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The field of proteomics almost uniformly relies on peptide
cation analysis, leading to an underrepresentation of
acidic portions of proteomes, including relevant acidic
posttranslational modifications. Despite the many bene-
fits negative mode proteomics can offer, peptide anion
analysis remains in its infancy due mainly to challenges
with high-pH reversed-phase separations and a lack of
robust fragmentation methods suitable for peptide anion
characterization. Here, we report the first implementation
of activated ion negative electron transfer dissociation
(AI-NETD) on the chromatographic timescale, generating
7,601 unique peptide identifications from Saccharomyces
cerevisiae in single-shot nLC-MS/MS analyses of tryptic
peptides—a greater than 5-fold increase over previous
results with NETD alone. These improvements translate to
identification of 1,106 proteins, making this work the first
negative mode study to identify more than 1,000 proteins
in any system. We then compare the performance of AI-
NETD for analysis of peptides generated by five proteases
(trypsin, LysC, GluC, chymotrypsin, and AspN) for nega-
tive mode analyses, identifying as many as 5,356 peptides
(1,045 proteins) with LysC and 4,213 peptides (857 pro-
teins) with GluC in yeast—characterizing 1,359 proteins in
total. Finally, we present the first deep-sequencing ap-
proach for negative mode proteomics, leveraging offline
low-pH reversed-phase fractionation prior to online
high-pH separations and peptide fragmentation with AI-
NETD. With this platform, we identified 3,467 proteins in
yeast with trypsin alone and characterized a total of 3,730
proteins using multiple proteases, or nearly 83% of the
expressed yeast proteome. This work represents the
most extensive negative mode proteomics study to date,

establishing AI-NETD as a robust tool for large-scale pep-
tide anion characterization and making the negative mode
approach a more viable platform for future proteomic
studies. Molecular & Cellular Proteomics 14: 10.1074/
mcp.M115.049726, 2644–2660, 2015.

Global protein analysis continues to enjoy substantial tech-
nological leaps forward in its ability to characterize protein
expression in a variety of organisms with both speed and
sensitivity (1–4). Nevertheless, the impressive advances in
protein sequence technology over past decades have rigidly
adhered to positive electrospray ionization for MS1 analysis,
limiting the scope of peptides and posttranslational modifica-
tions that can be analyzed. Widely utilized acidic mobile
phases both permit stable and reproducible reversed-phase
separations and also provide optimal conditions for ionization
and detection of peptides and proteins that readily accept
positive charge via protonation (i.e. basic species). Acidic
peptides and proteins, however, favor deprotonation, making
positive electrospray regimes ill suited for their characteriza-
tion. Moreover, important classes of posttranslational modifi-
cations (PTMs), such as phosphorylation, sulfation, and gly-
cosylation, can impart acidic properties to the peptides and
proteins they modify, often producing entire classes of
biomolecules that preferentially ionize as anions (5–10).

Electrospray ionization operated in the negative mode can
generate multiply deprotonated species (11, 12); however,
canonical collisional activation methods produce MS/MS
spectra riddled with neutral losses and internal fragments that
are difficult, if not impossible, to interpret (13–16). Alterna-
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tively, a number of emerging fragmentation techniques, in-
cluding electron-based dissociation methods and photodis-
sociation approaches, can generate sequence informative
MS/MS spectra from peptide anions (17–23). Both negative
electron transfer dissociation (NETD) and ultraviolet photodis-
sociation (UVPD) have been employed in large-scale pro-
teomic studies, enabling sequencing of thousands of unique
peptides in a single experiment (24, 25). In NETD, the negative
mode analog of electron transfer dissociation (ETD) (26), pep-
tide anions are oxidized with reagent cations, causing the
radical peptide anions to undergo electron rearrangement
steps that often lead to cleavage of the C-C� backbone bond,
producing a●- and x-type product ions (18, 24, 27, 28). Some-
times, however, an electron is abstracted from the precursor
anion and backbone cleavage is achieved, but the product
ions are held together by intramolecular noncovalent interac-
tions as long-lived charge-reduced species that do not sep-
arate. The probability of this phenomenon, called nondisso-
ciative negative electron transfer, is directly related to
precursor anion charge density; as charge density decreases,
i.e. the precursor mass-to-charge ratio (m/z) increases, so
does the magnitude of nondissociative negative electron
transfer, limiting the amount of sequence information derived
from the NETD MS/MS event (29–31).

Many approaches have been explored to mitigate the ef-
fects of nondissociative electron transfer in ETD reactions of
peptide cations, including collisional activation of all product
ions (32, 33), activation of nondissociative electron transfer
products (34, 35), elevated bath gas temperatures (36), and
infrared photon bombardment concurrent to the ETD reaction
(37). The last of these approaches, termed activated ion ETD
(AI-ETD), has shown substantial promise for proteomics ap-
plications (38, 39). The concomitant IR photoirradiation dis-
rupts the secondary gas-phase structure responsible for non-
dissociative electron transfer, increasing the efficiency of
sequence-informative product ion generation; furthermore,
the introduction of additional energy to the reaction during
AI-ETD occurs only during the ion–ion reaction time, keeping
the instrument cycle time as short as possible and reducing
problematic hydrogen-atom rearrangements that can occur
prior to fragment ion separation with other supplemental ac-
tivation techniques (34, 37). Indeed, activated ion NETD (AI-
NETD), which uses simultaneous IR irradiation during the
NETD reaction, has been reported to improve peptide anion
fragmentation for a handful of standard peptides (30), but a
large-scale implementation of AI-NETD for negative mode
shotgun proteomics has yet to be demonstrated.

We recently described the development of a multipurpose
dissociation cell (MDC) specifically for improved ion–ion re-
actions on an ETD-enabled dual cell quadrupole ion trap-
Orbitrap hybrid mass spectrometer, the same platform on
which we reported the successful implementation of NETD for
high-throughput peptide analyses (40). The MDC, equipped
with a higher operating RF frequency and longer axial dimen-

sions, allows faster ETD reaction times and larger precursor
ion populations for improved fragment ion signal-to-noise.
The placement of MDC is ideal for implementing AI-NETD on
an NETD-capable mass spectrometer because a continuous
wave CO2 laser can be easily introduced concentrically to the
trapping volume of the MDC (39, 41, 42).

Here, we present the first description of NETD in the MDC
reaction vessel, in addition to the first implementation of AI-
NETD for large-scale peptide anion analysis. Analyzing com-
plex mixtures of peptides from Saccharomyces cerevisiae
whole cell lysates, we show that AI-NETD, in combination with
judiciously chosen high-pH chromatographic conditions, en-
ables the most robust analysis of peptide anions to date,
identifying over 1,100 proteins in single-shot experiments.
Furthermore, we extend our studies to investigate the per-
formance of AI-NETD with five distinct proteases (trypsin,
LysC, GluC, chymotrypsin, and AspN), providing the first
large-scale investigation into the performance of multiple
enzymes for peptide anion characterization. Using both sin-
gle-shot analyses and deep sequencing via offline low-pH
fractionation for each protease, we assert that entire pro-
teomes can be investigated in the negative mode with AI-
NETD, providing a new platform to thoroughly explore bio-
logically relevant hypotheses, e.g. acidic PTM networks,
which were previously inaccessible with canonical positive
mode approaches.

