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Abstract

There are many advantages to individual participant data meta-analysis for combining data from 

multiple studies. These advantages include greater power to detect effect, increased sample 

heterogeneity, and the ability to perform more sophisticated analyses than meta-analyses that rely 

on published results. However, a fundamental challenge is that it is unlikely that variables of 

interest are measured the same way in all of the studies to be combined. We propose that this 

situation can be viewed as a missing data problem in which some outcomes are entirely missing 

within some trials, and use multiple imputation to fill in missing measurements. We apply our 

method to 5 longitudinal adolescent depression trials where 4 studies used one depression measure 

and the fifth study used a different depression measure. None of the 5 studies contained both 

depression measures. We describe a multiple imputation approach for filling in missing depression 

measures that makes use of external calibration studies in which both depression measures were 

used. We discuss some practical issues in developing the imputation model including taking into 

account treatment group and study. We present diagnostics for checking the fit of the imputation 

model and investigating whether external information is appropriately incorporated into the 

imputed values.
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1 Introduction

Meta-analysis has been used as a tool for synthesizing scientific literature for more than 30 

years [1, 2] and is the primary technique used in evidence-based medicine, particularly by 

the Cochrane Collaboration [3], as it can greatly increase power to detect effects. Cross-

study synthesis becomes necessary as a field matures, and findings from individual studies 

must be combined to approach questions that cannot be answered through studying 

individual trials in isolation.

Traditionally, meta-analysis involves combining published summary findings across similar 

studies by placing each of these summaries on a common metric, such as a standardized 

mean difference or log odds ratio. A single overall measure of impact is then obtained which 

represents the overall effect across different trials [4–6]. There can be major shortcomings 

from meta-analyses that are based solely on published results, either from differences in the 

ways that the individual trials were analyzed or from the use of different outcome measures. 

Because there are no raw data available, meta-analysis can only synthesize from reported 

findings, restricting topics of inquiry to those questions that have already been addressed 

within individual studies. For more sophisticated analyses such as mediation, moderation, 

growth modeling, and subgroup analysis, published reports of these analyses are rarely 

available for more than a small proportion of the studies, and even when they are, different 

modeling and reporting decisions across studies often lead to analytic incompatibility.

In response to limitations of traditional meta-analysis, an increasingly popular approach is 

individual participant data (IPD) meta-analysis in which the raw individual-level data for 

each study are obtained and used for synthesis [7]. With the raw data in hand, an analyst can 

adjust for patient-level covariates and take into account repeated measures, missing values, 

and differential follow-up times.

However, IPD meta-analysis can introduce challenges of its own. In particular, a common 

situation is when different outcome measures are used to assess the same construct in 

different studies [8]. The term harmonization has been coined to describe the procedure of 

placing variables on the same scale in order to permit pooling of data from a large number of 

studies [9, 10].

In this article we describe a multiple imputation approach for harmonizing measures across 

longitudinal intervention trials when there is no overlap in outcome measures within trials. 

We seek a method that will permit pooling of IPD from studies which use different outcome 

measures for the same construct, which could greatly increase power for treatment effect 

analysis. We extend existing methods for harmonization by addressing harmonization in a 

longitudinal setting where different studies have different follow-up times and the 

relationships between outcome measures may change over time. Our method makes use of 

external calibration studies in which IPD are available on both outcomes but the calibration 

studies are not to be included in final analyses. In addition to providing information on the 

relationship between outcome measures, the calibration studies facilitate the use of 

imputation diagnostics to assess the quality of imputations.
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This article is organized as follows. In Section 2 we describe the example that motivated this 

work, a study of five randomized clinical trials investigating the effectiveness of fluoxetine 

for the treatment of depression among adolescents. We also discuss existing methods for 

harmonization. In Section 3, we describe our imputation model and diagnostics for checking 

the quality of imputations when variables are missing for all participants within a study. 

Section 4 presents the results of applying our methods to the fluoxetine data and Section 5 

offers discussion and areas for future work.

2 Motivation and background

2.1 Motivating example

The motivating example for this work are IPD from five randomized controlled trials 

(RCTs) studying the effectiveness of fluoxetine for the treatment of depression among 

adolescents. Two different measures of depressive symptoms were used in the trials. Four of 

the trials used the Children's Depression Rating Scale (CDRS), and one trial used the 

Hamilton Depression Rating Scale (HDRS). None of the five trials used both the CDRS and 

the HDRS. The HDRS employs 17 items to assess depressive symptoms and scores range 

from 0 to 50 [11]. The CDRS also contains 17 items, but was designed to assess depressive 

symptoms specifically in children ages 6-12 years [12]. Scores on the CDRS range from 17 

to 113. Our objective is to combine information from all studies to estimate the effect of 

fluoxetine on the HDRS.

These five studies consist of all RCTs of fluoxetine in adolescents that included 30 or more 

patients, all of whom had a diagnosis of major depressive disorder. All five studies were 

double-blind, placebo-controlled RCTs. Data for four of the 5 fluoxetine trials were obtained 

from Eli Lilly and Co. Data from the 5th fluoxetine trial came from the Treatment for 

Adolescents With Depression Study (TADS) [13] and were obtained from the National 

Institute of Mental Health and do not include participants from a third TADS arm who 

received cognitive behavioral therapy. Only summary scores were available in all the trials; 

item-level data for neither the CDRS nor the HDRS were provided.

