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his paper was born of discussions involving several

international research groups on automatic retinal image
analysis (ARIA; see Ref. 1 for a recent review) at IEEE
Engineering in Medicine and Biology Conference (EMBC)
2011, Boston. There was unanimous recognition of two key
facts.

1. Efforts in the community are shifting from generating
algorithms to detect, localize, or measure retinal features
and properties, validated with small sets of test data, to

Copyright 2013 The Association for Research in Vision and Ophthalmology, Inc.
www.iovs.org | ISSN: 1552-5783

generating measurements of clinical and public health
significance for clinicians, eye care providers, and
biomedical scientists and researchers, requiring larger
and “real-life” sets of test data.

. The current methods for validating ARIA algorithms are

neither uniform nor widely agreed upon. Issues include
how to deal with the variability of expert annotations; the
availability of public, large, structured “real-life” datasets
for testing; and the accepted definition of reference (gold)
standards in different applicative contexts.
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It was felt that the discussion was sufficiently important to
seek the opinion of further groups, and to publish the result of
the discussion. This paper is that result.

Purely for reasons of space and consistency, we concentrate
on the validation of algorithms processing fundus camera
images, currently the largest section of the ARIA literature.

ARIA algorithms are currently used for the following main
purposes.

1. Screening/monitoring, for example of diabetic retinop-
athy (DR), glaucoma, or age-related macular degenera-
tion. The goal is to identify images showing signs of a
target condition in large sets (tens of thousands to
millions). The images (patients) selected are referred for
clinical attention. False negatives (missing patients with
disease) must be minimized; limited amounts of false
positives (false alarms) are acceptable, but should also
be considered as a factor to avoid unnecessary use of
resources or side effects of unnecessary treatments. It
has been shown that appropriate screening of DR is
cost-effective.?3 DR screening facilitates early detection
of patients with mild stages of DR, and thus early
intervention (e.g., by targeting a patient’s blood glucose
and blood pressure levels, or by laser treatment) and
ultimately the prevention of vision loss (outcome of
interest). ARIA screening promises to eliminate ineffi-
ciencies within the current DR screening workflow by
providing a faster, more cost-effective and accurate
disease diagnosis. It will also eventually improve
economics of eye disease management and cost savings
for patients, public health care providers, and the
government, and improve general eye health.

2. Computer-assisted diagnosis and risk stratification, for
example diagnosis of retinopathy of prematurity (ROP)/
Plus disease given measurements of tortuosity and width
not detected readily by clinical examination alone. The
purpose is to detect the presence or likelihood of a
disease from specific signs. ARIA performance must be
demonstrated to be more precise than diagnosis in the
absence of computer assistance or generate richer data
improving a clinician’s diagnosis. Unlike that with
screening and monitoring, the outcome is not necessar-
ily binary (refer/do not refer), and the diagnosis usually
depends on a combination of factors beyond ARIA
measurements (e.g., age, symptoms, clinical features).

3. (¢) Biomarkers aimed to determine whether the
occurrence of measurable features in retinal images is
linked significantly (in a statistical sense) with specific
outcomes or conditions that impact treatment decisions,
prognosis, or diagnosis, for example retinal vessel width
with lacunar stroke and coronary heart disease. ARIA
features may also be useful for testing effects of new
drugs and therapies (e.g., changes in retinal vascular
parameters with a novel drug for hypertension) or for
discovery of novel pathways in the natural history of
diseases (e.g., microvascular disease pathways in heart
attacks). Links to cognitive performance and gene
expression have also been reported.*>

In addition, three further areas would benefit from reliable
ARIA systems:

4. Longitudinal studies, whereby ARIA provides a means
to study quantitatively the evolution and characteriza-
tion of a disease to assist treatment planning or gauge
patient response to a treatment.

5. Computer-aided or image-guided surgery, an emerging
application of ARIA algorithms,®® for example, vitreo-
retinal microsurgery, for which ARIA allows registration
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of intraoperative imagery with preoperative imagery for
image-guided surgical interventions.!®

6. Telebealth. ARIA disease screening and monitoring
could play a very important role here, for example in
less developed countries where the incidence of
diabetes is rising and screening made difficult by the
lack of resources and clinicians.'’ A World Health
Organization consultation report reviewing principles
for the care of diabetic retinopathy noted that retinal
imaging systems and image analysis methods perform at
least as well as human providers. Computer-assisted
telehealth programs can therefore become a scalable
method for providing expert care. The cost-effectiveness
of telehealth screening of DR is accepted as an
alternative to eye specialist exams in the United States,
and is applied on a societal scale under various national
health care programs, for example in the United
Kingdom.'>13

This paper combines input from 14 international research
groups on the validation of ARIA algorithms. We first define
“validation,” hence the scope of our discussion, and sketch the
main techniques reported to date. We then give some compact
background on the images and tasks for which ARIA algorithms
are developed. We then discuss the issues making validation of
ARIA algorithms difficult, and conclude with recommenda-
tions. We include in Appendix A a list of public datasets
currently available for testing ARIA algorithms.

VALIDATION IN RETINAL IMAGE ANALYSIS

Validation: A Definition

For our purposes, validation indicates the process of showing
that an algoritbm performs correctly by comparing its output
with a reference standard. In ARIA, target performance levels
are normally represented by a reference (“gold”) standard
defined by expert performance, for example, regions traced
manually around landmarks or lesions, image quality level, or
scores attached to DR screening images.

Validating ARIA algorithms implies therefore (1) selecting a
data (image) sample representative for the specific validation
purposes, (2) collecting reference standard annotations on
the sample images, (3) running algorithms on the sample
images, and (4) comparing the output with the reference
standard by performing statistical analysis to assess the
agreement of the algorithm’s output and reference standard,
for example sensitivity, specificity, positive and negative
predictive value, and area under ROC (receiver operating
characteristic) curve.