EXPERIMENTAL PROCEDURES

Mass Spectrometry Instrumentation—The multipurpose dissocia-
tion cell (MDC) replaces the preexisting HCD cell in the ETD-enabled
dual cell quadrupole linear ion trap-Orbitrap hybrid mass spectrom-
eter system (Fig. 1C) (43, 44) (Thermo Fisher Scientific, San Jose, CA),
retaining its basic geometry but requiring additional electronics to
supply higher trapping rf voltages for faster reaction times, axial rf
voltages for charge-sign independent trapping, and independently
controlled DC (direct current) biases to its four sections. Offsets used
for previous cation analysis with the MDC were inverted to accom-
modate injection and trapping of precursor anions rather than cations.
Consistent with our earlier NETD work (24, 28), positive reagent ions
were generated without hardware modification through optimized
electron ionization/chemical ionization (EI/CI) source conditions, and
reagent transmission through ion-transfer optics was tuned via auto-
mated optimization routines. Radical fluoranthene reagent cations
were formed in a CI ion volume in the presence of nitrogen gas and
were then accumulated in the back two sections of the MDC for NETD
reactions. Following the NETD reaction via charge-sign independent
trapping, the reaction was quenched by setting the center sections of
the MDC to a positive DC offset (10 V), retaining anionic product ions
and ejecting remaining cationic reagents. Product ions were then
transferred to the C-trap for subsequent Orbitrap mass analysis using
an extraction gradient analogous to that used for HCD scans. AI-
NETD was performed by irradiating the trapping volume of the MDC
during the entirety of the NETD reaction with a Firestar T-100 Synrad
100-W CO2 continuous wave laser (Mukilteo, WA). The laser was
introduced into the cell via an excavated ion passage in the reagent
ion transfer multipole and a ZnSe window that was installed concen-
tric to the MDC. Using instrument firmware and modification to in-
strument code in conjunction with a gated laser controller, laser
power output (in Watts) from the laser (10.6 �m) was modulated
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remotely through voltage inputs to the controller and was triggered to
fire only during the NETD reaction as it was being conducted in the
MDC. The nitrogen pressure in the MDC was lowered to a �N2

pressure of �0.1 � 10�10 Torr, as measured by the Penning gauge in
the Orbitrap chamber, to prevent collisional cooling that negates the
additional energy supplied by the infrared laser. Lowered nitrogen
pressure also increased transmission of the fluoranthene reagent
cation, so pressure in the MDC was held at similar levels for NETD
analyses (�N2 of �0.3 � 10�10 Torr). For more detailed descriptions
of the MDC and affixed laser, see previous work (39–41).

Sample Preparation—All protein lysates were derived from S.
cerevisiae strain BY4741, as described previously (45). Briefly, cells
were grown to an optimal density at 600 nm (OD600) of �0.6 and
pelleted by centrifugation. A pellet was resuspended in lysis buffer (50
mM Tris, pH 8; 8 M urea; 75 mM sodium chloride; 10 mM sodium
butyrate:protease and phosphatase inhibitor tablet (Roche Diagnos-
tics, Indianapolis, IN)), and yeast cells were lysed by glass bead
milling (Retsch GmbH, Haan, Germany). Two ml of acid-washed glass
beads were combined with 2 ml of resuspended yeast cells in a 5 ml
stainless steel container and shaken eight times at 30 Hz for 4 min
with a 1 min rest in between. Lysate protein concentration was
measured via BCA (Thermo Pierce, Rockford, IL), and yeast proteins
were reduced through incubation in 5 mM dithiothreitol for 45 min at
58 °C. Free cysteines were alkylated in 15 mM iodoacetamide in the
dark for 30 min. The alkylation was stopped with 5 mM DTT. For
trypsin digestion, a 1 mg protein aliquot was digested overnight at
room temperature in 1.5 M urea with trypsin (Promega, Madison, WI)
added at a 1:50 (w/w) enzyme to protein ratio. A second trypsin
addition was performed in the morning at a 1:100 (w/w) enzyme to
protein ratio for 1 h. The digestion was quenched by the addition of
TFA. For LysC digestion, a 1 mg protein aliquot was digested over-
night at room temperature in 4 M urea with endo LysC (Wako Chem-
icals, Richmond, VA) at a 1:50 enzyme:protein ratio. Following over-
night digestion, a second 1:50 aliquot of LysC was added and the
digestion was allowed to proceed for 1 h. For GluC digestion, a 1 mg
protein aliquot was digested overnight with 25 �g GluC (Roche) at
room temperature in 0.5 M urea. Following overnight digestion, the
sample was incubated with an additional 25 �g GluC for 1 h. For
chymotrypsin digestion, a 1 mg protein aliquot was digested over-
night with 12.5 �g of chymotrypsin (Promega) in 1 M urea. Following
overnight digestion, an additional 12.5 �g of chymotrypsin was added
to the sample, and the digestion was allowed to proceed for 1 h. For
digestion with AspN, a 1 mg protein aliquot was incubated with 6 �g
AspN (Roche) at room temperature overnight. Each digest was
quenched by the addition of TFA and desalted over tC18 Sep-Pak
cartridges (Waters, Milford, MA).

High-pH nLC-MS/MS—Five total reversed-phase solvent systems
were tested for online high-pH separations. Ammonium hydroxide,
ammonium formate, and piperidine were purchased from Sigma Al-
drich (St. Louis, MO) and HPLC-grade water and acetonitrile were
purchased from Fisher Scientific (Waltham, MA). The two ammonium
formate solvent systems consisted of mobile phase A (5 mM ammo-
nium formate in water) and mobile phase B (5 mM ammonium formate
in 85% acetonitrile), basified to either pH 10 or pH 11.5 with ammo-
nium hydroxide. Two different piperidine solvents systems used a
mobile phase A of water and mobile phase B of 85% acetonitrile, 15%
water, with either 5 mM or 10 mM piperidine in both A and B. Another
5 mM piperidine solvent system had the same mobile phase B, but
mobile phase A consisted of 95% water, 5% DMSO with 5 mM

piperidine. Reversed-phase columns were packed in-house using 75
�m inner diameter, 360 �m outer diameter bare fused silica capillary.
A nanoelectrospray tip was laser pulled (Sutter Instrument Company,
Novato, CA) and packed with 3.5 �m diameter, 130 Å pore size
ethylene bridged hybrid C18 particles (Waters) to a length of 30–35

cm. The column was installed on a nanoACQUITY UltraPerformance
LC (Waters) using a stainless steel ultra-high pressure union format-
ted for 360 �m outer diameter columns (IDEX). One microgram of
sample was loaded onto the column in 95% A for 10 min at 400 nl
min�1. Gradient elution was performed at 400 nl min�1, and gradients
increased linearly from 5 to 30% B over 70 min, followed by an
increase to 70% B at 76 min and a wash at 70% B for the 4 min. The
column was then re-equilibrated at 5% B for 10 min.

Eluting peptide anions were converted to gas-phase ions by elec-
trospray ionization at �1.5 kV with respect to ground, and the inlet
capillary temperature was held at 300 °C. Survey scans of peptide
precursors were collected over the 300–1,250 Th range with an
automatic gain control (AGC) target value of 1,000,000, followed by
data-dependent NETD MS/MS scans of the 10 most intense peaks
(maximum injection times of 200 ms for both full and tandem MS
scans). Precursors with charge states equal to one or unassigned
were rejected. NETD reactions were performed in either the mass-
analyzing quadrupole linear ion trap (A-QLT) or the MDC (50,000 or
100,000 AGC target values, respectively), followed by mass analysis
in either the A-QLT or Orbitrap, as indicated in the text. The radical
cation of fluoranthene was the reagent used for all NETD analyses.
For NETD reactions conducted in the A-QLT, the reagent AGC target
value was set to 1,000,000 and the default reaction time was set to
100 ms for z � �2 precursors, with reaction time scaling enabled as
discussed in the text. For all MDC analyses, reagent accumulation
times were set to 20 ms, and reaction times were as follows: 40 ms for
z � �2, 30 ms for z � �3, 20 ms for z � �4, 15 ms for z � �5, and
10 ms for z � �6 and higher charge states. During AI-NETD reac-
tions, the external CO2 continuous wave laser was triggered using
instrument firmware and modification to instrument code in conjunc-
tion with a gated laser controller. The laser irradiated the trapping
volume of the MDC during the entirety of the NETD reaction at 70%
total output. Precursors were isolated using a �0.9 Th isolation
window, and an exclusion window of �10 ppm was constructed
around the monoisotopic peak of each selected precursor for 45 s.
Resolving powers of 60,000 and 15,000 at 400 m/z were used for
survey scans and MS/MS scans in the Orbitrap, respectively.