The top portion of Table 1 displays descriptive statistics by study for the HDRS and CDRS 

at baseline as well as age, gender, study duration, and sample size, and indicates which 

studies used which depression measures. Resche-Rigon et al. [14] refer to missing values 

that are missing for every observation in a study as systematically missing. Across the 5 

fluoxetine studies, ages ranged from 7-18 years and trial size ranged from 40 to 221 

participants. The length of the trials were from 3 to 12 weeks with anywhere from 3 to 9 

assessments during the course of a study.

In this setting with no overlap between the CDRS and the HDRS, the partial correlation 

between the two depression measures after conditioning on background covariates is 

inestimable [15]. Therefore, in order to estimate the association between the two depression 

measures, data from two additional placebo-controlled adolescent depression trials were 

obtained which used a different medication (velanfaxine), but included summary scores for 

both the CDRS and the HDRS on every participant [16]. Because these trials use a different 

treatment medication, we are not interested in including them in our final analysis. However, 
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we do want to use the data from these two trials to obtain information on the relationship 

between the CDRS and HDRS in order to harmonize the CDRS and HDRS data in the 

fluoxetine trials. For this reason, we refer to these two trials as “external calibration trials.”

The last two rows of Table 1 provide information on the calibration trials, which were both 8 

weeks in duration. An interesting and important feature of the external calibration trials is 

the changing nature of the partial correlation of the CDRS and the HDRS as a function of 

time. Table 2 displays the partial correlation (controlling for age and gender) of the CDRS 

and the HDRS as a function of study week. These partial correlations were estimated by 

using two separate linear regression models to regress CDRS on age and gender and HDRS 

on age and gender. The correlation between the error terms from these two regression 

models provides the partial correlation. This procedure was performed separately by time 

point. As can be seen, the partial correlation increases over the course of the study with an 

overall correlation of 0.57 at baseline and a correlation of 0.85 by the end of the study. One 

possible explanation for this increasing correlation is that the distribution of both measures 

is left-truncated at baseline due to the fact that participants were required to have an elevated 

depression score in order to meet inclusion criteria.

2.2 Existing data harmonization methods

There are a number of existing methods for data harmonization which make use of the fact 

that even if different studies use different outcomes, they are attempting to measure the same 

construct. These methods fall roughly into three general classes: (1) linear or z-

transformations to create a common metric across data sets; (2) latent variable methods that 

identify an underlying latent construct across all studies [17–21]; (3) multiple imputation 

methods that treat unobserved measures as missing data and replace the missing values with 

plausible values [14, 22].

Transforming original units into standard deviation units via a z-transformation is a 

relatively simple solution and does not require common items across studies. A drawback is 

that this method does not take into account differences in variability across studies and 

assumes the underlying constructs are the same and measured equally well across studies 

[9]. Also, the transformed variable may not have the same scientific interpretation and 

familiarity as the original units with which substantive researchers are better able to interpret 

results and compare them with other findings in the literature. Latent variable methods solve 

some of the challenges associated with using z-scores but require strong assumptions about 

latent structure that can be difficult to check, especially when there are few or no variables 

of interest measured simultaneously in the data sets to be harmonized. Both approaches, as 

currently implemented, struggle with repeated observations, and typically assume that 

repeated observations on the same participant are independent.

Multiple imputation [23] is a natural approach for handling missing data due to un-measured 

outcomes and has a number of advantages over existing methods. With multiple imputation, 

missing values are replaced with two or more plausible values to create two or more 

completed data sets. Analyses are then conducted separately on each data set and final 

estimates are obtained by combining the results from each of the imputed data sets using 
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rules that account for within-imputation and between-imputation variability. See Harel and 

Zhou [24] for a review.

In the context of harmonization for IPD meta-analysis, once unmeasured variables have 

been imputed, analyses and their subsequent inferences are based on existing scales of 

interest rather than a z-score or a latent variable. In addition, after the data set has been filled 

in, it can be shared with other investigators and be used for numerous analyses using 

complete data methods. In fact, once a variable has been multiply imputed, it may be used as 

an outcome in one analysis, and as a covariate in another analysis.

While multiple imputation was originally conceived for use in single surveys with missing 

data, the method has been extended to numerous areas. Most relevant to data harmonization 

in IPD meta-analysis is data fusion where two (or more) data sets from the same population 

(but different samples) are to be combined and some variables only appear in one data set or 

the other, but no data set contains all variables of interest [25–27].

For example, in our motivating example of five RCTs where the HDRS and the CDRS are 

systematically missing, multiple imputation can be used to complete the concatenated data 

set, by imputing the HDRS in four of the studies and the CDRS in the fifth study. However, 

in this setting in which the HDRS and CDRS are never jointly observed (as they are in the 

five fluoxetine trials), the maximum likelihood estimate of the partial correlation between 

the HDRS and the CDRS, conditioning on background covariates is inestimable [15]. When 

estimating these parameters and generating imputations in a Bayesian framework, the 

posterior estimates of the partial correlations will be equal to the prior correlation [28]. 