Techniques

We identify four main types of validation processes in the ARIA
literature, each involving its own reference standards. From the
most general (defined in terms of clinical concepts) to the most
detailed (defined in terms of image elements), these are as
follows:

1. Outcome oriented, for example disease/no disease;

2. Disease grading, for example severity of DR, ROP Plus or
Pre-plus;

3. Feature grading, for example tortuosity level of vessels
or eye vasculature, width of retinal vessels;

4. Image/pixel/measurement oriented, for example locat-
ing microaneurysms, measuring area or perimeter of
target regions, locating vessel bifurcations.
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The key validation task is to assess quantitatively the
agreement of automatic and manual measurements. How
exactly to declare agreement or disagreement between sets of
data is the object of discussion in the literature. Techniques
vary with the type of the validation process (see above), but in
general they are drawn from statistics. The ones reported most
frequently in ARIA papers include graphs (e.g., scattergrams,
Bland-Altman plots), integral indexes like correlation coeffi-
cients (e.g., Pearson), and statistical tests. ROC curves and
associated coefficients (e.g., specificity, sensitivity, area under
the curve), imported from signal processing, are frequently
used to quantify the accuracy of detection and classification
and are advocated strongly by some authors.!*

Two major issues in the generation of reference standard
data are the variability of expert judgment and the need for
generating annotations directly comparable to the algo-
rithm’s output. The former is addressed by having several
experts annotate the same dataset; however, it is not
ultimately clear how to obtain a single reference value from
multiple ones (e.g., by averaging of values, discussion and
consensus, interrater reliability metrics such as AC1 or Kappa,
or just keeping histograms/distributions of multiple values).
This is because some annotation tasks are not part of normal
clinical practice and clinicians are not used to them, or do not
see their relevance (e.g., tracing accurate contours around
lesions).

A related question is where to set the “outcome” for
validation. In a screening program, a refer/no refer decision
with an associated uncertainty level seems the obvious choice;
other cases are not so clear. A related point is that ARIA
algorithms often consist of a pipeline of modules; and while
testing the outcome of the algorithm is the main goal, it may be
interesting and useful to test each individual module.

For these reasons some authors have begun to explore
alternative validation paradigms. One is estimating simulia-
neously the quality of ARIA results and reference standards
summarizing annotations from multiple experts, for example
STAPLE for image segmentation'>'¢ and other tasks.'” Imper-
fect reference standards are the motivation behind weak
learning methods in pattern recognition and machine learn-
ing!®1%; these methods are currently used only rarely in ARIA%®
but might provide very useful modeling tools (see also
subsection “Variation of Expert Judgment”). An interesting
viewpoint is offered by Quellec et al.,>! who found, in brief,
that a disagreement on DR severity between the algorithm and
one expert would predict disagreement between the expert
and a more experienced one. The ability to model expert
disagreement would be a powerful tool for validation.

IMAGES AND TASKS

We discuss the characteristics of digital images and of the
instruments generating them, as well as the clinical tasks for
which images are ultimately created and analyzed. Both play a
substantial role in validation. For reasons of space, we omit
other imaging modalities like optical coherence tomography
(OCT) and fluorescein angiography (FA) angiography.

Instruments and Images

The majority of ARIA systems reported to date consider single
color images from digital fundus cameras, although acquiring
two images per eye for both eyes (posterior pole, optic disc
[OD] centered) is increasingly common in screening programs.
Images are acquired with or without dilating the patient’s pupil
through eye drops, respectively mydriatic and nonmydriatic.
In the latter case, cameras require a high-power flash to allow
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enough light to enter the pupil and be reflected back by the
retina. Concurrent illumination and imaging, performed
through the same optical path, is the main engineering
challenge faced by fundus cameras.

The main manufacturers of fundus cameras are currently
Zeiss (Wetzlar, Germany), CenterVue (Padova, Italy), Topcon
(Oakland, N)), Nidek (Gamagori, Japan), Canon (Tokyo, Japan),
Kowa (Nagoya, Japan). Depending on the clinical application,
various optical filters are available, the most common being
green filters for red-free photography and barrier filters for
fluorescein angiography. A typical camera has a field of view
(FOV) of 30° to 50° with X2.5 magnification. Some modifica-
tions are possible through zoom or auxiliary lenses, from 15°
which provides X5 magnification, to 140° with a wide-angle
lens, which reduces the image by half. The actual image
resolution, that is, how many millimeters are captured by a
pixel, depends on various factors, mainly the properties of the
optics and the resolution of the complementary metal-oxide-
semiconductor/charge-coupled device (CMOS/CCD) image
sensor employed; approximately 3000 X 3000 pixels is now
common. Higher-resolution sensors could be used, but the
optics pose a limit to the resolution achievable, that is, to the
size of the smallest distance that can be imaged in focus. As the
optical quality of the eye prevents resolving features smaller
than 20 um, very high resolutions without adaptive optics may
not be useful. We notice that the diffusion of current imaging
equipment and technology is somewhat limited by infrastruc-
ture requirements; most existing are bulky, are expensive
(approximately $25,000), and require special skills to operate.
User-friendly, cost-effective handheld retinal cameras have
been developed to tackle these issues, but work in this area
is still limited.!®-22

Image Quality

Image quality depends on acquisition procedures, operators
and their training, blur, occlusions (e.g., cataract, eyelashes),
widespread lesions, artifacts introduced by the instrument, and
conditions; for instance, fundus images of infants for ROP
assessment tend to be lower quality than those of adults.
Quality considerations are essential for proper validation, as
image quality is at the basis of exclusion criteria applied in
screening programs.

As quality influences the performance of ARIA systems, it
seems advisable to divide a set of test images into quality
classes, for example good, acceptable, and unusable. In the
interest of applicability, quality classes should be defined by
practitioners, using national standards for specific tasks
whenever present. The UK diabetes screening program, for
instance, defines three image quality grades (inadequate,
minimum, achievable).?3

Automated systems for assessing retinal image quality
exist,?4-2% but quality is not always considered in the wider
ARIA literature with respect to preparing datasets. Capturing
quality definitions applied by experts in an ARIA algorithm is
difficult, as clinicians learn from examples and practice;
images considered viable for clinical analysis may not always
produce good results with ARIA systems. ARIA quality
estimation has often relied on heuristic measures (e.g.,
contrast level of vessels in specific retinal regions) and the
use of approximate classes for quality classifications such as
“adequate” or ‘“inadequate.” Such labels are used in
supervised learning systems, combined with pattern recogni-
tion and image-processing methods based on image features
like sharpness of vessel regions, quantity of the blood vessel,
and color characteristics like the shape of the color
histogram.
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Tasks

To complete the background picture for our discussion of
validation, we identify the main ARIA tasks addressed in the
literature and the main measures used for validation. We do not
aim to review ARIA techniques for each task; for these the
reader is referred to the recent review by Abramoff et al.!