Low-pH nLC-MS/MS—For comparison to positive mode methods,
single-shot HCD and ETD analyses were collected for tryptic yeast
peptides. Reversed-phase columns were prepared as described
above. Mobile phase A was 0.2% formic acid in water with 5%
DMSO, and mobile phase B was 0.2% formic acid in acetonitrile. One
microgram of sample was loaded onto the column in 95% A for 10
min at 400 nl min�1. Gradient elution was performed at 400 nl min�1,
with the gradient increased linearly from 5 to 25% B over 70 min,
followed by an increase to 70% B at 76 min and a wash at 70% B for
the 4 min. Electrospray voltage was set to 2 kV with respect to
ground, and the inlet capillary was held at 275 °C. Survey scans of
peptide precursors were collected over the 300–1,250 Th range with
an AGC target value of 1,000,000 and 60,000 resolution, followed by
data-dependent HCD MS/MS scans of the 15 most-intense peaks or
ETD MS/MS scans of the 10 most-intense peaks (maximum injection
times of 75 ms and 200 ms for full and tandem MS scans, respec-
tively). Precursors with charge states equal to 1 or unassigned were
rejected. HCD and ETD MS/MS events were both performed in the
MDC with an AGC target value of 100,000, followed by mass analysis
in the Orbitrap at 15,000 resolution. Normalized collision energies of
30 were used for HCD events. The radical anion of fluoranthene was
the reagent used for ETD reactions. Reagent accumulation times
were set to 20 ms, and reaction times were analogous to NETD
reaction times described above. Precursor isolation and dynamic
exclusion were the same as above.

Low-pH Prefractionation—In addition to single-shot nLC-MS/MS
runs, deep-sequencing analyses were performed on digests from
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each enzyme, leveraging low-pH RPLC offline fractionation for an
orthogonal degree of separation prior to online high-pH chromatog-
raphy. Peptides were fractionated on a Phenomenex (Torrance, CA)
Gemini 5 �m, 110 Å pore size C18 column (250 � 4.6 mm) with 0.1%
TFA in pure water and 80% acetonitrile (mobile phases A and B,
respectively). The separation gradient had a flow rate of 0.8 ml min�1

starting at 5% B for 4 min. From 4 to 8 min, B was increased to 12%
and then to 45% at 49 min. At 51 min, a 5 min wash of 100% B
started, followed by 20 min of re-equilibration in 5% B. Fractions were
collected every minute from 4 min to 54 min for a total of 50 fractions,
which were then combined into 10 total fractions in concatenated
fashion. Each set of fractions was run in triplicate.

Data Analysis—Tandem mass spectra were searched with the
Open Mass Spectrometry Search Algorithm, which was previously
modified to accommodate anionic peptide fragments and NETD
spectra, which contain a●- and x-type product ions (24, 46). Prior to
the Open Mass Spectrometry Search Algorithm search, spectra were
“cleaned” such that charge-reduced product ions and neutral losses
within the window 55 Da below and 5 Da above the charge-reduced
peaks were removed in addition to a �3 Da window around the
unreacted precursor (47, 48). A multi-isotope search using three
isotopes with a mass tolerance of �125 ppm was used for precur-
sors, and a monoisotopic mass tolerance of �0.30 Da or �0.02 Da
was used for product ions (a●- and x-type) in the ion trap or Orbitrap,
respectively. Oxidation of methionine was specified as a variable
modification, while carbamidomethylation of cysteine was a set as a
fixed modification. For all enzymes, three missed cleavages were
allowed with the following specificity: trypsin, full with P-rule; LysC,
full with P-rule; GluC, full DE; chymotrypsin, full with P-rule; and
AspN, full. Data processing was performed using in-house software
(COMPASS) designed for Open Mass Spectrometry Search Algorithm
search outputs (49). Peptide spectral matches (PSMs) were made
against the UniProt yeast database downloaded on September 29,
2014 (6,726 entries), which was concatenated with a reversed se-
quence version of the forward database. Peptides were filtered to a
1% false discovery rate using both e-value and precursor mass
accuracy. When pooling spectra from multiple nLC-MS/MS analyses,
the false discovery rate was calculated for the aggregate set of data
rather than calculating a separate false discovery rate for each run
prior to combining results. Information about identified peptides and
proteins are available as Supplemental Material. Information pertinent

to fragmentation evaluation for NETD and AI-NETD was extracted
from MS/MS scans using a C# script developed in-house. Protein
isoelectric points (pI) were calculated using ExPASy (http://www.ex-
pasy.org/). The same pipeline was used for positive mode compari-
sons, searching b- and y-type product ions for HCD and c- and
z●-type product ions for ETD, with product ion search tolerances of
�0.02 Da. ETD spectra were cleaned (above). Large-scale positive
mode data (50) were downloaded from Chorus (ID# 183) and analyzed
with COMPASS. Raw files were searched as previously described.

RESULTS

Negative Electron Transfer Dissociation in the Multipurpose
Dissociation Cell—In our previous work using NETD for large-
scale analyses of peptide anions (24), we conducted all NETD
reactions in the high-pressure trap of the dual-cell mass-
analyzing quadrupole linear ion trap (A-QLT) and subsequent
mass analysis was performed in the low-pressure trap of the
A-QLT (Fig. 1C). At the time, the sensitivity and speed of the
A-QLT for analysis of tandem mass spectra offered more
benefit than the higher resolution/accurate mass provided by
Orbitrap mass analysis, especially considering the low pre-
cursor anion flux observed in those experiments; however,
Orbitrap mass analysis did provide more confident spectral
identification and was used in ensuing studies (28). Following
these investigations, we described the multipurpose dissoci-
ation cell (MDC) that demonstrated improved ETD perform-
ance (faster reaction times and higher product ion signal-to-
noise) for precursor cations (40). We hypothesized that the
MDC could offer similar benefits for NETD analysis, granting
access to the superior spectral quality of higher resolution/
accurate mass product ion mass analysis in the Orbitrap
without sacrificing the scan speed achieved with the A-QLT.

As described above, we modified the MDC to perform
charge-sign-independent trapping of precursor anions and
reagent cations, permitting NETD of multiply deprotonated

