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REVIEW

Peritoneal dialysis (PD) is a modality for treatment of patients 
with end-stage renal disease (ESRD) that depends on the struc
tural and functional integrity of the peritoneal membrane. 
However, long-term PD can lead to morphological and functional 
changes in the peritoneum; in particular, peritoneal fibrosis has 
become one of the most common complications that ultimately 
results in ultrafiltration failure (UFF) and discontinuation of 
PD. Several factors and mechanisms such as inflammation and 
overproduction of transforming growth factor-β1 have been 
implicated in the development of peritoneal fibrosis, but there 
is no effective therapy to prevent or delay this process. Recent 
studies have shown that activation of multiple receptor tyrosine 
kinases (RTKs) is associated with the development and pro-
gression of tissue fibrosis in various organs, and there are also 
reports indicating the involvement of some RTKs in peritoneal 
fibrosis. This review will describe the role and mechanisms of 
RTKs in peritoneal fibrosis and discuss the possibility of using 
them as therapeutic targets for prevention and treatment of  
this complication. 
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Peritoneal dialysis (PD) is an alternative therapy to hemodi-
alysis for patients with end-stage renal disease (ESRD). This 

modality relies on the blood supply and semi-permeability of 
the peritoneal membrane to allow diffusion of solute down its 
concentration gradient from systemic circulation to dialysate 
dwelling in the peritoneal cavity as well as ultrafiltration of 
water down an osmotic gradient created by dextrose in the PD 

fluid. Thus, the success of PD depends on the structural and 
functional integrity of the peritoneal membrane (1,2).

The peritoneal membrane (PM) is a translucent structure 
composed of a mesothelial cell monolayer with some charac-
teristics of epithelial cells, and a sub-mesothelial compact zone 
that includes extracellular matrix (ECM), a few fibroblasts, 
innate immune cells such as macrophages and mast cells, as 
well as peritoneal capillaries and lymphatic vessels (3,4). As 
the primary protection against chemical or biochemical insults, 
human peritoneal mesothelial cells (HPMCs) undergo a variety 
of injuries in long-term PD, mainly owing to the continuous 
exposure of the membrane to conventional hyper-osmolar 
bio-incompatible PD fluids (5) (high dextrose concentration, 
low pH, glucose degradation products (GDPs), advanced glyca-
tion end products (AGEs) and recurrent episodes of peritonitis 
(6–9). Thus, despite advantages such as the great improvement 
of life quality as well as convenience and economy, the dura-
tion of PD also leads to peritoneal membrane dysfunction, 
which is characterized by detachment of the mesothelial 
layer, increased sub-mesothelial ECM deposition, fibrosis, and 
angiogenesis (10–12). The peritoneal membrane may progres-
sively experience fibro-proliferative changes, culminating in 
ultrafiltration failure (UFF) (13) and ultimately forcing the 
patient to dropout of PD therapy (9,12,14,15).

Development of peritoneal fibrosis is largely driven by 
fibroblasts, which are spindle-shaped, motile and contractile 
cells that respond to pro-fibrotic stimuli by synthesizing and 
organizing ECM (16–18). Besides the proliferation of local tis-
sue fibroblasts, fibroblasts may also be derived from circulating 
bone marrow-derived precursors (fibrocytes) (19) and resident 
mesothelial cells by epithelial-to-mesenchymal transition 
(EMT) (20–23). Epithelial-to-mesenchymal transition has been 
generally recognized as an important mechanism for embryo-
genesis, wound healing, tumor invasiveness and metastasis 
(24). The process includes the disruption of intercellular 
junctions, loss of apical-basal polarity, and appearance of 
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fibroblast-like phenotypes with migratory and invasive capac-
ity (20,25). Likewise, EMT occurs in peritoneum impairment 
(26,27). It has been well documented that after subjection to 
PD, HPMCs progressively undergo a loss of epithelial morphol-
ogy marked by a decrease in the expression of biomarkers such 
as cytokeratin and E-cadherin through induction of the regula-
tory protein snail (20); mesothelial cells acquire a migratory 
phenotype along with the up-regulation of integrin (20,28).