Anatomical Landmarks: Location and Measurement.
In fundus images, the main landmarks are the OD, the macular
region, and the vasculature. Most detection methods reported
combine anatomical knowledge (relative locations of retinal
landmarks, vasculature geometry) with image features (bright-
ness levels, vessel density, orientation and thickness) to locate
OD and macula, thus identifying a reference coordinate system
for the location of retinal lesions.

Reference standard sets must specify therefore OD and
macula locations. Measures used to compare reference
standard annotations and ARIA estimates are normally the
distance between annotated and estimated OD centers, or
integral measures of contour agreement based on area (e.g.,
the Dice coefficient), or point-to-point distances along the
contours.

The target clinical task determines the accuracy of the
“location of the anatomical landmark.” For example, locating
OD (with approximate size) and macula centers is generally
sufficient to establish a retinal coordinate system; estimating
the ellipticity of the OD requires accurate contour detection
including parapapillary atrophy segmentation.>®

Vasculature Segmentation and Measurement. The
retinal vasculature is an important indicator of various diseases;
its changes underlie the development of other signs such as
retinal lesions. Indicators of disease in the vasculature include
width and tortuosity changes, venous beading, focal arterial
narrowing and neovascularization. Measurements can be local
(e.g., width, branching angles) and global (e.g., fractal
dimension of whole network).31:32 Subtle vessel changes may
occur during the early stages of disease development,
consequent to changes to blood flow dynamics; and associa-
tions of these changes have been found with age or with risk of
stroke.3133 There is therefore substantial interest in automat-
ically segmenting the vasculature and measuring its properties.
This requires, typically, locating the vessels, establishing overall
branching patterns and connectivity, and computing target
measurements.

The majority of datasets used for validating vasculature-
related ARIA algorithms (see Appendix A) concentrate on the
first step. They consist of images with corresponding reference
standard in the form of vascular masks (binary pixel images)
generated by clinicians using a software drawing tool. Two
well-known examples are DRIVE and STARE.

These datasets suffer from two limitations. First, there is
currently no absolute, objective definition of the location of
the edge of a retinal blood vessel. The observed vessel in a
standard retinal image corresponds to the blood column within
the vessel. However, as the column depth reduces toward the
vessel edge, the intensity drops off, blurring the edge’s
appearance. Second, generating vessel masks is one of the
most labor-intensive annotation tasks. The anti-aliasing effect
along vessel edges makes it difficult to determine exactly
whether an individual pixel belongs properly to a vessel.

Both DRIVE and STARE use multiple observers, who
provide sometimes significantly different reference standards.
As algorithms approach human levels of performance, it
becomes difficult to use such variable standards to assess
performance. On the other hand, the datasets provide an easily
accessible reference standard. The REVIEW dataset uses a
different approach. A limited number of vessels have their
edges marked using a contour tool with subpixel accuracy.
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This allows more accurate assessment of algorithms for vessel
width determination, but does not provide sufficient detail to
analyze the overall segmentation performance.

Work addressing vascular connectivity exists, and some
standard definitions of angles have been suggested.>¥ However,
there appears to be relatively little published work on vessel
branching angles, and we know no publicly available reference
standard dataset addressing this aspect.353¢

Diabetic Retinopathy and Diabetes-Related Retinal
Lesions. DR has attracted a large part of ARIA research, and
we dedicate a longer background section to it. Prevalence is
expected to grow exponentially,37-38 affecting 300 million
people worldwide by 2025.>° DR, a specific microvascular
complication of diabetes, is a major cause of vision loss in
people aged 25 to 60. Of the 246 million people with diabetes,
approximately a third have DR, and a third of these have vision-
threatening retinopathy—the majority caused by diabetic
macular edema (DME).“° DR imposes a huge economic burden
on patients, health care systems, and society, estimated at
US$500 million annually in the United States alone.

This background poses a demand for reliable automated
early-screening procedures. The challenge for ARIA is to find
cost-effective techniques with sufficient sensitivity and speci-
ficity to reliably identify those at risk of vision loss. Clinically,
the primary validation method of interest is outcome oriented:
how well the presence of disease can be detected (refer/no
refer), and how sensitive the systems can be made (near-zero
false negatives) with a manageable level of specificity.

Some researchers?#!1-44 have reported systems with perfor-
mance deemed acceptable for clinical deployment, but reports
of large-scale studies remain rare and may not hold true for
particular datasets with unique idiosyncrasies. Lesions targeted
by ARIA systems include microaneurysms, cotton wool spots,
soft exudates, and small hemorrhages for nonproliferative
retinopathy; and ischemic areas in the retina, loss of vessels,
and vessel proliferation for proliferative retinopathy.>-48

Table 1 summarizes ARIA work on DR detection, in particular
microaneurysms and exudates, over the past 20 years. Many
algorithms have been designed for the detection of DR in various
types of retina images (color fundus, angiogram, red-free). The
majority of these algorithms are validated on modest numbers of
retina images annotated by experts, usually not available publicly.
Performance is evaluated in terms of sensitivity and specificity at
either the lesion, region, or image level.

In general, results depend on methodology and dataset,
stressing the need for large, internationally agreed-upon datasets
for validation. For instance, the winning team of the Retinopathy
Online Challenge (provided in the public domain at http://roc.
healthcare.uiowa.edu/, Niemeijer et al®), led by Quellec,
achieved only 60% sensitivity with eight false positives per
image; but earlier work by Niemeijer (2005)°° reported 100%
sensitivity and 87% specificity on image-level screening, even
though the per lesion sensitivity was only approximately 30%.