FIG. 1. Modified linear ion trap-Orbitrap hybrid MS system for performing AI-NETD. (A) NETD, which involves oxidation of precursor
peptide anions by a reagent cation, can now be performed in the mass-analyzing quadrupole linear ion trap (A-QLT) and multipurpose
dissociation cell (MDC). (B) Modifying the MDC to perform NETD opens access to AI-NETD, in which anionic peptide precursors are
concurrently irradiated with IR photons during the ion–ion reaction. This additional photoactivation disrupts peptide secondary gas-phase
structure, increasing the efficiency of the NETD reaction. (C) Instrument schematic of the hybrid linear ion trap-Orbitrap mass spectrometer is
modified with the MDC in place of the traditional HCD collision cell, in addition to an excavated beam path, ZnSe window, and affixed 10.6
�m CO2 laser for concentric irradiation of the MDC.
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peptides with radical fluoranthene cations (Fig. 1A) (51). Using
a 5 mM piperidine solvent system (vide infra), we compared
performance of the A-QLT and MDC for NETD analyses using
90-min shotgun nLC-MS/MS experiments on a complex mix-
ture of S. cerevisiae peptides, performed in triplicate. Reflect-
ing our previous studies for NETD reactions in the A-QLT,
product ion mass analysis in the A-QLT outperformed product
ion mass analysis in the Orbitrap (3,530 versus 3,134 pep-
tides). Thus, all experiments using the A-QLT for NETD reac-
tions also used the A-QLT for product ion mass analysis. All
NETD reactions in the MDC, however, used the Orbitrap for
product ion mass analysis, as dictated by instrument geom-
etry. To compare directly to our previous work, we first used
an NETD reaction time of 100 ms for all precursor charge
states for A-QLT analyses but used dynamic reaction times
for MDC reactions, as optimal reaction times scale with pre-
cursor charge (52). Because the MDC allows faster reaction
times, only 40 ms were needed to achieve high-quality spec-
tra for doubly deprotonated peptides compared with the 100
ms required for the reaction in the A-QLT. NETD experiments
using the MDC as a reaction vessel afforded slightly more
MS/MS scans on average than those using the A-QLT (12,494
versus 12,374, respectively) in addition to providing higher
MS/MS success rates, i.e. percentage of tandem mass spec-
tra that map back to sequence (29% versus 27%). With these
advantages, NETD single-shot analyses in the MDC identified
3,805 unique peptides to the A-QLT’s 3,411 unique peptides,
both of which outmatched our previous results. Furthermore,
we conducted a third set of experiments, this time enabling
dynamic reaction times for NETD conducted in the A-QLT
(scaled with precursor charge). With these conditions, NETD
in the A-QLT averaged 12,582 MS/MS scans per run, illus-
trating the increase in scan speed afforded by scaled reaction
times; however, the MS/MS success rates in these experi-

ments also averaged 27%, matching that produced with a
static reaction time in the A-QLT. Despite the increase in the
number of MS/MS scans with dynamic reaction times en-
abled, the MDC still outperformed the A-QLT in the number of
unique peptides identified (3,805 versus 3,530). These results
illustrate the advantages the MDC provides for shotgun nLC-
MS/MS peptide anion analyses, making high-quality, higher
resolution/accurate mass NETD tandem mass spectra acces-
sible for routine experiments.

Activated Ion NETD for Large-Scale Sequencing of Peptide
Anions—Beyond the advantages the MDC provides for NETD
alone, the ability to conduct NETD in this reaction vessel
provides straightforward access to AI-NETD. The instrument
geometry enables simple alignment of an external infrared
laser that can be introduced concentric to the trapping vol-
ume of the MDC (39–42), facilitating concurrent photoactiva-
tion during NETD for improved fragmentation efficiency (Fig.
1B). Following laser alignment, we conducted another set of
triplicate 90-min nLC-MS/MS experiments with yeast pep-
tides, this time comparing NETD in the MDC to AI-NETD in the
MDC. The improvement in peptide fragmentation was imme-
diately apparent. Figure 2 provides an example of a peptide,
NFNDPEVQGDMK, successfully identified at z � �2 and z �

�3 in both NETD and AI-NETD analyses. The doubly depro-
tonated species of this 12-residue peptide has a moderate
charge density (m/z 695.29), and fragmentation with NETD is
somewhat limited (top left panel), providing only 45% peptide
sequence coverage (as defined by number of bonds broken
divided by total number of bonds); however, AI-NETD pro-
vides extensive fragmentation of the peptide, permitting
straightforward annotation of fragment ions that provide
100% peptide sequence coverage (bottom left panel). NETD
for the more charge-dense triply deprotonated species (m/z
463.19) provides more comprehensive fragmentation than

FIG. 2. NETD- and AI-NETD-MS/MS spectra for the same peptide at z � �2 and �3. AI-NETD improves precursor-to-product ion
conversion for enhanced peptide dissociation for precursors in lower charge states, increasing peptide sequence coverage in this case from
45% to 100%. NETD and AI-NETD both perform well on the same peptide at a higher charge (100% sequence coverage with both), although
AI-NETD still provides a greater total number of sequencing ions. NETD and AI-NETD spectra are on the same scale for each precursor charge
state.
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with its doubly deprotonated counterpart, as expected (top
right panel). AI-NETD maintains its high level of performance
for the z � �3, too—again enabling 100% sequence cover-
age and providing more sequencing ions than NETD alone
(bottom right panel).

The overall performance of AI-NETD for the large-scale
analyses was just as compelling. The MS/MS success rate for
AI-NETD experiments averaged nearly 53%, a drastic im-
provement over the 29% success rate of NETD alone. To
demonstrate how AI-NETD could provide such a boost, we
chose 409 unique peptides that were identified using both
NETD and AI-NETD with z � �2 and compared the extent of
fragmentation achieved with the two fragmentation tech-
niques by extracting the product ions detected in each
MS/MS spectrum. Figure 3 displays fragment maps for these
spectra, providing a separate column for a●-type and x-type
fragments. Each column is further divided into subcolumns,
the number of which corresponds to the number of backbone
bonds in the peptide. For example, a peptide that is eight
residues long has seven columns representing the seven
backbone bonds. The furthest most left subcolumn for the
a●-type fragments represents fragment a●

1, while the furthest

most right subcolumn shows a●
7. Conversely, the furthest

most left subcolumn for x-type fragments shows the x7 frag-
ment, whereas the right most subcolumn shows x1. The color
scale for the two fragment ion types, shown at the bottom of
the figure, indicates the intensity of the fragment. To permit
comparisons among multiple spectra, the intensity of all frag-
ments in a given spectrum was normalized to the intensity of
the unreacted precursor detected in that spectrum; thus, the
intensities of the fragment ions are reported as percentages of
this intensity. Additionally, the peptides shown in this figure
are first grouped by length, which is depicted by the number
in parentheses on the far left side, and the peptides with the
same length are organized by m/z values in ascending fash-
ion. With this organization, the charge density of the peptide
precursors decreases from top to bottom, making the charge
density dependence trends of NETD apparent. As peptide
length increases, the extent of fragmentation achieved with
NETD, alone, decreases noticeably, corresponding to ex-
pected trends for decreasing charge density. By comparison,
AI-NETD provides extensive fragmentation for nearly all
peptides shown, even as charge densities of the precursors
decrease, increasing the number and intensity of both a●-

FIG. 3. A fragment map of peptides identified with both NETD and AI-NETD. Here, each row is a unique peptide so that the same row
across all four columns represents the same peptide sequence. Each subcolumn corresponds a peptide backbone bond so that a peptide with
eight residues has seven backbone bonds and thus seven subcolumns for both a●- and x-type product ions. The numbers in parenthesis to
the left show peptide length in number of residues, and all peptides shown here are z � �2, meaning precursor charge density decreases from
top to bottom. With NETD, a●- and x-type fragments decrease in number and intensity as precursor charge density decreases (i.e. as peptide
length increases). AI-NETD maintains superior fragment ion generation even with decreasing precursor charge density, greatly increasing
peptide dissociation and sequence coverage compared with NETD.
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type and x-type fragments. By mitigating the detrimental
charge density dependence of NETD, AI-NETD clearly offers
advantages for peptide anion fragmentation, explaining the
increase in MS/MS success rate between NETD and AI-
NETD experiments.

