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Abstract

The amplitude of the N400— an event-related potential (ERP) component linked to meaning 

processing and initial access to semantic memory— is inversely related to the incremental build-

up of semantic context over the course of a sentence. We revisited the nature and scope of this 

incremental context effect, adopting a word-level linear mixed-effects modeling approach, with 

the goal of probing the continuous and incremental effects of semantic and syntactic context on 

multiple aspects of lexical processing during sentence comprehension (i.e., effects of word 

frequency and orthographic neighborhood). First, we replicated the classic word position effect at 

the single-word level: open-class words showed reductions in N400 amplitude with increasing 

word position in semantically congruent sentences only. Importantly, we found that accruing 

sentence context had separable influences on the effects of frequency and neighborhood on the 

N400. Word frequency effects were reduced with accumulating semantic context. However, 

orthographic neighborhood was unaffected by accumulating context, showing robust effects on the 

N400 across all words, even within congruent sentences. Additionally, we found that N400 

amplitudes to closed-class words were reduced with incrementally constraining syntactic context 

in sentences that provided only syntactic constraints. Taken together, our findings indicate that 

modeling word-level variability in ERPs reveals mechanisms by which different sources of 

information simultaneously contribute to the unfolding neural dynamics of comprehension.
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The mechanisms underlying the comprehension of language are complex, involving a highly 

distributed set of neural networks brought on-line to ultimately form message-level meaning 

representations from sensory input. In particular, the comprehension of multi-word text or 

utterances involves the continuous and incremental on-line mapping of incoming sensory 

stimuli onto incomplete semantic representations. Although a substantial behavioral 

literature in psycholinguistics has recently amassed that supports immediate and incremental 

on-line processing in sentence comprehension (Altmann & Kamide 2007; Kamide, 2008; 

Rayner, 2009), evidence from event-related brain potentials (ERPs) for the incremental 

formation of semantic representations has existed since the 1980's (Kutas, Van Petten, & 

Besson, 1988; reviewed in Kutas et al., 1994). One oft-cited line of evidence supporting 

incremental semantic processing is that, for open-class words, the amplitude of the N400— 

an ERP component linked to meaning processing and initial access to semantic memory 

(Kutas & Federmeier, 2000, 2011)— is inversely related to the build-up of semantic context 

over the course of a sentence (Van Petten & Kutas, 1990, 1991). This finding suggests that 

semantic information in the message-level representation builds incrementally with accruing 

context, thus easing the semantic access of meaningful later-occurring words.

In the current study, we revisited the nature of the incremental build-up of sentential 

semantic and syntactic context on the N400, adopting a flexible, item-level analysis via 

linear mixed-effects modeling (LMM). This approach allows for a fine-grained and 

continuous treatment of word-by-word variation on the event-related EEG in individual 

subjects, revealing single-item level influences on the N400. Importantly, our goal in the 

current study was to use the flexibility afforded by linear mixed-effects modeling of word-

level event-related EEG to examine the degree to which accruing sentential context 

modulates multiple aspects of lexico-semantic word processing, as indexed by the N400.

The N400 is part of a default response to any potentially meaningful stimulus and is broadly 

sensitive to a whole host of factors that impact semantic processing (Kutas & Federmeier, 

2000; 2011). In language processing, the N400 shows graded modulation based on the 

degree to which a stimulus is congruent with its prior semantic context (as operationalized, 

for example, by cloze probability; Kutas & Hillyard, 1984). Modulation of the N400 occurs 

continuously and cumulatively across multiple words within a sentence, even in the absence 

of explicit experimental manipulations or task demands. Van Petten, Kutas, and colleagues 

(Van Petten & Kutas, 1990, 1991; Van Petten, 1993) have shown that N400 amplitudes to 

open-class words are reduced with increasing ordinal word position within a congruent 

sentence, suggesting that the N400 is sensitive to the incremental build-up of semantic 

context (see also, Dambacher et al., 2006; Halgren et al., 2002).

In the absence of higher-order discourse constraints (cf. Van Petten, 1995), a reader begins a 

sentence without message-level semantic information. However, with increasing progress 

into a sentence, a conceptual representation is incrementally built, reducing the demands on 

semantic access for subsequent words and, in some cases, also allowing the comprehender to 

anticipate and pre-activate semantic features of likely upcoming words (cf. Federmeier, 

2007; Kutas et al., 1994). Together, accumulated context-related semantic activation and 

increased predictability result in a reduction of N400 amplitude with increasing intra-

sentential word position. Van Petten and Kutas (1991) showed that the word position effect 
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is specific to open-class words in congruent sentences. Such word position effects are not 

seen in randomly ordered words, or in so-called “syntactic prose”, wherein syntactic 

structure is maintained without a coherent message-level semantic interpretation (e.g., The 

infuriated water grabbed the justified dream; Marslen-Wilson & Tyler, 1980). They argued 

that cumulative semantic context effects on the N400 are global, building up over the course 

of an entire sentence.

Importantly, Van Petten and Kutas found that the influence of lexical properties of a word 

interacts with accumulating message-level semantic constraints. At the beginning of 

congruent sentences, for example, word frequency effects are robust, such that more 

frequent words show a smaller N400 compared to less frequent words. However, this word 

frequency effect is reduced as the sentence context accumulates (Van Petten & Kutas, 1990, 

1991), suggesting that, over the course of a sentence, semantic contextual constraints 

supersede the influence of lexical frequency on semantic processing. It has been argued that 

the sensitivity of the N400 to word frequency out of context reflects “baseline” (albeit task-

dependent: e.g., Fisher-Baum et al., 2014) semantic activity levels, with smaller levels for 

more frequent words. As a meaningful context builds, these baseline levels are overridden 

by higher-order semantic constraints (see Federmeier & Laszlo, 2009). Importantly, Van 

Petten & Kutas (1991) did not find such frequency by context interactions in syntactic prose 

and random sentences, indicating that this effect was due to an accumulating congruent 

message-level semantic representation.

More recently, studies of visual word recognition in and out of sentence contexts (Holcomb, 

Grainger, & O'Rourke, 2002; Laszlo & Federmeier, 2008, 2009, 2011, 2014; Vergara-

Martínez & Swaab, 2012; Van Petten, 2014) have examined the influence of a word's 

orthographic neighborhood (the number and features of orthographically similar strings; 

Coltheart et al., 1977; Yarkoni, Balota & Yap, 2008) on semantic processing. These studies 

report that N400 amplitudes are larger (more negative) for words with more orthographic 

neighbors. These findings suggest that information associated with highly orthographically 

similar items are initially activated in parallel with a presented word, such that words with 

many orthographic neighbors engender more activation in the semantic system.