Glaucoma. Glaucoma is a disease of the optic nerve,
resulting in a gradual and progressive loss of vision. The main
indicator in ARIA is the cup-to-disc ratio (CDR), that is, the
ratio of the size of the optic cup to that of the OD. Various
imaging techniques are used in relation to glaucoma. Currently,
fundus photography remains the only modality in which the
characteristic colors of the retina and pathologies are
preserved. Stereo imaging approaches exist in which a depth
map of the OD region is computed from two retinal
photographs acquired from displaced viewpoints.”!72 Tomo-
graphic imaging of the retina in three dimensions has been
made possible by confocal laser scanning, used in the
Heidelberg retinal tomograph, and OCT, which exploits
interferometry to achieve tomographic micrometer-resolution
imaging of the retinal layers.
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Tasie 1. ARIA Literature on DR at a Glance
Reference Public No. of Image Validation
No. DR Task Method Dataset? images Type Level Sensitivity Specificity
2 MA, dot HM Pixel clustering, kNN No 16,670 Color fundus Image 47.7% 90%
51 MA Radon transform, wavelet Yes 100 Color fundus Lesion 50% >10 false positive
preprocessing per image
49 MA Wavelet transform Yes 100 Color fundus Lesion 60% 8 false positive
per image
52 MA Double-ring filter Yes 100 Color fundus Lesion 65% 27 false positive
per image
53 MA Wavelet, genetic algorithm No 1115 Color fundus Lesion 90.24%  89.75%
+ angiogram
54 MA Diameter closing, feature No 115 Color fundus Lesion 88.50%  2.13 false positive
extraction, classification per image
55 MA Edge inference No 49  Color fundus Lesion 68% >40 false positive
per image
48 Exudates Machine learning No 430 Color fundus Lesion 95% 88%
43 MA, dot HM Combination of methods No 15,473 Color fundus Image 97.90%  67.40%
56 MA Watershed contrast No 1677 Color fundus Image 85.40%  83.10%
normalization
57 MA Wavelet template matching No 995 Green channel Lesion 87.90%  96.20%
fundus
58 MA Generalized eigenvectors No 70 Color fundus Region 93% NA
59 MA 2-D adaptive filtering, No 11  Angiogram Region 90.72%  82.35%
region growing
50 MA, dot HM Pixel classification No 240 Color fundus Region 100% 87%
60 MA, dot HM Retinalyze (proprietary) No 400 Color fundus Image 96.70%  71.40%
61 Drusen Histogram-adaptive local No 23 Color fundus Region 98.80%  99.31%
thresholding
62 MA, HM Morphological, region No 142 Color fundus Region 77.50%  88.70%
growing, neural network
63 Exudates Dynamic clustering with No 543 Color fundus Image 100% 74%
domain knowledge
64 MA Morphological, region No 46 Color fundus Image 90% 80%
growing
65 Exudates Statistical classification No 200 Color fundus Image 100% 70%
with local window-based
verification
66 MA Manual rule-based classifier No 3885 Red-free Image 85% 76%
46 MA, HM, Estimate background No 268 Color fundus Lesion 94% 69%
exudates, intensity, extract
cotton wool candidate regions for
classification
67 MA, dot HM Pattern recognition No 400 35-mm color Lesion NA NA
slides
68 MA Manual rule-based classifier No 88 Angiogram Lesion 82% 84%
69 HM, exudates Neural network No 480 Red-free Region 73.80%  73.80%
70 MA Matched filter No 6 Angiogram Lesion 45% >150 false positive
per image

MA, microaneurysm; HM, haemorrhage; kNN, k-nearest neighbor.

Table 2 summarizes glaucoma-related ARIA reports (although
numerous papers have described individual optic disc and cup
detection, only papers leading to a CDR or glaucoma detection
outcome have been included). ARGALI is a recent ARIA system
for glaucoma assessment.”3"7> It uses active contour methods
based on level sets to segment the cup and the disc and
calculate the CDR. A similar approach was adopted by Joshi et
al.”¢ Some authors have reported stereo techniques recovering
depth information.”!7277:78 An alternative approach is the use
of machine learning to assign a predictive score for the risk of
glaucoma directly to images.”” AGLAIA (Automatic GLaucoma
Diagnosis and Its Genetic Association Study through Medical
Image InformAtics)®”-8%81 computes 13 image cues for glaucoma
assessment, and aims to integrate clinical and genome data in a
holistic glaucoma analysis.

No publicly available datasets for validation are known to
us, although some may be available on request from the
authors under specific agreements, for example ORIGA-
light.80-82

Retinopathy of Prematurity. Retinopathy of prematurity
(ROP) is a disease involving abnormal development of retinal
vasculature in premature infants, which can lead to retinal
detachment and visual loss. The main indicators of ROP
severity are the Plus disease, the stage when treatment is
required, and the Pre-plus disease, a predictor of sight-
threatening Plus disease development. Plus and Pre-plus
diseases can be diagnosed by recognizing their specific signs,
namely abnormal vascular dilation and tortuosity. The number
of infants requiring ROP examinations has recently increased,
thanks to improved survival of very low-birth-weight infants.
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TaBie 2. ARIA Literature on Glaucoma at a Glance
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Reference Public No. of Validation
No. Method Dataset? Images Image Type Level Results
83 Intra-image learning ORIGA 84 650 Nonstereo fundus CDR Mean CDR error: 0.081
on request
85 Statistical model based ORIGA 34 650 Nonstereo fundus CDR Mean CDR error: 0.100
on request
86 Depth-discontinuity model No 138 Stereo fundus CDR Mean CDR error: 0.09
87 Sliding window, regression ORIGA,34 650 Nonstereo fundus CDR Mean CDR error: 0.091
on request
88 AGLAIA framework No 291 Nonstereo fundus  Glaucoma AUC: 0.73
89 Active contour model, r-bends No 138 Nonstereo fundus CDR Mean CDR error: 0.09
90 Higher-order spectra, texture features No 60 Nonstereo fundus  Glaucoma Detection: 61%
91 Active contour, depth reconstruction No 80 Stereo fundus CDR, glaucoma Mean CDR error: 0.110,
AUC: 0.90
92 Appearance-based analysis No 575 Nonstereo fundus  Glaucoma AUC: 0.88
93 Intensity profiling No 50 Nonstereo fundus  CDR, Mean CDR error: 0.14,
Glaucoma AUC: 0.87
94 Regional information No 170 Nonstereo fundus CDR Mean CDR error: 0.100
95 Level set No 104 Nonstereo fundus CDR Mean CDR error: 0.089
96 Thresholding, 3-D reconstruction No 80 Stereo fundus Glaucoma AUC: 0.83
97 Hybrid wavelet edges, kinking No 27 Nonstereo fundus CDR Mean CDR error: 0.093
98 ARGALI No 23 Nonstereo fundus CDR Correlation with ground
truth: 0.89
99 Deformable model No 25 Stereo fundus CDR Correlation with ground
truth: 0.71
100 Pixel features, KNN No 58 Stereo fundus CDR Correlation with ground
truth: 0.93
101 Discriminatory analysis No NA Nonstereo fundus NA Not provided

AUC, area under the ROC curve.