Thus, the typical non-informative priors used in Bayesian imputation models would result in 

partial independence between the HDRS and CDRS. Since the two measures are presumed 

to be measuring a similar construct, this is unlikely to be a plausible assumption.

Rässler [26] proposed a multivariate normal imputation model for the data fusion setting 

where imputations are generated by positing a value for the partial correlation between two 

outcomes that are never jointly observed. Rässler [26] suggests three ways of specifying this 

correlation: 1) from its prior based on a distributional assumption (e.g. uniform over some 

range); 2) using several arbitrary values; 3) using values estimated from an external data set 

with information on the joint distribution between the two variables of interest.

Gelman et al. [22] developed an imputation model to impute missing data from several 

sample surveys where not all the surveys asked the same questions. Here, a separate 

imputation model is fit for each survey, but with parameters across the surveys linked using 

a hierarchical model so that imputations for questions not asked in a survey are determined 

by data from the other surveys in the population as well as by available responses to other 

questions in that survey. An advantage of this approach is that covariates may be included in 

the regression model at both the individual and survey level.

3 Methods

Our approach for harmonizing the depression data across the multiple trials is in the spirit of 

Gelman et al. [22] and Rässler [26] where the uncollected depression measures are 
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considered missing data and missing observations are multiply imputed. We extend these 

existing approaches to the case of longitudinal data and we develop methods that make use 

of external calibration data. Not only do the calibration data provide information on the 

relationship between the two depression measures, but they also facilitate the use of 

imputation diagnostics to assess the quality of the imputations.

We begin by concatenating the calibration data sets with the fluoxetine data sets. We then 

generate multiple imputations for the missing CDRS and HDRS data using an imputation 

model that estimates the relationship between these two measures based on information 

from the calibration data. Once the missing data have been imputed, we perform diagnostics 

to check whether the imputed data are consistent with the observed data. Finally, we remove 

the calibration data and perform post-imputation analyses on the 5 fluoxetine trials using the 

multiply imputed completed data sets.

3.1 Imputation Model

Our imputation method is based on a multivariate random-effect model that jointly models 

the two depression measures over time [29]. Using notation similar to that of Weiss [30], let 

yij and wij be the HDRS and CDRS scores, respectively, for participant i measured at time j 

where j = 1, . . . ni. Our model is

(3.1)

where Ti is a variable that indicates whether participant i received fluoxetine or placebo and 

timeij is the number of days since baseline, log transformed to approximate linearity and 

avoid the use of an additional parameter to estimate a quadratic term [31]. The β and α 

parameters represent fixed effects, while ηy0i and ηy1i are random intercept and slope terms 

for y and ηw0i and ηw1i are random intercept and slope terms for w. We assume these 

random effects ηi = (ηy0i, ηy1i, ηw0i, ηw0i) have a multivariate normal distribution ηi ~ N4(0, 

Δ), where Δ is a 4 × 4 variance-covariance matrix.

The residual errors εij = (εyij, εwij) are also correlated and follow a bivariate normal 

distribution εij ~ N2(0, Σ). Residual errors εij are independent across participants and time 

and are independent of the random effects.

This model allows the covariance between the CDRS and HDRS to vary as a function of 

time as was observed in the external calibration data. We have

where dij is the ith row and jth column of the random effects variance-covariance matrix and 

σyw is the covariance of the residual errors. In addition to modeling the correlation of the 

two measures (and its change) over time, the model also estimates the within-subject 

correlation on the same measure over time, that is, the intra-class correlation.
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Note that the imputation model described in Equation 3.1 does not include a term for trial. A 

fixed effect for trial is not estimable in this model because for some trials all outcomes are 

missing. There is little information available to estimate random trial effects because the 

number of trials is small and estimating random effects at the trial level for both the HDRS 

and the CDRS requires us to estimate the correlation of these two measures at the trial level. 

With only two calibration trials, we do not have enough degrees of freedom to estimate the 

study-level correlation between the CDRS and the HDRS. Further complicating our e orts is 

the fact that the direction of the correlation is negative which is unlikely to be the true 

direction of this relationship and is more likely due to the small sample size.

3.2 Model assumptions

We highlight four assumptions in the imputation model described in Section 3.1.

Assumption 1—We assume the missing depression data are missing at random (MAR) 

such that the probability of missingness depends only on observed data included in the 

model and not on unobserved data. In our setting, the MAR assumption implies that an 

investigator's decision not to use a depression measure is not related to unobserved 

variables, in particular the unmeasured depression score itself. The choice of whether to use 

the HDRS or the CDRS is primarily based on age, where the CDRS was designed to be 

more relevant to younger children than the HDRS. Since we are able to condition on age in 

our imputation models and the calibration data are based on an age range comparable to the 

age ranges in the fluoxetine trials, we are comfortable with this assumption.

Assumption 2—The second assumption relates to the partial correlation between the 

CDRS and the HDRS. As before, let yij and wij indicate the HDRS and CDRS scores, 

respectively, for participant i at time j. The variable Ti is the treatment assignment for 

participant i, and Xi = (agei, genderi) are the age and gender for participant i. Treatment 

assignment, age, and gender are observed on all participants. Then, at any two time points j 

and k.