Whereas frequency effects show clear modulation as a function of sentence context 

(Dambacher et al., 2006; Van Petten et al., 1990, 1991; Halgren et al., 2002), it is not clear if 

orthographic neighborhood effects show the same sensitivity to accumulating sentence 

constraint. For example, in some work, orthographic neighborhood effects appear to be 

robust for strings at the end of highly constraining and congruent sentences (Laszlo & 

Federmeier, 2008). Federmeier and Laszlo (2009) have argued that divergent effects of 

context on the impact of frequency and orthographic neighborhood would be expected given 

the aspects of semantic memory use indexed by these lexical variables. As described earlier, 

frequency effects are argued to reflect transient and malleable activation states in semantic 

memory, initially arising as baseline activation states but reducing with increasing message-

level context. In contrast, neighborhood effects are argued to reflect intrinsic structural 

organization within the semantic system. To the extent that visual access to the semantic 

system is organized to some degree by similarity among orthographic inputs, effects of 

neighborhood would be expected to persist even in the presence of strongly constraining 
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sentence contexts. However, other work suggests that sentence context may modulate 

orthographic similarity effects in visual word recognition. In a study by Molinaro, Conrad, 

Barber, and Carreiras (2010), words with high- or low-frequency orthographic neighbors 

completed sentences that were strongly or weakly contextually constraining. They found 

that orthographic neighbor frequency only modulated the N400 to words embedded in 

weakly constraining contexts. When sentence-final words were presented in strongly 

constraining contexts, there was no effect of neighbor frequency. The authors argued that the 

supportive sentence context pre-activates specific target word forms, resulting in less 

competition from orthographically similar words. Thus, the literature shows mixed results 

with respect to whether orthographic similarity is modulated by sentential constraint.

To our knowledge, no study has systematically investigated the simultaneous impact of 

multiple lexical influences, such as orthographic neighborhood and word frequency, on 

semantic processing as they unfold over accumulating sentence contexts. ERP studies have 

not investigated such effects in part because traditional analyses preclude the simultaneous 

consideration of multiple continuous item-level covariates. For example, in studies 

examining incremental context effects on the N400, word position has been treated as a 

factor that is created by binning position into discrete (and sometimes uneven) levels (e.g., 

word 2, words 3-4, words 5+). Similarly, words vary continuously in their lexical attributes 

(frequency, neighborhood size, length, concreteness, etc...), but ERP studies typically 

compare items at extreme values of these distributions. The act of dichotomizing/

discretizing continuous variables has long been known to reduce power and can result in 

spurious findings in certain cases (e.g., Macallum, Zhang, Preacher, & Rucker, 2002). 

Although this is widely known, the practice of signal averaging across many items has often 

been viewed as necessary in ERP data analyses in order to identify components and improve 

the signal-to-noise ratio. However, a growing number of studies have demonstrated that 

item-level analyses of EEG/ERPs can result in reliable effects (Dambacher et al., 2006; 

Delorme et al., 2014; Frank et al., 2015; Gaspar et al., 2011; Laszlo & Federmeier, 2014; 

Tremblay & Newman, 2014; Van Petten, 2014), challenging the assumption that the SNR 

may be too low to detect ERP effects at the level of single items.

Thus, an aim of the current study was to adopt an individual item-level analysis, utilizing 

linear mixed-effects modeling (LMM) to examine word-to-word variation in the N400. The 

use of (generalized) linear mixed-effects models (also known as hierarchical linear models, 

multilevel models, or variance components models) has been prevalent in social science, 

biology, education, and behavioral research for some time (e.g., Singer, 1998; Snijders & 

Bosker, 2011). Recently, these modeling techniques have begun to gain ground in 

psycholinguistics, cognitive psychology, and cognitive neuroscience research as a tool to 

accommodate statistical dependency that arises from the kinds of nested and hierarchically 

structured data that are common in these fields (Aarts et al., 2014; Baayen, Davidson & 

Bates, 2008; Jaeger, 2008; Lazic, 2010; Locker, Hoffman, & Boviard 2007; Payne et al., 

2014). The linear mixed-effects model is a special (restricted) case of models that are 

commonly used in psychophysiology, including repeated measures (mixed-effects) ANOVA 

and ordinary least-squares regression. LMMs are useful for modeling data with complex 

sampling or clustering, such that observations in the response vector are non-independent. 

Statistical dependencies of this sort exist, for example, when observations are drawn in a 
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non-random manner (e.g., repeated measurements across trials within the same subjects or 

spatial correlation across neighboring electrode sites). Such data are common in ERP 

experiments of sentence processing that often contain multiple sources of statistical 

dependency (e.g., across words, subjects, channel sites). In these cases, the use of LMMs 

avoids the need for aggregation across either items (i.e., by-subjects analyses) or subjects 

(i.e., by-items analyses).

In more general terms, LMMs are useful for: (1) modeling an arbitrary number of fixed and 

random effects (as long as the issue of overfitting is addressed), allowing for the flexible 

accommodation of many experimental designs and methodologies without having to first 

transform or aggregate raw data, (2) modeling the influence of predictors at multiple levels 

of variation (e.g., across subjects, items, time, space) simultaneously, (3) joint modeling of 

both discrete and continuous variables, (4) modeling data from unbalanced designs with 

missing data, and (5) explicitly modeling the variance-covariance structure of the data, 

allowing for violations of sphericity and homogeneity of error variance (see Gelman & Hill, 

2007; Snijders & Bosker, 2011). Thus, LMMs offer a tool for fitting models to 

accommodate arbitrarily complex study designs by modeling of the variance-covariance 

structure of the data, such that the researcher can abandon the common method of forcing or 

coercing data to fit within a pre-specified model (e.g., ANOVA, regression). The Appendix 

provides supplementary details regarding the linear mixed-effects model, including model 

fitting, implementation, and interpretation.

One aim of the current study was to demonstrate that linear mixed-effects models are useful 

tools for testing hypotheses about item-level variation in ERPs and that LMMs can be used 

to examine continuous item-level dynamics of event-related EEG without the loss of 

information and precision entailed by averaging and discretizing naturally continuous 

variables. Towards this aim, our first goal was to replicate the word position effect (Van 

Petten & Kutas, 1990, 1991) on the N400 at the level of individual words utilizing item-

level modeling of the N400 component (see also Dambacher et al., 2006, for a conceptually 

related analysis utilizing subject-specific random regression models). Our primary aim in the 

current study was to then demonstrate that such item-level analyses yield new insights into 

the sensitivity of the N400 to multiple different sources of natural linguistic variation, by 

examining the degree to which word-level variation in frequency and orthographic 

neighborhood size is moderated by accumulating higher-order semantic and syntactic 

contextual constraints.