Therefore, computer-assisted solutions that can either increase
the productivity of ophthalmologists’ screening or allow
trained paramedical personnel to carry out part of the
screening themselves will be of significant clinical benefit.
Many ROP-related systems for computer-aided diagnosis
have been reported recently, and Table 3 attempts a summary.
Retinal Image multiScale Analysis (RISA) provides a semiauto-
matic tool for the labeling of the skeleton trees, followed by an
automatic procedure to measure vessel width and tortuosity
and from these derive Plus or Pre-plus diagnosis.'®> The
Computer-Aided Image Analysis of the Retina (CAIAR) system
semiautomatically identifies the retinal vessels, with provision
for manual pixel editing if any vessel is inappropriately
represented, and then automatically measures width and
tortuosity of each identified vessel.!°> ROPtool semiautomati-
cally traces retinal blood vessels; its reliability in measuring
tortuosity and dilation of vessels was assessed in two distinct
studies.'0%19¢ VesselMap (Imedos, Jena, Germany) is a com-
mercial semiautomatic software program developed to analyze
vessels in an adult retinal image. It performs the tracking of the

TaBie 3. ARIA Literature on ROP at a Glance

main retinal vessels, providing information only about the
vessel diameter, and was used also in ROP images.!?>

No public annotated datasets on ROP seem to be available
to date for ARIA system training and validation.

Age-Related Macular Degeneration. Age-related macular
degeneration (AMD) is a condition of great interest because of
its relevance and prevalence. It has, however, attracted less
ARIA research than DR, and we do not discuss it in this paper.
The reader is referred to several examples of studies.! 1861

VALIDATION ISSUES AND CHALLENGES

We now discuss the factors introducing uncertainties in the
reference standard (section “Validation in Retinal Image
Analysis”). Some are shared with other areas of medical image
analysis. Indeed, the very definition of the reference standard
varies with a number of factors, and may not reflect the true
state of a disease. All this results in assessment variations. As it
is unreasonable to pursue an accuracy higher than that of the

Reference Public No. of Image Validation
No. DR Task Method Dataset? Images Type Level Sensitivity  Specificity

102 ROP diagnosis Semiautomated No 20 Color fundus Image 50%-100% 46%-93%

103 Vessel tortuosities and Semiautomated No 10 Color fundus Image feature Ground truth correlation:
width measurement 0.49-0.67 (tortuosities),

0.42 (width)
104 ROP diagnosis Semiautomated No 185 Color fundus Image 97% 94%
105 Vessel width measurement  Semiautomated No 20 Color fundus Image feature Ground truth correlation:
0.80
106 Vessel width measurement  Semiautomated No 30 Color fundus Image feature NA NA
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reference standard used, it seems essential to characterize
quantitatively the variations of reference standards (see
“Techniques” subsection). Much work is still needed to
achieve this goal, given the number and nature of the
uncertainty sources involved.

Several practical challenges also exist. For instance, it is
extremely time-consuming to collect sufficiently large, careful-
ly constructed and annotated reference standard datasets. Time
issues are exacerbated when it is necessary to annotate
multiple images per eye, for instance with fluorescein
angiography sequences or longitudinal studies. Another issue
is that the point in the diagnostic process at which “outcome”
should be set is not always clear, as factors beyond retinal
measurements influence diagnosis. In automatic DR screening,
for example, at least two possible end points exist that impact
the four types of validation listed in “Techniques”: identifying
the presence of DR (refer/no refer decision) and identitying
specific lesions from which conclusions are then drawn by the
specialist.107

Variation of Expert Judgment

In engineering, reference standards for testing are normally
objective measurements from instruments more accurate than
the one being tested (see, e.g., camera calibration procedures);
in medical image analysis, reference standards are instead built
from statistical or explicit consensus among experts. Such
judgments vary, in general, with experts (interobserver
variations), and, to a lesser extent, over repeated judgments
by the same expert (intraobserver variations).

These variations depend at least on experience, task,
background, image quality (e.g., this often makes it difficult,
even for the expert practitioner, to decide without ambiguity
the presence of a druse), and interpretation of the annotation
task, although a detailed protocol should minimize variations
(see subsection ‘“Annotation Protocols” below). Recent
relevant work has been reported by Quellec et al. and
Abramoff?2° on the maximum meaningful performance
achievable with automatic binary decision systems, given the
characteristics of the reference standard obtained from
clinicians. The study focused on the ROC area under the curve
as the evaluation index. The authors ran tests with two ARIA
systems for DR detection, 500 images, and the reference
standard obtained by three experts. They concluded, interest-
ingly, that meaningful performance measured against a single
expert could not be improved (on the dataset used), whereas it
could be improved significantly when compared against a
committee of experts.

Hubschman et al.'%® quantified the interobserver difference
in an ischemia grading task with branch retinal vein occlusion.
A single ultra-wide-field fluorescein angiogram image was
segmented by four retina specialists into regions belonging to
four different levels of retinal perfusion (normally perfused,
partially perfused, nonperfused, insufficient quality). The
cardiac cycle can also have an influence on vessel caliber
measurements (see subsection ‘“Physiological Short-Term
Changes in Time”).

Intuitively, uncertainty can be reduced by increasing the
number of experts and the number of annotations per expert.
There is, however, little consensus on how to proceed
statistically when such data are available, and expert numbers
are usually small (two to five in most ARIA papers). Relevant
techniques have been mentioned in “Techniques.”

Annotation Protocols

Procedures used to take photographs represent another source
of variability. For example, if the eye is not positioned in the
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same location, the vessels may be captured at slightly different
angles, resulting possibly in different measurements.

As noted in “Techniques,” annotating specific image
elements, like circling regions or tracing vessels on a computer
screen, is a task that doctors do not normally perform in
clinical practice. To maximize annotation accuracy as well as
relevance to translation, it seems desirable to align validation
tasks with those that doctors specialize in. Relevant research
has been reported recently by Quellec et al.,?® who designed
graphical user interfaces (GUIs) to automatically detect
clements that catch the attention of clinicians in their daily
clinical practice. This avoids requesting clinicians to explicitly
annotate anatomical structures, a task they have not been
trained for. Usage logs (zoom, magnifying glass, and the like)
are used to train weakly supervised lesion detectors and
validate their outputs.

Datasets used for high-profile clinical studies, such as
AREDS (see Appendix A), were annotated at national grading
centers using established protocols. As the intent was to
evaluate the efficacy of drugs (for AREDS, by the National
Institutes of Health/U.S. Department of Agriculture), it should
be believed that the grading protocol was highly refined and
scrutinized, and should be trusted to a higher extent than those
of datasets developed at individual institutions for testing a
specific algorithm. However, datasets not considering ARIA
validation might not provide ARIA-relevant data, for example
pixel-level delineations allowing ROC analysis.