(3.2)

that is, the partial correlation between the HDRS and CDRS does not depend on treatment 

group. We make this assumption because the external calibration trials do not use fluoxetine 

and thus do not provide information on the correlation between measures for fluoxetine 

participants. We restrict our external calibration trials to placebo participants (and all 

participants at baseline) and make the assumption in Equation 3.2 that the partial correlation 

is the same for placebo and fluoxetine participants.

Assumption 3—The third assumption is that the partial correlation between the CDRS 

and the HDRS does not differ by trial. Let yijl and wijl indicate the HDRS and CDRS scores, 

respectively, for participant i at time j in trial l. For two participants i and i′ in trials l and m,

(3.3)
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Assumption 4—Our fourth assumption concerns independence of observations within the 

same trial in our imputation model. As before, let yijl and wijl indicate the HDRS and CDRS 

scores, respectively, for participant i at time j in trial l. Then we make the following 

assumptions. At any two time points j and k, i≠i′, and conditioning on auxiliary variables 

agei, genderi,

(3.4)

(3.5)

(3.6)

3.3 Estimation and imputation

We used a Bayesian approach to estimate the parameters of our imputation model and to 

generate imputations. As noted by Schafer [32], imputations generated from a Bayesian 

model are proper in the sense that they incorporate both model parameter uncertainty as 

well as uncertainty due to missingness. We placed non-informative priors (N(0, 103)) on the 

regression coefficients of the fixed effects (β, α) in Equation 3.1. For both the random 

effects covariance matrix and the residual error covariance matrix, we use inverse-Wishart 

priors with 6 and 4 degrees of freedom, respectively, and a scale parameter equal to the 

identity matrix.

Markov Chain Monte Carlo (MCMC) via the software OpenBUGS [33], was used to draw 

model parameters and generate imputations. We diagnosed convergence of the MCMC 

algorithm using statistics developed by Gelman and Rubin [34] and concluded that the 

Markov chain converged after 20,000 iterations. OpenBUGS code and MCMC diagnostics 

for some of the imputation model parameters are included in the supplementary materials. 

Imputations were generated by running an additional 50,000 iterations on a single chain and 

drawing a set of parameters from every 500 iterations. This high thinning value was chosen 

to ensure that imputed values were generated from approximately independent draws of the 

imputation model parameters [32].

After imputing the missing outcome measures, we removed the calibration data and 

analyzed only data from the fluoxetine trials. In this setting, when some of the records used 

to estimate the imputation model are not used for analysis, the usual multiple imputation 

combining rules variance estimator has positive bias because the conditioning used by the 

imputer and the analyst are not matched [35]. To address this, we used Reiter's [35] method 

of two-stage multiple imputation and its associated combining rules which has better 

performance in this context. First, m values of the parameters in the imputation model are 

sampled, and then, nested within each set of parameter draws, n imputations are generated 

for each missing value. This results in mn completed data sets. Analyses are performed 

separately on each imputed data set and the results are combined using the two-stage 

imputation rules described in Reiter [35] which are provided in Appendix A. We used m = 
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100 sets of parameter draws with n = 2 imputations nested within each parameter draw for 

our application.

3.4 Diagnostics

In our setting, where the amount of missing data is considerable, and where we are imputing 

values for every participant within a trial, it is particularly important to check the imputation 

model and the quality of its imputations. We use two general approaches for checking our 

imputation model: graphical comparisons of the observed data versus the imputed data [22, 

36] and posterior predictive checks using numerical summaries based on test statistics [37]. 

In both cases we focus on diagnostics that capture important features of the data that are 

relevant to our target analyses.

Graphical exploration consisted of comparing observed (imputed) HDRS values with 

imputed (observed) CDRS values as a function of time. To do this, we created side-by-side 

scatterplots of depression scores over time. In one panel, the data are observed, in the other, 

the data are every participant's average imputed values at each time point. While the scale of 

the two depression measures is different, we expect to observe similar patterns over time. If 

not, this suggests a problem with the fit of our imputation model.

The numerical approach follows the posterior predictive checking and re-imputation method 

of He and Zaslavsky [37] and used the following strategy. First, we duplicated the data from 

the two external calibration trials and deleted the HDRS values in this duplicated version of 

the calibration data. Next, we concatenated these duplicated data sets with the original 7 data 

sets (the 5 fluoxetine trials and the 2 original calibration trials) resulting in a data set 

containing 9 trials. Finally, we generated imputations using the methods described in 

Section 3.1, imputing missing values in the fluoxetine studies as well as the missing HDRS 

values that were deleted in the duplicated calibration data . Let Y be the observed HDRS 

calibration data and Yimp the imputed version of Y. To compare observed data to imputed 

data, we use a test statistic, T(Y,θ), some scalar function of the data and possibly imputation 

model parameters. Posterior predictive checking consists of comparing T(Y,θ) to the 

distribution of T(Yimp,θ). Lack of fit of the imputed data to the observed data can be 

quantified by the posterior predictive p-value (ppp) [38, 39], the probability that the imputed 

data are more extreme than the observed data, as measured by the test statistic, that is,

(3.7)

In practice, we can calculate ppp by simulation. For each imputed data set v, v = 1, . . . , V 

we calculate T(Yimp,v,θv). The estimated two-sided posterior predictive p-value is the 

proportion of the V test statistics that equal or exceed the test statistic based on the observed 

data, that is,
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A small ppp suggests that the proposed imputation model is not adequate to support the 

targeted post-imputation analysis [37]. We investigated 3 sets of test statistics that capture 

important relationships linked to our substantive analyses. These test statistics are: 1) the 

partial correlation (controlling for age and gender) between the HDRS and CDRS at weeks 

0, 4, 6, and 8; 2) the HDRS means at weeks 0, 4, 6, and 8; and 3) the fixed intercept and 

slope terms from a random intercept and slope regression model regressing HDRS on (log) 

days since baseline.