Method

Participants

Data were analyzed from 28 participants (13 females; mean age = 20, range = 18-37); 24 of 

those data sets were previously analyzed in Lee & Federmeier, 2009 (looking at responses to 

sentence-final words only). All participants were right-handed monolingual native speakers 

of English with normal or corrected-to-normal vision. None of the participants had a history 

of neurological or psychiatric disorders or brain damage. Participants were compensated 

with course credit.
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Materials

Participants read a total of 172 sentences, divided into three conditions: (1) congruent 

sentences (e.g., She kept checking the oven because the cake seemed to be taking an awfully 

long time to bake), (2) syntactic prose sentences (She went missing the spring because the 

court began to be making an awfully poor art to bake), which provide the same syntactic 

structure as the coherent items, but with no coherent message-level semantics, and (3) 

scrambled sentences (The court the she spring making missing awfully art poor to because 

an to be went began bake). Syntactic prose sentences were created by replacing the content 

words of each congruent sentence with randomly selected words of the same grammatical 

category from other congruent sentences. Therefore, congruent and syntactic prose 

sentences were matched in the relative position of closed-class words. Random sentences 

were created by randomly scrambling the position of the words within each syntactic prose 

sentence, with the exception of the sentence-final word. Sentences contained, on average, 

about 14 words (M = 14.20, SD = 3.39, range = 5-27).

Open class words (typically defined as “meaning-bearing” words) included nouns, verbs, 

adjectives, and derived adverbs (−ly adverbs). Closed class words (semantically-sparse 

words that mainly perform syntactic functions) included words belonging to other lexical 

classes (e.g., determiners, prepositions, conjunctions, and pronouns). Following the 

dichotomous assignment of words in Van Petten and Kutas (1991), words of ambiguous 

class were assigned to the closed-class category. Although identical closed-class words 

appeared in the three conditions, open-class words were presented across conditions with 

random selection, but without exhausting all possible permutations, due to limitations in the 

number of stimuli that could be presented in a single session. Importantly, no differences 

were found across sentence contexts in any of the target or control variables analyzed in the 

current study.

Procedure

Participants were seated 100 cm in front of a 21” computer monitor in a dim, quiet testing 

room. At the start of each trial, a series of plus signs appeared in the center of the screen for 

500 ms. After an SOA ranging between 1000-1500 ms (randomly jittered to reduce 

anticipatory potentials), a sentence was displayed word-by-word in the center of the screen. 

Each word was presented for 200 ms, followed by a 300 ms blank screen. In order to ensure 

that participants were attending to each word, as well as attempting to integrate each word 

into a holistic unit, participants were administered word and sentence recognition tasks. 

Following each sentence, participants were presented with a probe word and asked to judge 

whether it had appeared in the preceding sentence. Half of the probe words were new words 

and half of the probes appeared in the previous sentence. The experimental session was 

divided into eight blocks. At the end of every two blocks, participants were also 

administered a brief sentence-recognition test. In total, participants were tested on 96 

sentences, half of which were old (drawn in equal numbers from congruent, syntactic prose, 

and scrambled sentences) and half of which were new (also consisting of equal numbers of 

each sentence type). New sentences contained some words that the participant actually 

viewed, making word level recognition alone insufficient to allow participants to succeed on 

this test. As the behavioral data have already been reported in Lee and Federmeier (2009), 
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we do not re-describe them here, except to say that the results showed that participants were 

attending to both individual words and to the sentences as a whole.

EEG Recording and Processing

EEG was recorded from twenty-six evenly-spaced silver-silver chloride electrodes 

embedded in an Electro-Cap. The sites were: Midline Prefrontal (MiPf), (Left and Right) 

Medial Prefrontal (L/RMPf), Lateral Prefrontal (L/RMPf), Medial Frontal (L/RMFr), 

Mediolateral Frontal (L/RDFr), Lateral Frontal (L/RLFr), Midline Central (MiCe), Medial 

Central (L/RMCe), Mediolateral Central (L/RDCe), Midline Pareital (MiPa), Mediolateral 

Parietal (L/RDPa), Lateral Temporal (L/RLTe), Midline Occipital (MiOc), Medial Occipital 

(L/RMOC), and Lateral Occipital (L/RLOc).

All scalp electrodes were referenced on-line to the left mastoid and re-referenced off-line to 

the average of the right and the left mastoids. In addition, one electrode (referenced to the 

left mastoid) was placed on the left infraorbital ridge to monitor for vertical eye movements 

and blinks, and another two electrodes (referenced to one another) were placed on the outer 

canthus of each eye to monitor for horizontal eye movements. Electrode impedances were 

kept below 3 kΩ. The continuous EEG was amplified through a bandpass filter of .02–100 

Hz and recorded to hard disk at a sampling rate of 250 Hz.

EEG epochs were examined and marked for artifacts (drift, muscle activity, eye blinks, and 

eye movements). On average, a total of 18% (SD = 13%; range across subjects = < 1% - 

48%) of words were marked as artifacts and not included in subsequent analyses. We 

adopted a very conservative approach to removing entire subjects on the basis of artifacts 

(greater than 50% of data loss). This approach resulted in removing four subjects from 

analyses. Analyses were conducted via maximum likelihood estimation on all available data 

(Graham, 2009; Little & Rubin, 2002)1. This method accommodates unbalanced designs 

that arise from artifact rejection by using all available data to estimate parameters, such that 

highly influential individual random effects (e.g., subjects or words) with fewer observations 

are shrunk towards the population average (see Appendix A2).

In order to examine word-by-word variation in N400 activity, measurements of mean N400 

amplitude were collected at the level of individual words from the raw EEG. Epoched (from 

100 ms pre-stimulus to 920 ms post-stimulus) un-averaged EEG for each word was treated 

as the critical data. Item-level amplitudes were measured from all words in each sentence, 

including the sentence initial and final words. Some previous studies have removed these 

items before calculating grand averages (e.g., Van Petten & Kutas, 1991). Nevertheless, we 

found that removal of these items did not alter the pattern of results. Thus, all possible words 

were included in the analyses. Because our sentences varied substantially in length, 

sentence-final words were distributed across different word positions from sentence to 

1In contrast to single and multiple imputation-based methods (which aim to fill in missing data), or methods that result in complete-
case data through data deletion methods (which result in biased estimates), ML methods allow for the modeling of incomplete/
unbalanced data by finding parameters that maximize the likelihood (in an iterative manner; see Appendix A1) using all available data 
for those parameters. Notably, under the assumption that data are missing at random (conditional on model parameters) or missing 
completely at random, ML estimates are not biased by data missingness (see Graham, 2009; Molenbergs & Kenward, 2008; Schafer & 
Yucel, 2002).
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sentence. Following baseline correction (conducted by subtracting the 100ms pre-stimulus 

baseline period), measurements of mean amplitude were taken within a predefined N400 

epoch (300-500 ms) at each channel separately for each word, after applying a digital low-

pass filter of 30Hz. The resulting data set includes measurements of mean amplitude within 

the N400 latency band separately for each word, channel, and participant.

Data Analysis

Analyses of word-level N400 amplitudes were conducted using linear mixed-effects models 

via restricted maximum likelihood estimation. All analyses were conducted with the lme4 

package (Bates, Maechler, Bolker, & Walker, 2014) in the R language for statistical 

computing (R Core Team, 2014). Appendix A contains supplementary information for 

fitting the models used in the current paper.

We defined the random-effects structure of our models to represent the inherent 

experimental design and nested sampling structure of our data (cf. Bates et al., 2013). Thus, 

variance across subjects, items, and channels were modeled as random intercept terms in the 

statistical model. Preliminary models also included a random intercept for sentence. 