Importantly, these improvements afforded by AI-NETD
translate not only to higher quality MS/MS spectra with more
robust fragmentation but also to remarkable improvements in
peptide and protein identifications. Compared with the 3,805
peptides reported above for NETD analysis using the MDC,
AI-NETD identified 7,601 unique peptides, essentially dou-
bling the number of peptide identifications achievable in the
same amount of analysis time. Figure 4 summarizes the ben-
efits of AI-NETD. The distribution of precursors across m/z
space was similar for both NETD and AI-NETD runs (Fig. 4A),
but the distribution of peptides successfully sequenced is
noticeably more extensive with AI-NETD (Fig. 4B). Here, the
peptide sequence coverage achieved for each doubly and
triply deprotonated peptide identified with NETD or AI-NETD
is plotted as a function of its m/z value. Successful identifica-
tion of doubly deprotonated peptides with NETD dropped

abruptly beyond 800 Th, and the sequence coverage
achieved for these peptides decreased with higher m/z val-
ues. AI-NETD, on the other hand, successfully identified pep-
tides across the entire m/z range and provided higher peptide
sequence coverage, even maintaining 100% sequence cov-
erage for doubly deprotonated peptides up to 1,000 Th. NETD
did perform more favorably for triply deprotonated precursors
than for doubly deprotonated ones, but AI-NETD remained
distinctly superior for this population of peptides as well.

Beyond the substantial improvements in fragmentation at
the peptide level, AI-NETD also performed advantageously at
the protein level. In triplicate single-shot 90 min analyses,
AI-NETD identified 1,106 proteins in yeast, making it the first
technique to achieve identification of more than 1,000 pro-
teins using the negative mode approach. Comparatively,
NETD identified 674 yeast proteins. Panel C of Fig. 4 illus-
trates the gain in protein sequence coverage afforded by
AI-NETD for proteins identified using both methods. Here,
protein sequence coverage represents number of total amino
acids explained from peptide identifications divided by the
total number of amino acids. The gain in sequence coverage

FIG. 4. AI-NETD outperforms NETD on a global scale. (A) The distribution of precursors selected for NETD or AI-NETD in a given run show
roughly equivalent populations of peptides to fragment. (B) Using the PSMs generated from the runs shown in (A), peptide sequence coverage
is plotted as a function of precursor m/z. AI-NETD increases the number of peptides identified, extends the m/z range that can generate
successful PSMs, and provides overall higher peptide sequence coverage at given m/z values. (C) The combination of these improvements with
AI-NETD at the peptide level translates to benefits at the protein level as well. AI-NETD characterized 1,106 proteins to NETD’s 674. Beyond
this, for proteins detected with both methods, AI-NETD overwhelmingly enhanced protein sequence coverage, by more than 50% in some
cases.
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is defined as sequence coverage with NETD subtracted from
sequence coverage with AI-NETD for a given protein; thus, a
negative value means that higher sequence coverage was
seen with NETD. AI-NETD provided a gain in sequence cov-
erage for the overwhelming majority of proteins, many of
which were acidic in nature (as indicated by the x axis). In all,
the enhancement in fragmentation that AI-NETD afforded for
peptide anions unequivocally translates to more robust pro-
tein characterization, making it a premier tool for negative
mode proteomics.

Selection of Robust High-pH Solvent System—Concurrent
to our investigations into NETD and AI-NETD, we also ex-
plored how to increase precursor anion flux with different
high-pH solvent systems. We previously employed ammo-
nium formate solvents for high-pH separations, but charge
state distributions favoring lowly charged precursors, degra-
dation of silica-based packing materials, and low precursor
flux were significant challenges with this system (24, 28).
Although others have used similar systems with success, we
also took note of several studies utilizing piperidine buffers for
high-pH chromatography (20, 25, 53, 54). With this knowl-
edge, we evaluated five different solvent systems using either
piperidine or ammonium formate buffers over triplicate 90-min
nLC-MS/MS analysis of yeast peptides with AI-NETD frag-
mentation. A 10 mM piperidine system and 5 mM ammonium

formate, pH 10, were first compared. We observed increased
peptide anion signal with piperidine solvents, so we prepared
ammonium formate buffers that were basified to pH 11.5 with
ammonium hydroxide to match the pH of the 10 mM piperidine
system. In the same vein, we also prepared 5 mM piperidine
solvents, reducing the pH of buffer A slightly to �11.3. Addi-
tionally, leveraging the recent descriptions of boosts provided
by addition of DMSO to buffers for positive mode analyses,
we assessed a 5 mM piperidine solvent system that contained
5% DMSO in buffer A.

Panel A of Fig. 5 displays base peak chromatograms from
an experiment with each of the five solvent systems, high-
lighting the increases in signal, i.e. anion flux, observed with
the piperidine buffers. The 5- to 10-fold improvements in base
peak signal with piperidine solvents are reflected in the boosts
observed in the number of tandem mass spectra, peptide
spectral matches, and unique peptide identifications summa-
rized in Table I. Panel B of Fig. 5 shows that, beyond increas-
ing the number of MS/MS scans acquired, piperidine solvents
shift the charge state distributions precursors to more highly
charged (more negative) species, a phenomenon also re-
ported for peptide standards and simple peptide mixtures (20,
53). Although increasing the pH of ammonium formate sol-
vents to 11.5 did show a small expansion in precursor charge
state distributions, this difference was minimal compared with

FIG. 5. A comparison of high-pH solvent systems used. (A) Base peak chromatograms show that choice of buffer additives, rather than
pH alone, generate increased ionization with negative ESI. Piperidine solvents generate nearly an order of magnitude higher precursor ion
signal than ammonium formate solvents. (B) Beyond increasing the number of precursors selected for MS/MS, piperidine solvents shift the
charge state distributions of precursor anions to be more highly charged (more negative) than ammonium formate solvents. Notably, DMSO
in the 5 mM piperidine solvent system expanded the distribution of charge states to more highly charged precursors, rather than collapsing it
to lower charges as reported in positive electrospray.

TABLE I
Summary of AI-NETD experiments with five different high-pH solvent systems

Solvent system
5 mM ammonium

formate pH 10
5 mM ammonium
formate pH 11.5

10 mM piperidine
pH � 11.5

5 mM piperidine
�5% DMSO,

pH � 11.3

5 mM piperidine
pH � 11.3

Total MS/MS scans 30,818 32,752 38,856 40,865 39,318
Total peptide spectral matches

(PSMs)
10,123 10,371 15,492 16,606 20,099

Total unique peptides 3,659 3,924 5,920 5,208 7,601
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the pH 10 ammonium formate solvents and failed to match
that observed with piperidine. Interestingly, the 5 mM piperi-
dine buffers with 5% DMSO provided neither the highest base
peak signal nor a gain in peptide identifications, which are
both advantages reported in positive mode analyses (45, 55,
56). As shown in Table I and Fig. 5B, DMSO in the 5 mM

piperidine solvent did permit the acquisition of the most
MS/MS scans and displayed the widest distribution of pre-
cursor charge states; however, peptide identifications were
lower with the DMSO additive than both the other two piper-
idine solvents. Regardless, high-pH solvent systems that uti-
lize piperidine performed consistently better than ammonium
formate solvent systems, maximizing the number of unique
peptides identified with AI-NETD.

Multiple Proteases for Single-Shot Negative Mode Pro-
teomics—Even with the robust analyses afforded by the com-
bination of AI-NETD with prudently chosen piperidine high-pH
solvents, use of just one protease limits the portion of the
proteome that is accessible in a given experiment. The value
of multiple proteases for canonical positive mode shotgun
proteomics has been shown by us and others (50, 57–59);
however, negative mode studies to date have largely failed to
capitalize on the advantages offered by use of multiple en-
zymes for protein digestion. Instead, most studies rely mainly
on trypsin for enzymatic digestion, although GluC has also
been used. In this study, we extended our success with
AI-NETD for tryptic peptides to single-shot analyses of pep-
tides derived from four other proteases (LysC, GluC, chymo-
trypsin, and AspN) with the goals of exploring the amenability
of different proteases to negative mode experiments and
increasing the proteomic depth that can be achieved with
negative mode analyses.