Accumulating evidence has shown that activation of receptor 
tyrosine kinases (RTKs) is associated with peritoneal fibrosis. 
Receptor tyrosine kinases are a large family of cell-surface recep-
tors with 58 members in humans (29) that share a conserved 
architecture of an extracellular ligand-binding region, a single-
pass transmembrane domain and an intracellular tyrosine kinase 
domain (29–31). Growth factor binding to the ligand-binding 
domain initiates the intracellular signaling transduction that is 
involved in some vital cellular processes, such as cell prolifera-
tion, differentiation, migration and survival (30,31). The current 
review will mainly focus on the tyrosine growth factor receptors 
engaged in peritoneal fibrosis during PD, including epidermal 
growth factor receptor (EGFR), platelet-derived growth factor 
receptor (PDGFR), fibroblast growth factor receptor (FGFR), 
vascular endothelial growth factor receptor (VEGFR), and 
hepatocyte growth factor receptor (c-Met). We will highlight 
the role and mechanisms of those RTKs in peritoneal fibrosis 
(Table 1) (Figure 1) and discuss their potential as therapeutic 
targets for prevention and treatment of this complication. 

EGFR

Epidermal growth factor receptor is a family of trans
membrane proteins with intrinsic tyrosine kinase activity. The 

EGFR family has 4 distinct members: the EGFR (also known as 
ErbB-1/human epidermal growth factor receptor-1, HER1), 
ErbB-2 (neu/ER2), ErbB-3 (HER3) and ErbB-4 (HER4), which 
can be activated by growth factors of the epidermal growth 
factor (EGF) family (32). These EGF-related proteins are 
composed of EGF, transforming growth factor-α (TGF-α), 
amphiregulin, heparin-binding growth factor (HB-EGF) and 
epiregulin (33). Epidermal growth factor receptor activation 
can also be triggered indirectly by stimuli other than ligand-
induced interaction with the EGFR ectodomain, such as by 
endothelin-1, angiotensin II (Ang II), and TGF-β1 (34). Such 
EGFR activation has been termed “transactivation,” in which 
the signal initiated by diverse stimuli can converge on EGFR, 
which in turn induces activation of downstream signaling  
pathways (35).

Epidermal growth factor receptor activation induces 
dimerization and phosphorylation of tyrosine residues in 
its cytosolic domains (36,37). Once these tyrosine residues 
are phosphorylated, they become the docking sites for 
intercellular kinases and then initiate activation of multiple 
intracellular signaling pathways, including the extracellular 
signal-regulated kinase (ERK) pathway, the Janus kinase/
signal transducers and activators of transcription (JAK/STAT) 
pathway, and the phosphoinositide-3-kinase (PI3K)/Akt path-
way (33). Activation of these pathways modulates a number 
of cellular responses, including cell proliferation and survival 
as well as protein expression (38,39).

Activation of the EGF/EGFR system is involved in peritoneal 
fibrosis. Heparin-binding growth factor, along with its cell 
receptors, is detectable in HPMCs and/or peritoneal macro-
phages, either in PD effluent or peritoneal membrane biopsies 
(40–42). Activation of EGFR by HB-EGF and the associated 

TABLE 1
The Role and Mechanisms of RTKs in Peritoneal Fibrosis

RTKs	 ligands	 Possible mechanisms 	 References

EGFR	 HB-EGF	 Promotes proliferation and transformation of HPMCs into a more fibroblastoid phenotype; 	 [41,42] 
		  Facilitates ECM deposition.	

PDFR	 PDGF-AB; 	 Promotes proliferation of peritoneal fibroblasts and HPMC; 	 [11,53,55,57]
	 PDGF-B	 Increases vascularization and angiogenesis in a TGF-β dependent or independent manner; 
		  Induces a ‘non-invasive’ EMT of mesothelial cells; 
		  Participates in the production of fibro-genic mediators.	

FGFR	 bFGF	 Enhances proliferation of peritoneal fibroblasts and accumulation of ECM;	 [66–68] 
		  Increases mitochondrial activity in HPFBs and human umbilical vein endothelial cells (HUVECs).

HGFR	 HGF	 Antagonizes the pro-fibrotic effect of TGF-β1 by down-regulation of TGF-β1 signaling pathway,	 [103,105,106]
		    VEGF, ECM and EMT; 
		  Up-regulates expression of MMPs.	