However, this parameter was estimated at zero, indicating that there was little unique 

residual variation in N400 amplitude across sentences after accounting for word-level 

variability. Analyses of N400 effects were conducted across eight a priori chosen centro-

parietal electrode sites (LMCe, RMCe, LDCe, RDCe, LDPa, RDPa, MiCe, MiPa), where 

N400 effects are typically largest (with the exception of the distributional analyses, where 

models were fit across all scalp channels). In the analyses of contextual and lexical 

influences, only open-class words were considered, as effects of frequency and sentential 

context on the N400 are largest within these words (Van Petten & Kutas, 1990, 1991).

Predictors of word-level variance included sentence context (SC: congruent, syntactic prose, 

or random), word position (WP), word frequency, and orthographic neighborhood. Word 

frequency (log transformed) was derived from the Hyperspace Analog to Language (HAL) 

norms from the English Lexicon Project, and orthographic neighborhood size was derived 

from the orthographic Levenshtein distance 20 (OLD20) measure (Yarkoni, Balota, & Yap, 

2008) from the English Lexicon Project (see Balota et al., 2007). OLD20 reflects the mean 

distance (in number of steps) from each word to the 20 closest Levenshtein neighbors in the 

lexicon. Levenshtein distance (Levenshtein, 1966) is the minimum number of substitutions, 

insertions, or deletion operations required to turn one word into another. Thus, words with 

higher OLD20 scores are considered orthographically sparse (have relatively fewer 

neighbors), whereas words with lower OLD20 scores are considered orthographically dense 

(have relatively more neighbors). This measure is, thus, negatively correlated with 

traditional measures of neighborhood size, such as Coltheart's N (e.g., the number of words 

that can be obtained by changing one letter while preserving the identity and positions of the 

other letters; Coltheart, Davelaar, Jonasson, & Besner, 1977). Word length, sentence length, 

and concreteness ratings were also used as control variables in some analyses (see below). 

Concreteness ratings were drawn from a recent large-scale norming study (Brysbaert et al., 

2014). Table 1 presents descriptive information and correlations among these lexical 

variables.
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Ordinal word position has a skewed distribution because it is a cumulative measure (i.e., all 

sentences have at least 5 words, but few sentences have at more than 20 words). Several data 

transformations (e.g., natural log transformation, Box-Cox power transformation, sentence-

mean centering) were conducted on word position, but all analyses resulted in the same 

pattern of results (cf. Kuperman et al., 2010). Thus, for transparency of interpretation, word 

position was coded as the ordinal position from the beginning of each sentence.

Because sentence context has three levels, the congruent condition was treated as a reference 

group to form two contrasts: Contrast 1 (SC1): syntactic prose vs. congruent; Contrast 2 

(SC2): random vs. congruent. These contrasts were used in all models unless otherwise 

noted. All other variables were treated as continuous effects. All continuous variables were 

standardized before analysis in order to center and scale the predictors, which reduces 

unessential multicollinearity and simplifies interpretation of parameter estimates in the 

presence of higher-order interactions. The interpretation of fixed-effect parameter estimates 

is analogous to the interpretation of regression weights in the linear regression model. Thus, 

note that important concepts necessary for interpreting higher-order interactions in linear 

regression models (e.g., effects of centering, contrast coding, the principle of marginality, 

interactions between dichotomous and continuous covariates; Hayes, 2014; Cohen, Cohen, 

West & Aiken, 2003) also hold for the fixed-effects in linear mixed-effects models.

For continuous variables, parameter estimates reflect change in mean amplitude per standard 

deviation change in the variable. For dichotomous variables, effect sizes reflect change in 

mean amplitude between the reference and contrast group. Parameter estimates for higher-

order interactions (including continuous and dichotomous variables) reflect the magnitude of 

the effect of one of the independent variables on a dependent variable as a function of two 

(or more) independent variables (interpreted as moderator variables). Conditional plots 

probing key higher-order interactions are included to aid in interpretation (cf. Curran, Bauer, 

& Willoughby, 2004). In addition, when higher-order interactions were reliable, they were 

further probed by fitting separate models as a function of sentence context.

Further specification of the random effects structure was modeled following the 

recommendations of Barr and colleagues (Barr, Levy, Scheepers, & Tily, 2013; Barr, 2013). 

Initial models were fit with random slope parameters for all corresponding within-subject 

effects warranted by the design (i.e., a fully maximal random-effects structure). Note that 

because our word-level effects of interest were not experimentally crossed, but rather 

properties of the words (e.g., position in the sentence, frequency), by-word random slopes 

for word-level predictors were not considered. Because of the massive number of variance-

covariance parameters to be estimated, the maximal models unsurprisingly failed to 

converge to a proper solution. Simplified random effects structures were fit, aiming to 

reduce overfitting of the random effects structure (cf. Bates, Kliegl, Vasishth, & Baayen, 

2015). In simplified models, by-channel random slope parameters were estimated at zero, 

resulting in failures to converge to an optimal solution. This likely reflects the limited 

variance in effects across the selected centro-parietal channels due to volume conduction. 

Therefore, random slopes of effects across channels were not fit in final models. The final 

converging models included by-subjects random-slope variance estimates for the critical 

highest-order interactions in the models, which results in a balanced trade-off between 
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model variance-covariance matrix overfitting and deriving SE estimates that are 

appropriately conservative (see Barr et al., 2013; Barr, 2013).

First, we present a model testing the degree to which N400 amplitudes vary with word 

position as a function of sentence context (Model 1). The aim of this analysis is to replicate 

the word-position context effect, to show that effects of sentence context on the N400 can be 

detected at the level of individual words. Following this, we simultaneously examine the 

impact of word frequency and orthographic neighborhood on N400 activity and, in 

particular, assess how the impact of these lexical variables is moderated by sentence context 

and word position (Model 2). Effects sizes are presented as model-derived fixed-effect 

parameter estimates (i.e., regression weights), along with corresponding 95% profile 

likelihood confidence intervals for statistical inference (Cumming, 2013). Parameters with 

confidence intervals that do not contain zero can be interpreted as statistically significant 

following traditional null-hypothesis significance testing. Comparative and absolute fit 

statistics from these models are presented in Table 2 (see Appendix A3 for more details). 

These include the likelihood ratio test, Akakie Information Criteria (AIC), Bayesian 

Information Criteria (BIC), and two approximate R2 measures: pseudo R2 and conditional 

R2 (Singer & Willet, 2003; Nakagawa & Schielzeth, 2013; Johnson, 2014). A “null” model, 

which includes only an intercept parameter plus the random-intercept structure, is presented 

in Table 2 as a point of comparison for fit statistics. See Appendix A3 for further 

information on fit indices.

Results

Incremental Effects of Semantic and Syntactic Context

First, a model was fit testing the effects of word position (WP) and sentence context (SC) on 

N400 amplitudes to all open-class words (Model 1). Of key interest here is the test of 

whether word position interacts with each sentence context contrast. We found reliable WP 

× SC1 (b = −.46; 95%CI = [−.645 −.27]) and WP × SC2 interactions (b = −.50; 95%CI = [−.