Table II summarizes the results from triplicate 90-min AI-
NETD nLC-MS/MS experiments that analyzed five different
complex yeast peptide mixtures, each from one of the five
proteases investigated. Immediately evident is the superior
performance of trypsin and LysC, both of which enabled the

identification of more than 1,000 proteins. Similar perform-
ance of these two enzymes is unsurprising considering their
related proteolytic specificity C-terminal to lysine (trypsin and
LysC) and arginine (trypsin) residues. GluC, which cleaves
C-terminal to glutamic acid (and at slower rates, aspartic acid
(60)), enabled the identification of more than 4,200 unique
peptides, a greater than 7-fold increase over our previous
NETD results with the enzyme (24). These peptides mapped
back to 857 proteins, which also outmatches the best results
achieved to date for any protease in negative mode ap-
proaches (25). Chymotrypsin and AspN performed consider-
ably well, too, illustrating the flexibility AI-NETD can offer for
peptide anion characterization. Toward our goal of increasing
proteomic depth, we batched the results from these five pro-
teases together, providing nearly 21,000 unique peptide iden-
tifications. This combination of results provided valuable
depth at the protein level, bolstering the number of proteins
identified by �23% and providing a jump in average protein
sequence coverage from 23.6% to 34.4% over analysis with
trypsin alone.

Beyond the beneficial information derived from the multiple
protease approach for proteome characterization, we were
also curious how AI-NETD performed for fragmenting families
of peptides that were chemically distinct due to their proteo-
lytic origins. We constructed fragment maps (vide supra) for
AI-NETD fragmentation of peptides from all five enzymes and
used results from trypsin as a point of reference. The trends in
fragmentation between peptides from trypsin, LysC, chymo-
trypsin, and AspN were similar (data not shown); the fragmen-
tation for GluC peptides, however, seemed to be more exten-
sive than that seen with trypsin (Fig. 6A). Here, we looked at
peptides of relatively moderate and long length (12 and 24
residues, respectively), considering two precursor charge
states for each. All peptides of the given length and charge
are represented for peptides from both enzymes. This in-
cludes 443, 98, 94, and 65 tryptic peptides and 323, 146, 43,
and 34 GluC peptides for length 12, z � �2; length 12, z �

TABLE II
AI-NETD performance for peptides generated from five different proteases in single-shot experiments. Proteolytic specificity for each enzyme

is shown
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�3; length 24, z � �3; and length 24, z � �4, respectively.
AI-NETD appears to produce fragment ions in greater number
and intensity for peptides derived from GluC compared with
trypsin, which is especially notable for z � �3 peptides that
are 12 amino acids (AA) long. Juxtaposed to tryptic peptides
with basic C termini, GluC peptides have a C-terminal acidic

residue (D/E), meaning at least one negative charge is fixed at
the C terminus. This could explain the improved electron-
driven fragmentation seen for GluC peptides, especially for
shorter peptides where proximity of backbone bonds to this
C-terminal negative charge is greater. Broadening this idea
beyond the subset of peptides investigated in panel A, we

FIG. 6. Comparison of single-shot AI-NETD for peptides produced by either trypsin or GluC. (A) AI-NETD fragment map for peptides
(12 and 24 amino acids in length) derived from both trypsin and GluC digestions. The numbers in parenthesis to the left indicate peptide charge.
(B) Density plots for peptide sequence coverage for PSMs from trypsin and GluC. (C) The larger histogram shows the distribution of peptide
lengths from an in silico digest for trypsin and GluC. The inset displays the distribution of lengths of peptides identified in the trypsin and GluC
experiments. The numbers in parenthesis in the respective legends show the average peptide length for each protease. (D) The MS/MS
success rate (blue) for GluC peptides is significantly lower than tryptic peptides (p 	 .01, indicated by *), while the ratio of unique peptides to
total PSMs detected (red) is not statistically different (p 	 .05).
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calculated peptide sequence coverage values for all identified
tryptic and GluC peptides, z � �2 through �4. Density plots
in Fig. 6B show the frequency of peptides characterized with
a given sequence coverage, serving as a surrogate for extent
of fragmentation. AI-NETD fragmentation shows a similar
trend for z � �2 peptides from trypsin and GluC, favoring
higher sequencing coverage; however, AI-NETD with GluC
peptides maintains high peptide sequence coverage for z �

�3 and �4 peptides while the sequence coverage for tryptic
peptides is much more evenly distributed, mirroring the more-
extensive fragmentation seen with the subset of GluC pep-
tides in panel A.

Although it appears AI-NETD fragments GluC peptides
more extensively, results with GluC do not rival those
achieved with trypsin. Intrigued by this, we performed an in
silico digest of the yeast proteome for both proteases, allow-
ing up to two missed cleavages with a minimum peptide
length of six amino acids and a maximum length of 75 amino
acids. The larger histogram in Fig. 6C shows that the distri-
bution of possible tryptic peptides favors shorter peptides
(average length of 20.6 residues) while GluC produces fewer
total peptides and does not favor short peptides as drastically
(average length of 27.8 residues). The inset in Fig. 6C displays
a histogram of peptide lengths for peptides actually identified
in AI-NETD analyses, providing the complementary experi-
mental measurement to the theoretical data derived from the
in silico digest. Interestingly, despite the notable difference in
distributions of peptide length from the in silico digestion, the
experimental distributions of peptide length are very similar,
with average peptide lengths of 16 and 15 residues for trypsin
and GluC, respectively. We surmise that lower peptide iden-
tifications with GluC compared with trypsin is a function of the
population of peptides generated by GluC rather than the
fragmentation achieved for these peptides. Although GluC
peptides may fragment better, a smaller portion of peptides
derived from GluC are in the ideal range of peptide length for
AI-NETD, which appears to be 10–25 residues. This translates
to a higher percentage of fragmentation events (i.e. MS/MS
scans) occurring on larger, more difficult-to-sequence pep-
tides for GluC. In fact, Fig. 6D supports this, showing that the
ratio of unique peptides to total PSMs is the same for the two
enzymes, but the MS/MS success rate is significantly lower
(p 	 .01) for GluC. Additionally, our entire workflow was
originally optimized for tryptic peptides, including sample
preparation and chromatographic conditions, which could
also contribute to this discrepancy. These observations may
explain why, even with superior fragmentation and higher
peptide sequence coverage for the peptides we do sequence,
fewer peptides are ultimately identified using GluC as a pro-
tease rather than trypsin. Even so, this does not make AI-
NETD analyses of GluC peptides any less valuable; rather,
these results suggest that combinations of proteases can be
used not only to enhance proteomic depth but also to access

the advantages AI-NETD can provide for peptides with dis-
tinct chemical properties.

Deep Sequencing in the Negative Mode with Offline
Low-pH Fractionation and Multiple Proteases—Encouraged
by these results, we sought to improve upon the proteomic
depth we could achieve with purely negative mode tech-
niques. All previous large-scale peptide anion analyses have
used online one-dimensional high-pH chromatography for
single-shot experiments, similar to the approaches we have
described thus far. Common practice in traditional proteomic
experiments is to increase the achievable proteomic depth by
decreasing sample complexity via online and/or offline frac-
tionation (61, 62); we used the same logic to fractionate
peptide mixtures from trypsin, LysC, GluC, chymotrypsin, and
AspN digestions prior to nLC-MS/MS analysis with AI-NETD.
In positive mode approaches, offline high-pH reversed-phase
fractionation provides an orthogonal mode of separation to
the online acidic reversed-phase chromatographic conditions
used for nLC-MS/MS analysis (63). It holds that the two
should remain orthogonal even if the order in which they are
performed is inverted. Thus, we employed a simple low-pH
reversed-phase fractionation system to separate a complex
mixture of peptides into 50 fractions, which were then con-
catenated into 10 total fractions for subsequent negative
mode nLC-MS/MS analysis. This fractionation was done for a
digestion from each protease.