4 Results based on application to adolescent data

We begin this section by presenting the results of the diagnostics to ensure that our 

imputations are reasonable and are replicating important relationships relevant to our target 

analyses. We then analyze the fluoxetine data first using the CDRS as the outcome, then the 

HDRS.

4.1 Results from diagnostics

Figure 1 presents scatter plots of CDRS and HDRS data versus time (days since baseline) 

for each of the trials in Table 1. The first row of the panel are the two calibration data sets in 

which both the CDRS and the HDRS are observed. The next two rows of the panel are the 

fluoxetine trials which only used the CDRS. For these trials we have imputed 200 HDRS 

values for every observation in the trial and displayed the average of these 200 imputations. 

The last row is the fluoxetine trial which used the HDRS. Here we imputed CDRS values for 

every participant in the trial. As can be seen, within each trial, the imputed values appear to 

preserve the relationship that is seen between the observed depression score and time.

Figure 2 displays the results of posterior predictive checks (based on 200 imputed data sets) 

on the partial correlation between the CDRS and the HDRS in the duplicated calibration 

data at weeks 0, 4, 6, and 8. At all time points, the correlation based on imputed values is 

close to the observed calibration study correlation (indicated by the vertical line) and our 

imputation model is clearly capturing the increasing correlation over time. Posterior 

predictive p-values are large at all weeks; thus, we find no evidence that the model generates 

unreasonable imputations.

Figure 3 displays the results of posterior predictive checks on the HDRS means in the 

duplicated calibration data at weeks 0, 4, 6, and 8. At all time points, the imputed mean is 

close to the observed calibration study mean (indicated by the vertical line). Posterior 

predictive p-values are large at all weeks. As with the partial correlations, none of these p-

values suggest that our imputations are unreasonable. Because the observed correlation 

between the CDRS and HDRS was lowest at baseline, it is not surprising that our 

imputations are less accurate at baseline than at other time points.

Figure 4 displays the results of posterior predictive checks of the fixed intercept and slope 

coefficients of a random intercept and slope regression model of HDRS score as a function 

of log(number of days since baseline + 1) in the calibration data. As with the other posterior 

predictive checks, the parameters based on imputed values are close to observed values and 
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posterior predictive p-values do not suggest an imputation model that is failing to capture 

important relationships.

4.2 Post-imputation analysis of fluoxetine data

Based on the findings from the imputation diagnostics, we proceeded to discard the 

calibration data and analyze the 5 fluoxetine trials. Table 3 is the same as Table 1 above but 

here we have filled in the missing cells with those based on imputed values. Looking at 

Table 3, those trials with low baseline CDRS scores tended to have low baseline HDRS 

scores. The Eli Lilly fluoxetine trial 1 had the lowest mean baseline CDRS score of all the 

trials, including the calibration trials and also has the lowest mean baseline HDRS score. 

Conversely, the Eli Lilly fluoxetine trial 4 had a high mean baseline HDRS score as 

compared to the calibration trials and this is also reflected in its imputed mean baseline 

CDRS score.

We then analyzed the CDRS scores (both observed and imputed) as a function of treatment 

and time using the following random-effects regression model. Let CDRSijl be the CDRS 

score for participant i at occasion j, j = 1, . . . , ni in trial l, l = 1, . . . , N; and let timeij be the 

time since baseline and Ti a variable indicating whether participant i received fluoxetine or 

placebo. Then our model is

(4.1)

As in our imputation model, time has been log transformed. The term b0l is a trial-specific 

random intercept term which follows a normal distribution and takes into account between-

trial variability. The terms b0i and b1i are random intercept and slope terms at the participant 

level, respectively, and follow a bivariate normal distribution independent of the trial-

specific random intercept. The error term εijl also follows a normal distribution and is 

independent of the random effects. The model was fit using the lmer function from the R 

[40] package lme4 [41].

In this model, inference focuses on the regression coe cient β2, the time by treatment 

interaction. This term represents the difference in slopes between treatment and control 

groups. Our trials are short in duration and this parameterization fits our data well. A more 

flexible approach to model the effect of treatment would be to treat time as a nominal 

variable by specifying indicator variables for each time period and interacting these 

indicator variables with treatment. However, since each study has different follow-up times, 

we are unable to fit this more flexible model in this particular application.

The top half of Table 4 presents the results of our analysis using only the observed CDRS 

scores as well as using both observed and imputed CDRS scores. As noted above, post-

imputation analyses were based on the two-stage imputation combining rules of Reiter [35]. 