65, −.35]), indicating that the word position effect was reliably larger in congruent sentences 

than in syntactic prose or random sentences. Figure 1a plots the best-fit linear regression 

lines for word position in each sentence context. As can be seen in Figure 1, there was a 

robust linear relationship between word position and N400 amplitude in congruent 

sentences, such that increasing word position is associated with reduced (more positive) 

N400 amplitudes, an effect that is not present in syntactic prose or randomly shuffled word 

strings. Figure 1b plots grand-average ERPs, illustrating the reliable word position effect on 

N400 amplitude in congruent sentences. Two-word bins are plotted across six electrode 

sites, color-coded by ordinal word position within sentences. Although there is some slow 

variation across the entire waveform from word to word, large systematic variation as a 

function of word position is seen only within the N400 epoch.

Parametric (via modeling higher-order polynomial trends) and non-parametric (via 

generalized additive models) non-linear trends of word position were also considered in 

separate analyses. While there was some indication of non-linearity across word position, 

the overwhelming trend was for a reduction in N400 with increasing word position that was 

well captured by a simple linear trend (e.g., Marlslen-Wilson & Tyler, 1980). Thus, linear 
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trends were used in the current study, striking a balance between fit to the data and 

parsimonious inferential interpretation of model results, especially when considering higher-

order interactions in later models.

Figure 1c presents the scalp distribution of the word position effect in congruent sentences. 

We computed channel-specific predictions of the linear effect of word position on N400 

amplitudes by estimating the best linear unbiased predictors (BLUPs) (see Appendix A2) of 

this effect on N400 amplitude across all scalp channels in a separate model fit to all open-

class words within congruent sentences only. These estimated effect sizes represent the per-

word decrease in N400 amplitude across word position, separately for each scalp channel. 

More negative values indicate a larger estimated decrease in N400 amplitude per unit 

increase in word position. A scalp topography map of the word position effect was created 

by mapping the channel-specific data to a 2-dimensional circular head and using spherical 

spline interpolation of values between channels on a fine Cartesian grid via the topoplot 

function in the EEGLAB (Delorme & Maekig, 2004) toolbox for MATLAB (The 

MathWorks, 2014). The resulting figure represents the spatial distribution of the effect size 

(linear slope estimate) of word position on N400 amplitudes across the scalp. Note that this 

is similar to plotting the distribution of a difference wave to visualize the scalp topography 

of a particular experimental effect. In this case, because the variable of interest is continuous 

and approximately linear, the correct corresponding plot of an effect would be the linear 

slope estimate, as shown here. This figure clearly shows that the word position effect 

follows a characteristic N400 scalp distribution, with the largest effects over centro-parietal 

electrode sites.

The analyses reported above illustrate that semantic modulation of N400 activity can be 

detected at the item level. Indeed, Figure 1b clearly shows word position effects on the 

grand-averaged N400, consistent with the findings from the item-level models. However, 

this figure also shows that there is not complete equivalence across conditions in the 

baseline. In order to determine whether the word-position effects reported above are driven 

by confounding factors early in the waveform that may be influencing component 

measurement at the item level (e.g., slow potentials, early sensory/perceptual differences, 

preceding component overlap, or preparatory activity), a control model was tested on an 

early period in the event-related item EEG. A model was fit that was identical to the initial 

WP × SC model, except that it was fit to word-level mean amplitudes in the period from 

0ms to 200ms post-stimulus onset. This period is the same size as the N400 latency 

measurement window (300-500 ms), but is one in which semantic influences would be 

unexpected (Laszlo & Federmeier, 2014). We found no reliable interactions, nor any 

evidence for reliable word position effects within any sentence type, suggesting that the 

N400 word position effect is not driven by early or baseline item-to-item fluctuations in 

amplitude.

Lexico-Semantic Modulation of the N400 in Sentence Contexts

In our initial analysis, we showed that we could replicate the word position context effect 

with N400 amplitudes measured at the level of individual words, thus illustrating the 

validity of an item-level modeling approach. Our next aim was to examine the degree to 
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which frequency and neighborhood effects simultaneously contribute to N400 amplitude 

during sentence reading and to study how semantic and syntactic contexts influence lexico-

semantic processing as indexed by the N400. Notably, such analyses are not possible via 

traditional aggregate approaches that average across multiple items and discretize 

continuous variables.

A model was fit to the data with orthographic neighborhood, word frequency, word position, 

sentence context, and their interactions as predictors of N400 amplitude (Model 2). The aim 

of this model was to test the effects of accumulating sentence contexts on lexical processing, 

as indexed by frequency and neighborhood effects on the N400. Thus, we were testing for 

the presence of three-way interactions between sentence context, word position and 

frequency/neighborhood. Effects are adjusted for variation in semantic concreteness, word 

length, and sentence length. Concreteness and length are included as control variables 

because they are correlated with both frequency and orthographic neighborhood. Moreover, 

concreteness has been shown to be a strong independent predictor of N400 amplitude in a 

recent single-item ERP investigation of word recognition (Van Petten, 2014). Sentence 

length is also included as a covariate, because variability in overall length may contribute to 

the strength of word position as a moderator of lexical effects.

Figure 2 presents the fixed-effects parameter estimates and corresponding 95% confidence 

intervals from the linear mixed-effects model corresponding to this analysis. Of critical 

interest in this model is the degree to which frequency and orthographic neighborhood 

effects are moderated by sentence context and word position (i.e., three-way interactions 

with sentence context and word position). As seen in Figure 2, there were reliable three-way 

interactions between word position, frequency, and both sentence context contrasts. This 

interaction is presented graphically in Figure 3a, which depicts the partial-effects plot (see 

Preacher, Curran, & Bauer, 2006) of word frequency on N400 amplitude at conditional 

levels of word position (25th, 50th, and 75th percentiles) for congruent, syntactic prose, and 

random sentences.

To further probe this three-way interaction, individual models were fit testing the Frequency 

× Position interactions in each sentence type. For congruent sentences, there was a robust 

effect of word frequency at the beginning of the sentence, which was reduced as word 

position increased, yielding a reliable WP × Frequency interaction (b = −.57; 95%CI = [−.

33, −.81]). This interaction was not statistically significant in syntactic prose sentences (b = 

−.10; 95%CI = [−.36, .16]) or in random sentences (b = −.16; 95%CI = [−.36, .04]). 

Collectively these findings suggest that accumulating message-level semantic constraints 

reduce the influence of word frequency on semantic processing.

There was no evidence for 3-way interactions between orthographic neighborhood size, 

context, and word position (see Figure 1)2. Figure 3b presents the partial-effects plot (see 

Preacher, Curran, & Bauer, 2006) of orthographic neighborhood on N400 amplitude at 

conditional levels of word position (25th, 50th, and 75th percentiles) for congruent, syntactic 

prose, and random sentences. In fact, there was no reliable 2-way interaction between word 

position and orthographic neighborhood in any of the three sentence contexts, suggesting 

that neighborhood effects are invariant in magnitude across word positions within a 
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sentence. There was, however, evidence for a reliable, but small, 2-way interactions between 

orthographic neighborhood and sentence context in the overall model (Figure 1), such that 

neighborhood effects were slightly larger in congruent sentences (bC = .44, 95% CI: [.07, .