The offline fractionation approach extraordinarily improved
peptide and protein identification for all five proteases with
AI-NETD (Fig. 7). Where single-shot AI-NETD experiments
with tryptic peptides produced 7,601 unique peptide identifi-
cations and 1,106 proteins, analysis of the same mixture of
tryptic peptides split equally into 10 fractions enabled the
identification of 36,713 unique peptides and 3,467 proteins.
Figure 7A shows the results achieved from analysis of 10
fractions for each of the five proteases. Here, the area of the
circle represents the total number of proteins identified. The
circles along the diagonal present the results for the proteases
individually. This figure also displays the average percentage
of protein sequence coverage observed with each enzyme
with a color gradient. Further, panel A presents pairwise com-
parisons that show the combination of results from two pro-
teases batched together. This analysis allows an evaluation of
how combinations of different proteases affect the number
and coverage of proteins detected, illustrating the degree of
orthogonality of each protease with the others. Intriguingly,
the combination of trypsin and GluC proteases for this large-
scale, deep-sequencing approach provided the largest num-
ber of proteins identified in these pairwise comparisons with
an average protein sequence coverage of 35.14%. The com-
bination of trypsin and chymotrypsin, however, provided the
greatest average sequence coverage (36.5%) even though it
did not appreciably increase the number of proteins identified
with trypsin alone. This analysis provides insight into what
combinations of proteases, whether they cleave at basic,
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acidic, or hydrophobic residues, may be the most beneficial
as negative mode approaches continue to advance. Panel B
shows the number of total PSMs collected for each enzyme,
providing some concept of the complexity of peptide mixtures
produced from each. When integrating the identifications from
all five enzymes into a batched analysis of proteins identified,
AI-NETD facilitated the characterization of 3,730 proteins with
an average sequence coverage of 43.9%. This represents
nearly 83% of the expressed yeast proteome (estimated to be
�4,500 proteins (64)), demonstrating that comprehensive
proteome analysis, which has been previously confined to
positive mode analyses, can be achieved in the negative
mode via peptide fragmentation with AI-NETD. Figure 7C
shows the proportions of these 3,730 proteins with a given
protein sequence coverage; while approximately half of the
proteins had sequence coverage under 40%, an appreciable
fraction of these protein identifications had excellent se-
quence coverage (80–100%).

Comparing Positive and Negative Mode Data—Although
the data presented above stand alone as a demonstration of
what can be considered realistic and achievable in negative
mode proteomics, a natural and valuable extension lies in the
comparison of these large-scale peptide anion analyses to
large-scale positive mode experiments. First, we performed
triplicate single-shot analyses of yeast tryptic peptides using
HCD and ETD fragmentation for comparison of positive mode
data to AI-NETD. Both HCD and ETD were performed in the
MDC to provide the most direct comparison possible, thus
keeping both reaction cell and mass analyzer (i.e. the Or-
bitrap) consistent with the negative mode experiments. Figure
8A displays the number of peptides identified with each
method and shows the overlap in peptides between the three
fragmentation types. Surprisingly, AI-NETD performed as well
as, if not better, than ETD in the number of peptides identified

(7,601 versus 7,414). Only one-third of the total peptides
sequenced by ETD and NETD were identified in both meth-
ods, highlighting the complementarity of the positive and
negative mode approaches for electron-driven dissociation
techniques. Furthermore, although HCD produced more pep-
tide identifications than both ETD and AI-NETD, the overlap in
peptides was higher for the two positive mode techniques—
83% of ETD peptides were also identified with HCD while
68.5% of AI-NETD peptides were also seen in the HCD data.
This provides clear evidence that negative mode analysis with
AI-NETD is fully capable of affording greater orthogonality to
positive mode collision-based peptide identification than of-
fered by positive mode ETD, maximizing the number of pep-
tides than can be identified in a sample (although we note that
more vigorous and extensive comparisons are need to fully
explore this issue).

To further our comparison to positive mode methods, we
examined the overlap in peptides and proteins characterized
in our deep-sequencing experiments to those identified in an
extensive published proteomic analysis of yeast peptides that
used offline fractionation and multiple proteases, two key
components of our deep proteome sequencing with AI-NETD
(50). Additionally this study utilized decision tree logic to tailor
fragmentation (either CID or ETD) to each peptide, maximizing
the chances of an MS/MS scan being successfully mapped to
sequence (65). All of these components make this data set
one of the most robust available characterizations of the yeast
proteome, with the added benefit of the ability to compare
multiple proteases in positive and negative modes. Figure 8B
shows the distribution of percentage protein sequence cov-
erages achieved for n proteins in the positive mode when
using trypsin and various combinations of peptides from other
proteases [trypsin(�) and proteaseX(�), where proteaseX is
LysC, GluC, AspN, or ArgC]. Also included in that plot is the

FIG. 7. Proteome coverage in the negative mode with various proteases using AI-NETD and low-pH fractionation. (A) Pairwise
comparisons of the number of proteins (area of circle) and average protein sequence coverage (color) when using different proteases,
illustrating the degree of orthogonality of each protease with the others. The circles along the top edge (light gray background) show each
enzyme by itself. (B) The total number of PSMs for each protease. (C) When combining all PSMs from the five enzymes, AI-NETD characterizes
over 80% of the yeast proteome (, proteins). The pie chart here shows what proportions of these proteins had sequence coverage in the given
range.
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combination of tryptic peptides from the positive mode data
and the AI-NETD data set [trypsin(�) and trypsin(-)] (gray
background). Compellingly, using one protease with both the
positive and negative modes outperforms all other positive
mode combinations of trypsin with a different protease. Not
only does the trypsin(�) and trypsin(-) combination identify
more proteins than any trypsin (�) and proteaseX(�) combi-
nation, but it also provides the greatest median (29.17%) and
average (34.02%) percentage sequence coverage—indicating
that negative mode analyses for tryptic peptides can provide
more orthogonality to positive mode experiments than the use
of different proteases. For the other three proteases in com-
mon between the two studies (LysC, GluC, and AspN), the
addition of negative mode analyses with AI-NETD increases

“positive mode only” protein sequence coverage with LysC
from 23.72% to 30.97%, with GluC from 19.57% to 24.10%,
and with AspN from 20.98% to 23.34%.

Finally, we examined the overlap of all proteins from all five
proteases characterized in the positive mode data to all pro-
teins from all five proteases in the AI-NETD data set, which is
depicted in Fig. 8C. The degree of overlap in proteins identi-
fied is noticeably large (�85% of all proteins identified were
seen in both data sets), which is not wholly unsurprising as

90% of the expressed yeast proteome is represented. What
this overlap fails to display, however, is the difference in the
populations of peptides sequenced. Of the 106,861 unique
peptides identified between the two experiments, only 19,697
of them (�18%) were detected in both data sets. To visualize