Not surprisingly, there is very little difference in parameter estimates and their standard 

errors between the two CDRS analyses. This is because only one trial did not use the CDRS 

and this was the smallest trial in our data set (n=40). Thus the observed CDRS analysis 

consists of 708 of the 748 participants in our analysis. Focusing on the treatment by time 

interaction in Table 4, the treatment effect is significant in both CDRS analyses.
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The bottom half of Table 4 presents observed-only and post-imputation analysis of HDRS 

scores in the fluoxetine trials using the same model in Equation 4.1 but with the HDRS as 

the outcome. Here, the observed-only results are based on a single trial (n=40) whereas the 

post-imputation analysis are based on imputing HDRS scores for 708 out of the 748 (95%) 

participants in our analysis. Because the observed-only HDRS analysis is based on a single 

trial, the trial-level random intercept term is omitted. There are substantial differences 

between the observed-only and post-imputation HDRS analyses. In particular, the intercept 

in the observed analysis is much higher than that of the post-imputation analysis, reflecting 

the high baseline depression scores in fluoxetine trial 4. Also, the time by treatment 

interaction term is not significant in the observed-only analysis but it is significant in the 

imputed analysis. It appears that in trial 4, both treatment and placebo participants improved 

a great deal and by similar amount, possibly due to their high depression scores at baseline. 

When including the other 4 trials in the analysis, a treatment effect is detected as the placebo 

participants in these trials did not improve to the same degree as the placebo participants in 

trial 4.

Another meaningful difference between the two HDRS analyses in Table 4 is the reduction 

in standard errors due to the inclusion of the additional data. There is a 67% reduction in the 

standard error of the time by treatment interaction based on the post-imputation analysis. As 

a result, the magnitude of the t-value of the treatment effect on the HDRS, −6.95, is similar 

to the magnitude of the t-value of the treatment effect on the CDRS which is −4.50.

5 Discussion

We have described a multiple imputation approach for harmonizing outcomes across 

multiple longitudinal trials. In our motivating example, we sought to harmonize two 

depression measures where there were no studies which used both measures. To do this, we 

made use of external calibration data in order to estimate key relationships and generate 

more accurate imputations. Besides providing information on the relationship between the 

two depression measures, the calibration data facilitate the use of diagnostics to address how 

well imputed values preserve important relationships related to the target analyses. A benefit 

of the multiple imputation approach is that once the missing data are filled in, analyses can 

proceed using complete data methods. This makes the data accessible by a wide variety of 

researchers, many of whom will not have the background knowledge or the technical 

expertise to harmonize the data themselves.

Our imputation model is a multivariate linear mixed-effect model and explicitly models the 

effect of time and treatment on our target variables. This is important so that our imputation 

model is congenial with our analysis objective [42] which is to investigate the the difference 

in change over time between treatment and placebo groups. With differential follow-up 

times across study, attempting to impute missing data at each time point using standard 

software such as SAS Proc MI [43] or MICE [44] would result in many variables to be 

imputed and parameters to be estimated. Similarly, an imputation model based on a 

covariance pattern model rather than random effects would be difficult to fit and unlikely to 

be parsimonious.

Siddique et al. Page 12

Stat Med. Author manuscript; available in PMC 2016 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An additional benefit of modeling the effect of time is that if a user of our method wishes to 

harmonize the assessment time points, they simply need to add a new row for each 

participant in their data set where the outcome is missing and the time value is set to its 

desired value. While in our example, the missing values are outcomes in the analysis, our 

imputation model is flexible and makes no distinction between outcomes or time-varying 

covariates.

We make several assumptions in developing our imputation model. Most notable is the 

assumption of no between-study variability. Including random effects at the trial level in our 

imputation model is dependent upon being able to estimate the correlation between the 

HDRS and the CDRS at the trial level. With only two calibration trials, this correlation is 

not estimable. Further complicating our e orts is the fact that the direction of the correlation 

is negative. Thus, our imputation model assumes that observations on different participants 

in the same trial are independent. Our analysis model, however, did include a trial-level 

random effect term and it is interesting to compare the trial-level intra-class correlations 

between the imputed CDRS analysis and the imputed HDRS analysis. For the CDRS 

analysis in which data from a single trial is imputed, the baseline ICC is 0.14. For the HDRS 

analysis in which data from 4 of 5 trials is imputed the baseline ICC is 0.09. So although our 

imputation model ignores the effect of trial, between-trial variability does not seem to be 

severely attenuated in post-imputation analyses.

There are several limitations to our approach. Our imputation model is a linear mixedeffects 

model which assumes the outcomes are normally distributed, although they are actually 

bounded above and below which can result in imputed values that are out of range. Methods 

have been developed for handling bounded continuous outcomes [45]. For our data, where 

the HDRS ranges from 0 to 50 and the CDRS ranges from 17 to 113, the data were relatively 

symmetric and using a Gaussian-based imputation model resulted in few out-of-range 

imputations. Only 2.7% of the imputed CDRS values were out of range and only 5.2% of 

imputed HDRS values were out of range. For these observations, we redrew our imputations 

until imputed values were in range. Some research has shown that when imputing highly 

skewed limited-range variables it is best to allow imputed values to remain out of range 

[46]. For our purposes, in which the normality assumption produced few out-of-range 

values, this is less of a concern. In addition, the results of our diagnostic checks suggest that 

our imputations are preserving important features of the data. In settings where outcomes are 

highly skewed and/or very limited in range, it may be appropriate to allow out-of-range 

imputed values or use more flexible imputation models that can handle a combination of 

continuous, ordinal, and binary data [47].