62]) than in syntactic prose (bJ = .28, 95% CI: [.02, .54]) or random sentences (bR = .32; 

95% CI: [.06, .58]). However neighborhood effects reliably predicted N400 amplitude 

across all sentence context types. Thus, in contrast to the effects of frequency, it appears that 

orthographic neighborhood remains a reliable predictor of N400 amplitudes in the face of 

increasing message-level semantic constraints3.

Effects of Semantic and Syntactic Context on Closed-Class Words

Van Petten and Kutas (1991) found a main effect of sentence context on N400 amplitudes to 

closed-class words, such that amplitudes were reduced in syntactic prose sentences relative 

to random sentences, but this effect did not interact with word position. They argued that 

syntactic context exerted local constraints on closed-class words, which were restricted to 

minor syntactic constituents, but that this did not increase in strength over the course of the 

sentence. To test the degree to which accumulating syntactic and semantic context 

modulated N400 amplitudes to closed-class words, we conducted a follow-up analysis 

testing the effects of word position and sentence context on N400 amplitudes to all closed-

class words, using the same structure as Model 1. Interestingly, we found a reliable WP × 

SC1 interaction (b = −.42; 95%CI = [−.62, −.23]), indicating that closed class words in 

syntactic prose showed a larger reduction in amplitude as a function of word position than in 

the congruent sentences.

Figure 4a plots the best-fit linear regression lines for word position in each sentence context. 

As can be seen, increasing word position was associated with differentially reduced (more 

positive) N400 amplitudes to closed-class words in syntactic prose sentences only. Figure 4b 

plots grand-average ERPs illustrating the word position effects on N400 amplitudes to 

closed-class words in syntactic prose. As can be seen, the N400 becomes more positive with 

increasing word position, although this effect is smaller than the effects of semantic context 

on open-class words. Figure 4c presents the scalp distribution of the word position effect on 

closed-class words in syntactic prose sentences. The word position effect follows a typical 

N400 scalp distribution, with a slight right lateralization (cf. Kutas & Hillyard, 1982).

Discussion

The goal of this study was to probe the nature and scope of incremental effects of semantic 

and syntactic context on lexical processing during sentence comprehension. Our approach 

involved the application of an emerging analytical technique, which has not been widely 

2The correlation between word length and orthographic neighborhood is driven by the fact that words that are quite long tend to have 
a sparse orthographic neighborhood space. Given the high degree of correlation between word length and ON, there is concern about 
collinearity influencing model parameters. Therefore we conducted a follow-up analysis aimed at examining the effects of ON in a 
model without longer words (that necessarily contain fewer neighbors). This analysis was conducted on a restricted dataset excluding 
words longer than 8 characters. Importantly, the pattern of results remains the same: we still find reliable relationships between ON 
and N400 amplitude in the restricted dataset. Indeed, the effect of orthographic neighborhood was larger overall in the model 
removing longer words than in our full model.
3Models were also fit using Coltheart's N as our measure of orthographic neighborhood. This model produced the same pattern of 
findings (with ON showing robust effects across all word positions in each sentence type and no interactions with sentence context or 
word position).
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applied to ERP data, in order to uncover word-level N400 dynamics via item-level 

measurement and analysis of N400 amplitudes, without aggregating EEG across individual 

subjects or individual items. Our findings provided a replication of the general effects of 

incremental sentential context on the N400, as well as novel extensions of our understanding 

of how the buildup of semantic and syntactic constraints impacts word processing.

In particular, we replicated the finding that N400 amplitudes to open-class words are 

reduced with ordinal word position in congruent sentences only, as reported by Van Petten 

and Kutas (1991). In syntactic prose and sentences with randomly shuffled words, there was 

no evidence that word position modulated N400 amplitudes to open-class words, implicating 

the accrual of sentence-level semantic context as responsible for the observed word position 

effects. By replicating this classic effect utilizing an item-level analysis, where no averaged 

ERP components were computed or directly measured, we clearly show that functional 

changes in underlying ERP components can be reliably detected in a single statistical 

analysis from the event-related EEG without signal averaging across items, at least in the 

case of N400 amplitudes that have a uniform stimulus-locked temporal signature. Further 

evidence for the efficacy of this approach in detecting N400 effects comes from the scalp 

distributions of the item-level word position effects, which show a clear centro-parietal 

maximum, consistent with the observed scalp distribution of the N400 in averaged ERPs 

(see Figures 1c and 4c).

Given that we could replicate this effect, our principal aim in the current study was then to 

examine the degree to which the contributions of frequency and orthographic neighborhood 

to word processing are modulated by the availability of semantic and syntactic constraints. 

Therefore, we examined how the incremental buildup of context interacted with lexical 

processing by simultaneously modeling the effects of orthographic neighborhood and word 

frequency on the N400 to individual words, across sentence types that differed in the 

availability of those constraints and over word position within a sentence as those 

constraints built up. The results from these analyses highlight that frequency and 

orthographic neighborhood effects on the N400 do not respond similarly to accumulating 

sentential context.

At the beginning of congruent sentences, clear frequency effects emerged, such that the 

N400 was larger to less frequent words. However, with accumulating semantic context only, 

effects of frequency were reduced in magnitude, replicating the findings from Van Petten 

and Kutas (1991). In contrast, orthographic neighborhood showed a different pattern of 

sensitivity to sentence context. First, we replicated previous findings showing an association 

between neighborhood size and N400 amplitude, with larger N400s to words with many 

neighbors compared to those with fewer neighbors (Holcomb et al., 2002, Laszlo & 

Federmeier 2007; 2008; 2009). Our findings extend earlier work on neighborhood effects by 

showing that (1) orthographic neighborhood effects can be observed continuously at the 

level of individual words in sentences, in the absence of signal averaging across subjects or 

items, (2) orthographic neighborhood effects are observed invariant of word position and (3) 

accumulating semantic context does not eliminate neighborhood effects, unlike effects of 

frequency.
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Most notably, this study is the first to directly compare the effects of sentence context on 

frequency and neighborhood effects simultaneously across varying context types. 

Federmeier and Laszlo (2009) argued that frequency and orthographic neighborhood effects 

reflect, respectively, the dynamics of information use and information structure during 

visual word recognition. Our findings were consistent with this model. We found that 

supportive sentence contexts reduced the impact of frequency over the course of a sentence, 

whereas orthographic neighborhood effects persisted in congruent sentences. Indeed, 

semantically supportive sentence contexts appeared to slightly increase the magnitude of the 

neighborhood effect on the N400, with a small but reliably larger neighborhood effect in 

congruent sentences relative to syntactic prose. In syntactic prose sentences, neighborhood 

effects were slightly smaller on average—but still present— suggesting that this atypical 

syntactic structure may have interfered to some degree with early aspects of lexical 

processing (i.e., initial spreading activation to orthographically similar word form 

representations). This finding is additionally consistent with the claim that, in syntactic 

prose items, readers may be strategically shifting attention away from open-class words, 

instead focusing more strongly on the overall syntactic structure (see discussion below).