Physiological Short-Term Changes in Time

Taking photographs at random instants in the pulse cycle may
result in unrecognized variations in the measurements of
retinal vessel diameters, however technically sophisticated,
both among subjects and over time in the same individual. A
few studies have investigated this in detail,'°-!!3 and some
conclusions appear to be conflicting. It has been reported that
the maximum variation at different points in the pulse cycle
ranged from 4.3% to 4.8% for major retinal venules and from
3.1% to 3.9% for major retinal arterioles. Venular diameter was
smallest in early systole, increasing to a maximum level in early
diastole and decreasing thenceforth. The arteriole diameter
peaked slightly earlier. In another investigation of 10 volun-
teers, it was shown that a summary measure of the retinal
venule diameters and the arteriolar diameters change at
different points in the cardiac cycle. Across the cardiac cycle,
the central retinal venular equivalent (CRVE) changed by 3.1%
and the central retinal arteriolar equivalent (CRAE) changed by
4.3%. However, recent work by Kumar et al.!''3 has shown that
there is no significant change in the average of the width of six
large vessels in the region often chosen for arteriole-to-venule
ratio (AVR) estimation. As quantifying vascular changes is a
primary ARIA concern,!!? there is a need for more extensive
studies and test sets with repeated images of the same eye over
time. Gating the eye fundus camera with the electrocardiogram
has also been proposed. Moret et al.''4 have measured changes
to the vessel shape and size, also evidenced from the use of
dynamic vessel analyzers (DVA) for disease diagnosis.!'> DVA
can provide temporal resolutions above 20 frames/s but comes
with limits on spatial resolution and methodology, and the
instrumentation is suitable only for highly specialized research
facilities.

Different Imaging Instruments

Because of the nature of retinal imaging, there is usually a high
level of customization for each modality. Algorithms used for
the segmentation of the optic nerve head in a confocal
scanning technique may not be applicable to retinal images
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without some level of customization. Even without the same
class of machines, the variation of instruments can have a large
effect on algorithm processes. In retinal fundus imaging,
resolution variations can have a large effect on algorithm
performance, and resolution requirements depend on the task
at hand. For example, a lower resolution may be acceptable for
optic nerve head segmentation, but not for estimating the
tortuosity of retinal neovascularization. The selection of FOV
and imaging field can also affect performance, particularly
when one is relying on or assuming the visibility of retinal
landmarks (OD, macula, arcades). The color calibration model
used in the camera CCDs for digital capture can also affect
algorithm performance, possibly causing images of the same
retina taken by different devices to appear significantly
different.

Image Quality

Image quality was discussed earlier. We reiterate that image
quality depends on, among other factors, instrument charac-
teristics, acquisition procedure, and target conditions, and that
capturing quality definitions applied by experts for implemen-
tation in ARIA systems is difficult; in general, images
considered viable for clinical analysis may not produce good
results with ARIA systems.

Datasets

The key observation is that different datasets may lead to
somewhat inconsistent performance assessments, as prepara-
tion protocols may differ. For instance, the best-known public
retinal datasets are probably DRIVE!'® and STARE.!!” Soares et
al.¥7 compared binary vessel masks from both datasets with
masks obtained from their algorithm. Accuracy differences
were noted between the two datasets, associated with
different segmentation methods and differences in the extent
and detail of the manual tracing provided by the experts.
However, other groups have reported diverse methods of
vessel segmentation and identification of proliferative retinop-
athy,*® and a comparison of these methods has not shown
large differences in accuracy with images from the STARE
dataset.!18

Task, Previous Knowledge, Condition

Expert judgment and annotations can be different for the same
image and target measure depending on the task a clinician has
in mind. For instance, when asked to determine the width of a
retinal vessel from a fundus images, a doctor thinking surgically
might try to keep at a distance from the vessel, hence
overestimating width. If the task does affect annotations, it
seems advisable to group reference annotations also by clinical
task and to specify annotation protocols accordingly. At the
moment, some public repositories group images by conditions,
for example MESSIDOR for DR (see Appendix A).

Patient Characterization: Metadata

The growing volume of electronic images and datasets
potentially available to researchers makes it challenging to
mine the rich information embedded in the data. This
obviously includes image properties, but also contextual
information, that is, clinical metadata that may be relevant
for the disease incidence and for organizing consistent
validation datasets. Contextual patient characterization data
include ethnicity, age, sex, medical data (hypertension,
diabetes, heart diseases), lifestyle factors (e.g., smoking),
systemic data (body mass index, cholesterol level, blood
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pressure, and so on), ocular data (refractive error, lens opacity,
and so on), comorbid diseases, and in general all data normally
considered in clinical studies.

These factors are rarely discussed for data used in validating
ARIA algorithms, in part because their effect on retinal images,
and consequently on ARIA results, is the object of current
international investigation. Content-based approaches may
have particular relevance in utilizing contextual information
together with image analysis to assign risk profiles to patients
in a screening environment.Quellec et al.!'®12 have reported
work on the inclusion of demographic and biological data in
an image-based DR severity scale, concluding that this
inclusion leads to significant improvement in classification
performance. A larger clinical study aimed at confirming these
findings is currently being performed on a dataset of 25,702
examination records from the Ophdiat screening network
(provided in the public domain at http://reseav-ophdiat.aphp.
fr/index.html).?

Human in the Loop

A final consideration is that some ARIA algorithms are
semiautomatic and involve deliberately human intervention, a
paradigm known in robotics as “human in the loop.” This
complicates the objective evaluation of performance, as it
seems to require decoupling human and automatic contribu-
tions. Specialized techniques apparently have not yet been
considered in the ARIA literature.

DiscussioN AND RECOMMENDATIONS

The ideal way to identify effective ARIA algorithms is to
compare solutions proposed in the literature on an equal
footing and with datasets recognized as meaningful by a
representative cross section of the clinical community. This
comparison is best achieved by the creation of common,
accessible, and representative datasets including automated
tools to run submitted algorithms on the data provided. Other
areas of image-processing research have produced such
repositories, for instance stereo and multiple-image analysis.!?!
An ARIA move in this direction is the recent Diabetic
Retinopathy Online Challenge.?® Encouragingly, a variety of
public datasets have appeared in recent years (see Appendix
A). Most are still limited collections of images generated by
individual sites, or contain limited annotations, or both. There
is currently no coordinated consensus in the community on
how to structure such datasets or what information to include,
and this paper is meant to provoke thoughts toward that end.