Our method requires calibration data because there is no overlap in depression measures 

within any of the trials of interest. If overlap does exist, then calibration data are not 

necessary—although they may still be useful. To investigate the utility of a calibration data 

set in our setting, we imputed the missing HDRS and CDRS values without using the 

calibration data and imputed each variable separately using a univariate mixed-effects 

imputation model [29] as implemented in the R [40] package pan [48]. We then analyzed the 

imputed data using the analysis model in Equation 4.1. The results are displayed in the 

supporting information. The results based on imputed data without the calibration sample 
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are similar to the observed-only analyses and suggest that there is little benefit to imputing 

missing outcomes when the analysis model and imputation model condition on the same set 

of observed covariates.

Our calibration data were from trials of venlafaxine and as a result do not provide 

information on the partial correlation between the HDRS and CDRS among participants 

randomized to fluoxetine. Thus we make the assumption that this partial correlation does not 

depend on treatment group and we restrict our external calibration trials to only placebo 

participants (and all participants at baseline). To explore whether use of an antidepressant a 

ects the partial correlation between the HDRS and CDRS, we compared the partial 

correlation between the HDRS and CDRS in the calibration trials, stratifying by time, 

treatment group, and study (included in the supporting information). Post baseline, the 

partial correlations in the treatment and control groups are similar at each time point. These 

results suggest that Assumption 2 is a reasonable one, in the sense that use of an 

antidepressant does not seem to a ect the partial correlation between the HDRS and CDRS. 

These results also suggest that we would see little change in our results if we were to include 

both treatment and control groups in the calibration data

Our imputation model is complex and the random-effect covariance matrix itself includes 10 

parameters. While it would be possible to fit a more parsimonious model, such as a model 

with a shared intercept and response specific random slopes, the tradeo for this parsimony is 

less flexibility in estimating the correlation between the CDRS and HDRS. Since the 

primary goal of our model is generating imputations rather than inference, we see little 

advantage to parsimony when our calibration data allows us estimate the parameters from a 

more complicated model.

Directions for future work include examining harmonization across a larger number of trials 

and trials with time-varying variables, and developing a 3-level imputation model where 

repeated observations are nested within participants who are nested within trials. Our 

application had an insu cient number of trials to support such models. These models may 

make use of shared parameters [49] and/or use informative priors for situations when 

calibration data do not exist or are inadequate to model a larger set of parameters.

Increasingly, researchers are collecting data from multiple studies in order to synthesize 

findings and perform more sophisticated analyses. These projects will continue to grow as 

U.S. funding agencies encourage data sharing [50, 51] and more journals require the release 

of data to accompany manuscripts. Methods that harmonize variables across data sets and 

facilitate analyses by many researchers are increasingly important in order to make full and 

e cient use of synthesized data and take advantage of the potential of IPD meta-analysis to 

address new questions not answerable by a single study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Nested multiple imputation combining rules

Below we describe the nested multiple imputation approach of Reiter [35]. We use notation 

that follows closely to that of Shen [52].

Let Q be the quantity of interest. Assume with complete data, inference about Q would be 

based on the large sample statement that

where Q̂ is a complete-data statistic estimating Q and U is a complete-data statistic 

providing the variance of Q – Q ̂. The M × N imputations are used to construct M × N 

completed data sets, where the estimate and variance of Q from the single imputed data set 

is denoted by (Q̂(m,n), U(m,n)) where m = 1, 2, . . . , M and n = 1, 2, . . . , N. The superscript 

(m, n) represents the nth imputed data set under the set of parameters m. Let Q̄ be the overall 

average of all M × N point estimates

(A.1)

and let Q̄
m be the average of the mth model,

(A.2)

Three sources of variability contribute to the uncertainty in Q. These three sources of 

variability are:Ū, the overall average of the associated variance estimates

(A.3)

B, the between-model variance

(A.4)

and W, the within-model variance
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(A.5)

The quantity

(A.6)

estimates the total variance of (Q – Q̄). Interval estimates and significance levels for scalar 

Q are based on a Student-t reference distribution

(A.7)

where v, the degrees of freedom, follows from

(A.8)

It is possible that T < 0, particularly for small M and N. In this situation, analysts can use T̃ 

= (1 + 1/M)B. Here inferences are based on a t-distribution with M – 1 degrees of freedom. 