Whereas orthographic neighborhood reflects the degree to which visual word 

representations are structured by orthographic similarity, frequency effects appear to 

represent transient “baseline” activation states of semantic memory based on prior 

experience. Such activation states are likely to be malleable -- as supported by findings that, 

even for out-of-context words, frequency effects on the N400 (and on behavioral indices of 

word processing) vary with task demands (see discussion in Fisher-Baum et al., 2014). 

Similarly, we would expect that the build-up of message-level constraints would adjust these 

activation states away from their baselines, thus reducing the influence of frequency on the 

N400.

We also found, in contrast to Van Petten and Kutas (1991), that N400s to closed-class words 

were reduced with accumulating syntactic context. In their study, there was an overall main-

effect of sentence context such that syntactic prose sentences showed reduced N400 effects 

overall compared to congruent words. Van Petten and Kutas argued that syntactic context 

did exert constraints on closed-class words, but that these were locally bounded within 

phrases or clauses (e.g., a preposition predicting a subsequent determiner as in “He was in 

the house”). Such local constraints would not be expected to increase with accumulating 

syntactic context.

It is possible that such syntactic prediction is task specific or strategic in nature, guided in 

part by the constraints provided by the sentence context. In our sentences, which included 

(on average) longer sentences than Van Petten and Kutas (1991), it is not immediately 

obvious that syntactic prose sentences are incoherent, sometimes taking several words for a 

reader to realize that a sentence provides only syntactic cues. Thus, the word position effect 

on closed-class words may reflect the shifting of attention explicitly towards syntactic 

structure. This is consistent with findings from an event-related fMRI study by Freiderici 

and colleauges (2000), who found evidence that, relative to normal prose, so-called 

“Jabberwocky” sentences differentially increased activation in anterior and posterior 

temporal regions implicated in syntactic processing (see also Mazoyer et al., 1993). Because 
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syntactic prose lacks semantic cues, the syntactic system may be engaged to a greater extent, 

for example to monitor incoming word-order information during syntactic structure building 

over the course of the sentence.

Thus, these effects in the syntactic prose condition may reflect task-specific changes in 

processing (cf. Kaan & Swaab, 2002). To the extent that syntactic prose acts as a task set 

(which has been shown to modulate the N400; Fischer-Baum, Dickson, & Federmeier, 

2014), readers may become more biased towards the overarching syntactic structure as 

syntactic prose sentences unfold in time. When only syntactic information is available, the 

system may shift focus strategically to those features of the sentence that are consistent and 

predictable within the limits of this context. Importantly, these findings are consistent with a 

growing view of the N400 as part of a highly interactive system that immediately takes 

advantage of all available information in parallel to guide word processing (Kutas & 

Federmeier, 2011; Laszlo & Federmeier, 2008).

There are a number of reasons that our study may have resulted in a more “global” effect of 

syntactic context, reflecting shifts in attention to syntactic information with accumulating 

syntactic context. One possibility is that the behavioral task used in the current study biased 

attention away from word processing and more towards structural processing. As part of our 

off-line comprehension assessment, we included a delayed sentence recognition task in 

addition to a similar word recognition task as used by Van Petten and Kutas. It is possible 

that the sentence recognition task encouraged participants to allocate more attention to the 

global sentence structure, especially in the case wherein only syntactic context was 

available. In addition, our sentences included a much larger range of sentence lengths, with 

some sentences spanning more than twenty words. It is possible, then, that the increased 

context afforded by these sentences allowed for an enhanced appreciation of the global 

syntactic structure, leading to increased featural pre-activation for closed-class words. 

Indeed, our longer sentences may have afforded possibilities for global syntactic predictions 

that spanned multiple words and syntactic boundaries (e.g., She was so scared after the 

football that she managed to weep).

An alternative explanation for the difference between our findings and those of Van Petten 

and Kutas (1991) centers around our analytical methodology. By analyzing the 

unaggregated event-related EEG, and modeling word position effects continuously, it could 

also be that we had greater power to detect these subtler effects in syntactic prose. 

Discretizing the word position effect (i.e., reducing the levels of a variable by aggregating 

adjoining values/levels) in order to compute by-subject ERPs in the original study may have 

distorted these overall small but reliable effects that were revealed in our study that utilized 

an analytical method that more closely matched the underlying structure of the data. 

However, this appeal to power does not explain the lack of difference between congruent 

and random sentences in the current study.

Linear mixed-effects models and related item-level methods (e.g., generalized additive 

mixed models, Tremblay & Newman, 2015; rERPs, Smith & Kutas, 2015a,b; ERP-Images, 

Delorme et al., 2014) offer a number of advantages in the analysis of ERP and EEG data. 

We have argued that LMMs are useful for modeling item-level dynamics that would be lost 
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in traditional averaging, modeling of data with unbalanced observations across experimental 

units, examining continuous covariates at multiple sources of variation in the data (e.g., 

interactions between trial-level variables and individual difference factors), and the 

treatment of scalp distributional effects.

However, there are limitations to this approach and areas where future work is necessary. 

First, an exploratory analysis of the full ERP waveform (and the effects of covariates on the 

entire ERP waveform) is not easily handled within the LMM framework used in the current 

study. We aimed to model the scalp-recorded N400, which has very well characterized 

spatial (centro-pareitally maximal) and temporal (peak amplitudes between 300-500 ms) 

features. However, the choice of time-window is complicated in exploratory analyses, where 

a clear component may not be selected a priori. This may be mitigated by conducting initial 

exploratory analyses via traditional ERPs, or by using visualization methods capable of 

probing single-trial ERP dynamics, such as the use of ERP images (Delorme et al., 2014) or 

through two-stage regression-based estimation of ERP waveforms (rERPs), as described by 

Smith and Kutas (2015 a, b). These graphical methods could be combined with linear 

mixed-effects models for statistical inference in order to aid in fully characterizing effects of 

continuous covariates on ERPs (but see Luck, 2014 for issues surrounding bias in 

visualizing results to select analysis parameters).

We also focused on mean amplitude measures in the current report. Because the expected 

value is a linear operator, there is no concern in inferential issues surrounding measuring 

mean amplitude from single-trials. However, latency-based measures do not share this same 

property, as there is not equivalence between the mean of item-level latency estimates and 

the latency of a mean ERP component. In particular, noise in the trial-level EEG data 

precludes the simple measurement of trial-level EEG. Future work would benefit from 

developing methods to couple single-trial denoising methods (Ahmadi & Quiroga, 2013; 

Moraux & Iannetti, 2008; Quiroga & Garcia, 2003) with linear-mixed effects models to 

study single-trial variation in latency-based measures. Nevertheless, we believe that the 

linear mixed-model framework offers a number of useful tools for modeling event-related 

EEG and ERP data within a familiar analytical framework that encompasses all of the tools 

of traditional ERP analysis, while expanding the toolbox to allow for more flexible and 

appropriate analysis of electrophysiological data.