So far, neither ARIA datasets nor epidemiological studies
based on large populations have systematically taken into
account the above issues. Furthermore, as images are often
acquired independent of outcomes and participant character-
istics, random variability may tend to underestimate the true
associations found, for example between retinal vascular
calibers and cardiovascular diseases. Future studies need to
overcome these sources of variability before retinal features
could be used as a more precise biomarker.

ARIA repositories of test data (not including alternative,
promising validation paradigms like indirect methods) should,
ideally,

- Be created collaboratively by consortia of international
groups in order to achieve large data volumes and multiple
annotators, to reduce opinion bias, to guarantee international
visibility and credibility, and to ultimately generate useful
results for clinicians.

- Be easily accessible, ideally via Web sites from which data
could be downloaded following a suitable registration proce-
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dure including legal disclaimers, no-redistribution clauses,
acknowledgments needed for use, and so forth.

- Be regularly maintained, ideally by a consortium of
international groups monitoring distribution and guaranteeing
maintenance of data and annotations.

- Be large in size, and wherever possible dimensioned
statistically to maximize power; tentatively, the minimum order
of magnitude should be thousands of images. Large data
repositories should be standardized, patient-friendly imaging
protocols allowing large populations to be imaged effectively;
for example, single 45° fovea-centered fields, or two 45° fields
centered on the fovea and OD, respectively.!??

- Include metadata, that is, non-image data characterizing
imaging instruments, patients, and disease (subsection “Patient
Characteristics: Metadata™).

- Include automated tools for running software on the
data, as done on the Middlebury stereo site,'?! in which
executable code is loaded and run on the site, and
performance assessed in terms of predefined measures that
are displayed in tabular form.

- Organized by outcome, which depends on the task at
hand; for example, refer/do not refer in screening tasks, levels
of tortuosity or width measurement in feature-oriented tasks.
An image set could be used for multiple outcomes by providing
annotations for some or all the points listed under “Tech-
niques.”

- Include image annotations, providing the standard
reference for comparison for the outcome stated (see previous
point), preferably provided by as many clinicians as possible
(ideally from different sites to eliminate possible opinion bias)
to estimate interobserver variability, including arbitrated
annotations; each expert should ideally annotate the dataset
multiple times to estimate intraobserver variability (see also
last paragraph of “Techniques” section for techniques manag-
ing variations in expert judgment). Uncertainty levels declared
or agreed on by the annotators should also be considered. A
surrogate of direct measurement yielding “true” gold standard
could be the development of phantoms of the eye, including
the retinal vasculature and pumps to simulate the blood flow,
which could enable the calibration of ARIA vessel measure-
ment methods. But given the current impossibility, with ARIA
tasks, of obtaining ground truth measured by independent,
highly accurate instruments, the only way to estimate “how
good” an algorithm is to compare its output with expert
judgment.

Creating such repositories for ARIA algorithms poses
important challenges. The most obvious one is the sheer
complexity of the task, as presented above. Acquiring images,
generating the necessary annotations, and preparing the data
for public use take time and impose significant costs.
Governance and ethical issues, which vary internationally,
may complicate further the release of clinical data for public
research. A further point is the effort required for administra-
tion and maintenance, considering for instance that the
obsolescence of imaging instruments limits the life of a dataset.
It is arguable that retinal scans around 600 X 600 pixels are
increasingly obsolete given the availability of much higher-
resolution instruments.

Ultimately, outcome-oriented measures are required. It
would be of little applicative interest to develop ever more
accurate ARIA techniques if they could not be used to improve
clinical outcomes. Outcome measures should be considered in
a public health context, taking into account health economics,
risks, and the impact of changes to services using automated
algorithms. However, during the development of algorithms, it
is helpful to compare the isolated performance of modules that
will eventually become components in a larger system so that
the most effective methods can be identified. This requires the
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provision of comparative datasets with reference standard
measurements of features that may ultimately prove diagnostic.
These features must be selected based on expert clinical
advice.
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APPENDIX A
A List oF PuBLIC DATA REPOSITORIES FOR RETINAL
IMAGE ANALYSIS

This appendix lists the public retinal datasets known to us.
Unless otherwise stated, all datasets listed are easily reachable
by a Google search. Most descriptions are excerpts from the
Web sites listed.

STructured Analysis of the Retina (STARE; available in the
public domain at http://www.ces.clemson.edu/~ahoover/
stare/) is one of the earliest and most often cited test sets in
the ARIA literature, created for wvalidating OD location. It
consists of 31 images of healthy retinas and 50 images of
retinas with disease, acquired using a Topcon TRV-50 fundus
camera at 35° FOV and subsequently digitized at 605 X 700
pixels in resolution, 24 bits per pixel (standard RGB). The
nerve is visible in all 81 images, although partially visible in 14
as appearing on the image border. In 5 images the nerve is
completely obscured by hemorrhaging.

Digital Retinal Images for Vessel Extraction (DRIVE;
available in the public domain at http://www.isi.uu.nl/
Research/Databases/DRIVE/) is another much cited test set; it
was created to enable comparative studies on segmentation of
blood vessels in retinal images. The photographs were
obtained from a DR screening program in The Netherlands.
The screening population consisted of 400 diabetic subjects
between 25 and 90 years of age. Forty photographs were
randomly selected, 33 without and 7 with DR signs. The
images were acquired using a Canon CR5 nonmydriatic 3CCD
camera with a 45° FOV. Each image was captured using 8 bits
per color plane at 768 by 584 pixels. The FOV of each image is
circular with a diameter of approximately 540 pixels.

Diabetic Retinopathy Database and Evaluation Protocol
(DiaRetDB1; available in the public domain at http://www2.it.
lut.fi/project/imageret/diaretdb1/) consists of 89 color fundus
images. Eighty-four contain at least mild nonproliferative DR
signs (microaneurysms) and 5 are considered normal, not
containing DR signs according to all experts who participated
in the evaluation. Images were captured using the same 50°
FOV digital fundus camera with varying imaging settings. The
data correspond to a good (not necessarily typical) practical
situation, where images are comparable and can be used to
evaluate the general performance of diagnostic methods. Four
medical experts were asked to mark the areas related to the
microaneurysms, hemorrhages, and hard and soft exudates.
Ground truth confidence levels (<50%, ~>50%, ~100%),
representing the certainty of the decision that a marked finding
is correct, are included.