Generally, negative values of T can be avoided by making M and N large.
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Figure 1. 
Plot of CDRS scores versus HDRS scores by study. Imputed values are the mean of 200 

imputations.
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Figure 2. 
Posterior predictive checks of the partial correlation (controlling for gender and age) 

between the HDRS and the CDRS in the external calibration data by week. The histogram 

displays the distribution of partial correlations based on imputed values from 200 imputed 

data sets. The vertical lines indicate the observed partial correlation. The posterior predictive 

p-values shown in each histogram are two-sided.
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Figure 3. 
Posterior predictive checks of weekly HDRS means in the external calibration data. The 

histogram displays the distribution of imputed means from 200 imputed data sets. The 

vertical lines indicate the observed means. Posterior predictive p-values are two-sided.
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Figure 4. 
Posterior predictive checks of regression coefficients from a random intercept and slope 

regression model estimating the effect of time on HDRS score in the external calibration 

data. The panel on the left displays the intercept in the model, the panel on the right the 

slope. The histograms display the distribution of the regression coefficients based on 

imputed values from 200 imputed data sets. The vertical lines indicate the observed 

regression coeffcients. Posterior predictive p-values are two-sided. Time is log(number of 

days since baseline + 1).
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Table 1

Descriptive statistics and missing data patterns of fluoxetine and venlafaxine trials at baseline. Not available 

(NA) indicate trials where the depression measure was not used.

Trial CDRS (SD) HDRS (SD) Age (range) Male (%) Duration (wks) No. Assess. n

TADS fluoxetine 56 (10.8) NA 13 (8–18) 51 9 7 221

Eli Lilly fluoxetine 1 44 (12.1) NA 11 (7–18) 72 3 3 219

Eli Lilly fluoxetine 2 58 (10.3) NA 13 (7–18) 54 8 9 172

Eli Lilly fluoxetine 3 55 (12.8) NA 15 (12–18) 47 12 3 96

Eli Lilly fluoxetine 4 NA 22 (3.5) 16 (12–17) 45 6 7 40

Calibration Trials

Wyeth venlafaxine 1 54 (8.7) 18 (5.1) 12 (7–17) 51 8 8 167

Wyeth venlafaxine 2 58 (9.2) 16 (4.8) 12 (7–18) 58 8 8 191

TADS: Treatment for Adolescents With Depression Study
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Table 2

Partial correlation (controlling for age and gender) between CDRS and HDRS in calibration samples. Baseline 

(week 0) includes all participants. Subsequent estimates are based only on control participants.

Week Study 1 Study 2 Overall

0 0.71 0.51 0.57

1 0.74 0.59 0.67

2 0.78 0.71 0.73

3 0.81 0.74 0.76

4 0.83 0.79 0.81

6 0.86 0.77 0.81

8 0.88 0.84 0.85
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Table 3

Descriptive statistics and missing data patterns of fluoxetine and venlafaxine trials at baseline. Values with an 

asterisk next to them indicate that they are based on multiple imputations.

Trial CDRS (SD) HDRS (SD) Age (range) Male (%) Duration (wks) No. Assess. n

TADS fluoxetine 56 (10.8)
17 (5.5)

* 13 (8–18) 51 9 7 221

Eli Lilly fluoxetine 1 44 (12.1)
14 (5.6)

* 11 (7–18) 72 3 3 219

Eli Lilly fluoxetine 2 58 (10.3)
18 (5.4)

* 13 (7–18) 54 8 9 172

Eli Lilly fluoxetine 3 55 (12.8)
17 (5.9)

* 15 (12–18) 47 12 3 96

Eli Lilly fluoxetine 4
62 (10.4)

* 22 (3.5) 16 (12–17) 45 6 7 40

Calibration Trials

Wyeth venlafaxine 1 54 (8.7) 18 (5.1) 12 (7–17) 51 8 8 167

Wyeth venlafaxine 2 58 (9.2) 16 (4.8) 12 (7–18) 58 8 8 191

TADS: Treatment for Adolescents With Depression Study

*
Based on imputed values
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Table 4

Observed-only and post-imputation analyses of CDRS and HDRS scores in fluoxetine trials. The observed-

only HDRS analysis is based on a single trial does not include a random effect at the trial level. All other 

models include a trial-level random effect.

Observed Imputed

Outcome Parameter Est SE t-val p-val Est SE t-val p-val

CDRS

Intercept 54.00 2.56 21.12 <.001 55.20 2.26 24.39 <.001

Time −3.79 0.18 −21.34 <.001 −3.97 0.17 −22.77 <.001

Tx*Time −1.06 0.21 −4.92 <.001 −0.94 0.21 −4.50 <.001

SD(b0l) 5.03 4.98

SD(b0i) 9.91 9.84

SD(b1i) 2.52 2.58

Corr(b0i, b1i) −0.46 −0.45

SD(εijl) 7.23 7.30

HDRS

Intercept 22.59 0.67 33.48 <.001 17.19 0.77 22.3 <.001

Time −3.34 0.42 −7.87 <.001 −1.62 0.04 −45.25 <.001

Tx*Time −0.57 0.55 −1.03 .308 −1.22 0.18 −6.95 <.001

SD(b0l) NA 1.8

SD(b0i) 2.11 4.74

SD(b1i) 1.46 1.23

Corr(b0i, b1i) 0.13 −0.58

SD(εijl) 3.97 3.24

SD(b0l): Standard deviation of random trial-level intercepts

SD(b0i): Standard deviation of random subject-level intercepts

SD(b1i): Standard deviation of random subject-level slopes

Corr(b0i, b1i): Correlation of random intercepts and slopes

SD(εijl): Standard deviation of residual error
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