Lastly, we did not find that our models explained a substantial amount of overall variance in 

the single-item EEG (see Table 2). The goal of the current paper was to test a set of a priori 

confirmatory hypotheses, rather than to fit a statistical model that best explained all the 

variation in the single-trial EEG. Indeed, modeling item-level EEG relative to ERPs will 

invariably result in substantial differences in the perceived explained variance. By modeling 

the raw EEG, we necessarily decrease the signal-to-noise ratio relative to ERPs, as 

variability in the raw EEG across the single-item amplitudes is an order of magnitude larger 

than what is seen in ERPs. However, signal averaging does not just eliminate pure noise 

sources, but also eliminates interesting item-to-item component variability (as we have 

demonstrated in the current paper). The trouble with comparing the absolute fit performance 

of models that do a first stage of data reduction (e.g., through averaging), is that information 

about the uncertainty around those averages is not carried over from the first stage (e.g., 
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average across subjects) to the next (e.g., data analysis), thus inflating estimates of fit. 

However, LMMs maintain all sources of variability in the model, across item, subject, and 

channel. Thus, absolute fit stats will be more modest, but they are also a better reflection of 

reality.

Indeed, other methods have been used to examine item-to-item (word-to-word) variation in 

N400 amplitude other than those used here (Laszlo and Federmeier, 2014; Van Petten, 

2014). These studies averaged data across subjects separately for individual items, creating 

word-level averages (similar to an F2-ANOVA common in behavioral psycholinguistics). 

While this method is useful in some designs (and is likely to yield very similar results to the 

method utilized here), we believe that analysis of the unaggregated data in a multi-level 

model is more flexible and offers a number of benefits relative to the F2 approach. 

Specifically, the mixed-effects model allows for (1) explicit treatment of data in unbalanced 

designs, (2) the capability of modeling variables at multiple levels in a hierarchy (sentence, 

word, subject), as well as interactions between these levels, (3) computing a more accurate 

representation of the degree of variability of single-trial data, resulting in appropriately 

conservative test statistics (4) the capability of modeling single-item effects in partially 

crossed designs where there may not be a simple mapping across single items for creating 

across-subject averages, as may be quite common in corpus analyses.

It is worth noting that the methods used in the current study (single-trial measurement and 

utilization of random-effects to control for statistical dependency across subjects, items, and 

channels) could be combined with other non-parametric and non-linear approaches (e.g., 

single-trial EEG classification; Blankertz et al., 2011; generalized additive models; 

Tremblay & Newton, 2015) to build predictive models, which would be of great use in other 

research settings (e.g., brain-computer interfacing). Thus, LMMs can be used to aid in 

improved statistical inference in ERP/EEG research, as well as in machine-learning and 

predictive modeling applications (see Brieman, 2001; Schmueli, 2010).

In conclusion, the current study provides a demonstration of the usefulness of item-level 

analyses for investigating the multiple influences of linguistic information (arising from 

multiple levels) on the N400, consistent with contemporary views of the N400 as reflecting 

activation within a highly distributed, temporally extended, and interactive neural network 

supporting conceptual processing (Barber & Kutas, 2007; Kutas & Federmeier, 2011). The 

current results suggest that the incremental influences of both semantic and syntactic context 

guide semantic processing, as indexed by the N400. Additionally, the findings from the 

current study indicate that modeling world-level variability in event-related EEG activity 

can reveal mechanisms by which different sources of information simultaneously contribute 

to the unfolding neural dynamics of comprehension.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. Linear word position effects on single-word ERPs to open-class words in the N400 epoch 

(300-500 ms) plotted separately for each sentence context. Error bars reflect the between-

subject standard error of the mean computed across all subjects, words, and channels at each 

word position. b. Grand-average ERPs illustrating word position effects for open-class 

words in congruent sentences. Two-word bins are presented, color-coded by word position, 

over six central parietal electrodes. Negative is plotted up. c. Scalp topography of the best 

linear unbiased estimates of word position effects on N400 amplitude for open-class words 

in congruent sentences (see text for details). Electrode channel sites with grey circles are 

those for which data was included in the single-word mixed-effect models.
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Figure 2. 
Fixed-effect parameter estimates and corresponding 95% profile confidence intervals from 

Model 2. Note: Estimates with intervals containing 0 (grey circles) do not meet traditional 

levels of statistical significance.
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Figure 3. 
a. Model estimated partial-effects plots of the Frequency × Word Position × Context 

interaction. b. Model estimated partial-effects plots of the Orthographic Neighborhood × 

Word Position × Context interaction.
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Figure 4. 
a. Linear word position effects on single-word ERPs to closed-class words in the N400 

epoch (300-500 ms) plotted separately for each sentence context. Error bars reflect the 

between-subject standard error of the mean computed across all subjects, words, and 

channels. b. Grand-average ERPs illustrating word position effects for closed-class words in 

syntactic prose. Two-word bins are presented, color-coded by word position, over six central 

parietal electrodes. Negative is plotted up. c. Scalp topography of the best linear unbiased 

estimates of word position effects on N400 amplitude for closed-class words in syntactic 

prose (see text for details). Electrode channel sites with grey circles are those for which data 

was included in the single-word mixed-effect models.
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Table 1

Lexical Characteristics of Open-Class Words in Model 2.

Correlations

Mean (SD) Range (Min - Max) 1 2 3 4

1. Word Frequency (log) 11.11 (2.16) 4.06 - 15.68

2. Orthographic N (OLD 20) 1.77 (0.62) 1.00 - 5.50 −.45

3. Word Length (Characters) 5.12 (1.91) 2 - 14 −.55 .73

4. Concreteness 3.07 (1.15) 1.12 - 5.00 −.48 .01 .10

5. Word Position 7.46 (4.85) 1 - 27 −.08 −.02 −.02 .01
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Table 2

Fit Statistics from Models 1 and 2

−2LL χ2(df) p AIC BIC pR2 cR2

Null Model 1450641 1450651 1450703 5.71% 7.55%

Modell 1449738 903 (7) <.001 1449762 1449886 6.17% 7.89%

Model2 1448750 1891.7 (25) <.001 1448810 1449118 6.69% 8.23%

Note. The Null Model is a nested model containing only a fixed-intercept term plus the random intercept terms, used to assess baseline fit. Models 

1 and 2 are defined on page 18. −2LL = −2 times the log of the likelihood for the model. χ2 is the deviance statistic between Model 1/2 and the 

Null Model. AIC = Akakie Information Criteria. BIC = Bayesian Information Criteria. pR2 = pseudo R2 (Singer & Willet, 2003), cR2 = 

conditional R2 (Nakagawa & Schielzeth, 2013; Johnson, 2014). See Appendix A3 for further information on fit indices.
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