Méthodes d’Evaluation de Systemes de Segmentation et
d’Indexation Dédiées a ’Ophtalmologie Rétinienne (MESSI-
DOR; available in the public domain at http://messidor.
crihan.fr/download-en.php) contains 1200 eye fundus color
digital images of the posterior pole, acquired by three
ophthalmologic departments using a color video 3CCD
camera on a Topcon TRC NWG6 nonmydriatic retinograph
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with a 45° FOV, 8 bits per color plane, and resolutions of 1440
X 960, 2240 X 1488, or 2304 X 1536 pixels. Eight hundred
images were acquired with pupil dilation (one drop of
Tropicamide at 0.5%) and 400 without dilation. The 1200
images are packaged in three sets, one per ophthalmologic
department. Each set is divided into four zipped subsets each
containing 100 images in TIFF format and an Excel file
(Microsoft, Redmond, WA) with medical diagnoses for each
image. Currently there are no annotations (markings) on the
images. Annotations by a single clinician for OD diameter and
the fovea center, for the whole MESSIDOR set, have been
made available by the Department of Electronic, Computer
Systems and Automatic Engineering, University of Huelva,
Spain (available in the public domain at www.uhu.es/
retinopathy/muestras/Provided_Information.zip).

REVIEW (available in the public domain at http://reviewdb.
lincoln.ac.uk/) contains several subsets, with a mix of patients
with disease and no disease, and has a focus on validating
accurate measurements. It includes 16 images with 193 vessel
segments, demonstrating a variety of pathologies and vessel
types. These image sets contain 5066 manually marked
profiles. Images were assessed by three independent experts,
who marked the vessel edges.

AREDS (Age-Related Eye Disease Study; available in the
public domain at https://web.emmes.com/study/areds/,
http://www.areds2.org/) is a major clinical trial sponsored
by the National Eye Institute (NEI) at the National Institutes of
Health (http://www.nei.nih.gov/amd/), involving several US
centers working on AMD. The dataset includes several
thousands of analog and digitized fundus images showing
various stages of AMD. Longitudinal studies were performed
over 10 years showing disease progression. The images were
graded by national centers for AMD as well as for lens opacity.
The ground truth does not include image-level delineation of
drusen. The fundus photographs consist principally of 30°
images including stereo images centered on temporal margin
of the disc and an oblique view of the center of the macula
near the temporal margin of the field, stereo images centered
on the center of the macula, and monoscopic images
centered temporal to the macula and offering an oblique
view of the center of the macula near the nasal margin of the
field.

ARIA (available in the public domain at http://www.
eyecharity.com/aria_online/) contains color fundus images
collected at St Paul’s Eye Unit and the University of Liverpool,
United Kingdom, as part of the ARIA project. All subjects were
adults. All images were taken using a Zeiss FF450+4 fundus
camera, originally stored as uncompressed TIFF files and
converted to compressed JPG files for World Wide Web
publication. All photographs were taken at a 50° FOV. Blood
vessel masks created by trained image analysis experts are
available. The optic disc and fovea, where relevant, are
outlined in separate file sets. The data are organized into three
categories, namely, age-related macular degeneration subjects,
healthy control group subjects, and diabetic subjects.

ROC (available in the public domain at http://roc.
healthcare.uiowa.edu/) is a set of 100 digital color fundus
photographs selected from a large dataset (150,000 images)
acquired at multiple sites within the EyeCheck DR screening
program (see ROC Web site references), marked as gradable by
the screening program ophthalmologists and including micro-
aneurysms. Three different types of images with different
resolutions are included, acquired by a Topcon NW 100, a
Topcon NW200, or a Canon CR5-45NM and resulting in two
differently shaped FOVs. All images are JPEG, and compression
was set in the camera. The substantial black background
around the FOV present in the original type II and III images
was cut off using specialized software. This complete set was
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randomly split into a training and a test set, each containing 50
images. Four retinal experts, all from the Department of
Ophthalmology at the University of Iowa, were asked to
annotate all microaneurysms and all irrelevant lesions in all 100
images in the test and training sets.

BIOIMLAB (http://bioimlab.dei.unipd.it/Data%20Sets.htm)
at the University of Padova, Italy, maintains a number of
publicly available datasets for several measurements, including
vessel tortuosity (60 images from normal and hypertensive
patients; 30 images of retinal arteries of similar length and
caliber, 30 images of retinal veins of similar length and caliber,
MATLAB [Mathworks, Natick, MA] data structures).

HEI-MED (available in the public domain at http://vibot.
u-bourgogne.fr/luca/heimed.php) is a collection of 169 fundus
images to train and test image-processing algorithms for the
detection of exudates and diabetic macular edema. The images
have been collected as part of a telemedicine network for DR
diagnosis. The images contain manual segmentation of
exudation, and include a machine segmentation of the vascular
tree and optic nerve locations. The dataset contains a mixture
of ethnic groups, with roughly 60% African American, 25%
Caucasian, and 11% Hispanic.
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APPENDIX B

This paper is the result of an international collaboration to
which a total of 41 people contributed. Editorial limits on the
number of authors prevented us from listing the following
contributors: Adria Perez Rovira, Krists Zutis, Khai Sing Chin
(VAMPIRE project, School of Computing, University of Dundee,
Dundee, United Kingdom); Kenneth W. Tobin, who pioneered
ARIA work at ORNL, and Hector Santos-Villalobos (Oak Ridge
National Laboratory, Oak Ridge, TN); Enrico Grisan, Enea
Poletti (Department of Information Engineering, University of
Padova, Padova, Italy); David Reed, Christopher Gee (Jules
Stein Eye Institute, Los Angeles, CA); Andrew Hunter (REVIEW
Group, University of Lincoln, Lincoln, United Kingdom); Tien
Yin Wong, M. Kamran Ikram (SERI, Singapore); Jiang Liu, Ngan-
Meng Tan (A*STAR, Singapore); Meindert Nijemeier (Depart-
ment of Biomedical Engineering, University of Iowa, Iowa City,
TA); Wynne Hsu, Mong Li Lee (National University of Singapore,
Singapore); Hao Hao, Behzad Alihamad, Ganesh Naik (RMIT
University, Melbourne, Australia); David E. Freund (Applied
Physics Laboratory, Johns Hopkins University, Laurel, MD);
Juan Xu (Department of Ophthalmology, University of Pitts-
burgh School of Medicine, Pittsburgh, PA).
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