing through the plane defined by the principal 

eigenvectors of D1 and D2) computed from simulated data. Each image shows the noiseless 

profile (green) and average profiles estimated from noisy data using the MM (red), ST 

(magenta), and GA (blue) approaches.
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Fig. 8. 
Representative real-data spherical harmonic estimation results. Each image row shows the 

estimated value of  for different choices of m corresponding to different b-values.
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Fig. 9. 
Plot of the cumulative PML cost function value for all voxels (normalized for easier 

visualization) versus the mean per-voxel compute time for different algorithms. The error 

bars show ± one standard deviation.
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Fig. 10. 
Convergence plots for the MM approach with different initializations.
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Fig. 11. 
Results from GRAPPA reconstructed and adaptive combined TV denoising of real brain 

data. NRMSE values for each image are also shown.
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Fig. 12. 
Error images for GRAPPA reconstructed and adaptive combined TV denoising results 

shown in Fig. 11. For easier visualization, the error image intensities were scaled by a factor 

of 4.2 relative to the images in Fig. 11.
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Fig. 13. 
Comparison between TV denoising of complex, magnitude, and rSoS images. The NRMSE 

for each image is shown below each result.
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Table I

Mean, median, standard deviation, and total compute times (units of seconds) for different PML algorithms.

Algorithm Mean Median Stand. Dev. Total

Quasi-Newton 1.923 2.010 0.516 31503.3

Levenberg-Marquardt 0.119 0.118 0.010 1941.3

MM 0.017 0.022 0.008 283.7
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