FIG. 8. Comparison of AI-NETD to positive mode analyses. (A) Overlap in yeast tryptic peptides identified in HCD, ETD, and AI-NETD
single-shot experiments. The number of unique peptides identified with each fragmentation type are indicated in italics below the appropriate
label. (B) Distribution of protein sequence coverages achieved with combinations of trypsin with different proteases in positive mode analyses
with CID and ETD fragmentation compared with positive mode data combined with negative mode data with AI-NETD (gray background) using
only trypsin. The dotted line shows the highest average sequence coverage. (C) Overlap in yeast proteins identified using positive mode (CID
and ETD) and negative mode (AI-NETD) analyses. For both sets of proteins, peptides from five different proteases were batched together. (D)
Proteins detected in the positive mode data from (C) are rank ordered by percentage sequence coverage and plotted in blue, with an average
sequence coverage of 41.1%. The protein sequence coverage achieved for a given protein when combining the positive and negative mode
data is plotted in red, highlighting the gain in sequence coverage afforded by the addition of negative mode analyses. To the far right, sequence
coverages are shown for the 272 proteins that were not detected in positive mode analyses but were characterized with AI-NETD.
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how this impacts protein sequence coverage, Fig. 8D displays
all proteins identified in the positive mode data, rank ordered
by percentage protein sequence coverage (blue circles). For
each protein there is a corresponding red circle that shows
the sequence coverage achieved when including the negative
mode data with the positive mode data set; thus, the magni-
tude of the difference along the y axis between a red and blue
circle for any given protein shows the gain in percentage
protein sequence coverage provided by the inclusion of the
AI-NETD data. The average percentage sequence coverage
for the positive mode data is 41.1%, which is boosted by
nearly 12 percentage points to 52.7% by the addition of the
negative mode analyses. This combination of positive and
negative mode data puts the average sequence coverage
above 50%, a mark that neither data set reached on their own.
The highest gain in percentage sequence coverage was
61.7%, starting at 18.29% sequence coverage with positive
mode methods alone and going to 80% sequence coverage
with combined positive and negative mode analyses. This 174
residue protein, calcineurin subunit B—which is a calcium-de-
pendent, calmodulin stimulated protein phosphatase that
confers calcium sensitivity—is a notably acidic protein (pI �

4.36) with 36 negatively charged residues (Asp and Glu) and
only 21 basic residues (Lys and Arg). Many proteins that
showed comparable gains in sequence coverage shared sim-
ilar characteristics in isoelectric point and residue frequen-
cies, illustrating the ability of AI-NETD to add coverage to the
acidic portions of the proteome that may be missed by pos-
itive mode methods. The far right of the graph in Fig. 8D
shows sequence coverage for 272 proteins that were only
characterized by the inclusion of the AI-NETD data. Interest-
ingly, many of these proteins are membrane proteins, includ-
ing mitochondrial membrane, Golgi apparatus membrane,
and other transport proteins; this characterization of mem-
brane proteins via negative mode methods may point to an
interesting avenue to explore in future investigations. In all,
these comparisons demonstrate that large-scale negative
mode analyses with AI-NETD are a valuable complement to
positive mode methods, perhaps even offering more orthog-
onality than ETD or the use of multiple proteases.

DISCUSSION

Negative mode approaches for the characterization of pep-
tide anions offer a valuable dimension to proteomic analyses
(21, 24, 25, 66), especially as biologically relevant posttrans-
lational modifications and other analytes that pose challenges
to canonical positive mode techniques continue to emerge (7,
53, 67–72). Platforms for shotgun analysis of complex mix-
tures of peptide anions have been introduced, most notably
using UVPD and NETD; however, these approaches have yet
to provide considerable proteomic depth (fewer than �800
total proteins identified in a given experiment), restricting the
degree to which peptide anion characterization can benefit
the proteomic community.

With a new implementation of AI-NETD, we have intro-
duced a robust negative mode platform for the characteriza-
tion of over 1,100 proteins in a eukaryotic system (yeast) using
90-min single-shot analyses. Moreover, we demonstrate that
AI-NETD is compatible with a diverse array of commonly used
proteases, increasing proteomic depth (
 1,350 proteins) and
degree of protein characterization, i.e. sequence coverage,
achievable in single-shot experiments. The ability to utilize
several proteases makes AI-NETD an especially viable tech-
nique for analysis of PTMs, where access to chemically dis-
tinct peptides or a combinatorial pattern of sequences may
greatly increase confidence in identification and localization.
This approach may also prove beneficial for more extensive
characterization of proteins that are challenging to current
techniques, e.g. proteins with dominantly acidic sequences or
those with both highly hydrophobic and hydrophilic regions.

Integral to the improvements observed with our AI-NETD
work was the selection of a high-pH solvent system that
increased anion flux and provided optimal distribution of pre-
cursor charge states. Previous studies have shown the ben-
efits of piperidine buffers for anion analysis, but this work is
the first to demonstrate the consequential effects it can have
on large-scale shotgun proteomic experiments. Based on the
benefits we and others observed with DMSO (45, 55, 56), we
expected the addition of DMSO to our piperidine solvents
would provide an additional boon to our negative mode work.
This was not the case, however, as the piperidine solvents
with DMSO included provided the fewest numbers of unique
peptide identifications among the three piperidine systems
tested. It has been suggested that the benefits of DMSO in
positive mode comes from the charge state coalescence for
peptide cations, making signal more concentrated for a fewer
number of charge states and reducing redundant sampling of
the same peptide with different m/z values. In the negative
mode, DMSO appears to have the opposite effect, expanding
the charge state distribution of peptide precursors sampled
for MS/MS events (Fig. 5B). The base peak intensity of the
chromatogram from 5 mM piperidine solvent with 5% DMSO
was slightly lower than 5 mM piperidine alone (Fig. 5A), also
juxtaposing the trends observed in positive mode. Noticeable,
though, is that the greatest number of MS/MS scans was
taken with the piperidine/DMSO buffers than with any other
system. These results suggest that DMSO is further spreading
signal among many charge states for peptide precursor an-
ions, rather than collapsing it as in positive mode. Thus, it is
possible that DMSO does not merely condense a signal into
lower charge states, as was suggested based on positive
mode studies but that it makes the precursor charge “more
negative” or “less positive” than before. Surely validation of
this hypothesis requires further exploration beyond the scope
of this work, but this observation highlights an unexpected
outcome that emphasizes the value negative mode proteom-
ics can have as a complementary tool to positive mode tech-
niques.
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Additionally, challenges with column longevity and hindered
performance of LC pumps have been reported for high-pH
reversed-phase separations for negative mode proteomics (7,
24, 73). We previously struggled with both precolumn and
analytical column degradation due to the instability of silica in
basic conditions. In this work, we eliminated the precolumns
that used silica frits and employed a polymer-silica hybrid
reversed-phase packing material that is stable at both acidic
and basic conditions (74). With these modifications, our col-
umns often lasted a week or more of constant runs, showing
impressive longevity compared with our previous column
setup that lasted roughly a day. LC maintenance was required
periodically, including changing of silica capillaries lines prior
to the analytical column, but this still permitted straightfor-
ward and consistent data collection for our single-shot and
deep-sequencing experiments.

In summary, we demonstrated that AI-NETD, in conjunction
with robust high-pH separations, multiple proteases, and of-
fline low-pH prefractionation, can be leveraged to character-
ize the large majority (
80%) of the yeast proteome, matching
the average sequence coverage observed in similar positive
mode experiments using multiple fragmentation types
(�45%) (50). Moreover, AI-NETD analyses provided a sub-
stantial improvement in protein sequence coverage (an aver-
age of �12% but as much as �62%) over what could be
achieved with positive mode methods alone, even those uti-
lizing a multiple protease approach. That being said, we do
not see negative mode proteomics replacing any of the wide
array of positive mode approaches, much less competing with
the acquisition rate and proteomic depth they can achieve
(45, 75, 76); instead, we foresee negative mode proteomics
continuing to advance in sensitivity and speed—especially as
robust fragmentation techniques like AI-NETD are imple-
mented on the newest generations of instruments—serving as
a powerful complement to traditional positive mode methods.
Most importantly, this work demonstrates that large-scale
analysis of peptide anions can be used to characterize nearly
an entire proteome, enabling a much more thorough investi-
gation of previously intractable portions of the proteome and
critical PTMs that will greatly benefit from analysis in the
negative mode.

Supplemental Information—All raw files and annotated for
spectra single peptide protein identifications from these ex-
periments are available on Chorus (Project ID 879). Supple-
mental information includes details for peptide and protein
identifications for all experiments.
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