RTK = receptor tyrosine kinase; EGFR = epidermal growth factor receptor; HB-EGF = heparin-binding growth factor; HPMC = human peritoneal 
mesothelial cell; ECM = extracellular matrix; PDGFR = platelet-derived growth factor receptor; PDGF = platelet-derived growth factor; TGF = 
transforming growth factor; EMT = epithelial-to-mesenchymal transition; FGFR = fibroblast growth factor receptor; bFGF = basal fibroblast growth 
factor; HPFB = human peritoneal fibroblast; VEGFR = vascular endothelial growth factor receptor; VEGF/PIGF = vascular endothelial growth 
factor/placental growth factor; VEGF-C = vascular endothelial growth factor C; HGFR = hepatocyte growth factor receptor; HGF = hepatocyte 
growth factor; MMP = metal matrix proteinase.
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molecules on the cell surface (CD9, CD44 and integrin α3β1) 
also facilitates HPMC proliferation in vitro, with particularly 
high expression of HER1 and HER4 (42). In addition, EGF has 
been shown to be a potent mitogen and chemotactic factor for 
HPMCs (41). Upon stimulation with exogenous HB-EGF, HPMCs 
can be transformed into a more fibroblast-like phenotype, 
which produces more ECM proteins.

In contrast, Faull et al. argued that HB-EGF is normally pres-
ent in the peritoneal cavity and is a helpful growth factor at this 
site, where it facilitates appropriate repair of the mesothelial 
cell layer and the peritoneal membrane (43). Since loss of 
mesothelial cells occurs during peritonitis or over time on PD, 
depletion of this source of HB-EGF may diminish its “beneficial” 
properties (43). Our recent studies have shown, however, that 
despite the fact that activation of EGFR is required for recovery 
of renal function and structure following acute kidney injury, 
its persistent activation contributes to development and 
progression of renal fibrosis in an animal model of ischemia/

reperfusion-induced acute kidney injury (33). However, it 
remains unclear whether EGFR activation would be involved in 
the development of peritoneal fibrosis in response to diverse 
insults during PD.

PDGFR

The platelet-derived growth factors (PDGFs) family is made 
up of 5 different disulphide-linked homo- or hetero-dimeric 
cytokines from 4 different polypeptide chains, namely PDGF-
AA, -AB, -BB, -CC, and –DD (44). These 5 isoforms bind to a 
dimer of tyrosine kinase receptors, which consists of 2 different 
receptor chains (PDGF-α and PDGF-β) with diverse binding 
specificities and affinities (45). Whereas PDGF-B binds to both 
receptor chains, PDGF-A and -C are specific ligands for the 
PDGFR-α chain. Platelet-derived growth factor-D binds mainly 
to the homo-dimeric PDGFR-β and, with lower affinity, to the 
hetero-dimeric PDGFR-αβ (46,47).
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Figure 1 — The major signaling pathways downstream of various growth factor receptors associated with development of peritoneal fibrosis. 
HB-EGF = heparin-binding growth factor; PDGF = platelet-derived growth factor; bFGF = basic fibroblast growth factor; VEGF = vascular endothelial 
growth factor; PIGF = Placental growth factor; HGF = hepatocyte growth factor; EGFR = epidermal growth factor receptor; PDGFR = platelet-derived 
growth factor receptor; FGFR = fibroblast growth factor receptor; VEGFR = vascular endothelial growth factor receptor; C-met = hepatocyte 
growth factor receptor; JAK = Janus kinase; STAT3 = signal transducer and activator of transcription 3; MEK = Mitogen-activated protein kinase 
kinase; Erk = extracellular signal-regulated kinase; PI3K = phosphatidylinositol 3-kinase; Akt = Protein kinase B; mTOR = mammalian target of 
rapamycin; PLC = phospholipase C.
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At least 22 members of human FGFs have been identified 
so far, 18 of which are secreted poly-peptidic growth factors 
that bind to receptors expressed at the cell surface of target 
cells; the other 4 FGFs (FGF11, FGF12, FGF13, and FGF14), 
more correctly referred to as FGF homologous factors, are not 
secreted and act intracellularly (59). Most FGF ligands func-
tion in a classic autocrine/paracrine style whereas some of 
them such as FGF19, FGF21, and FGF23 act as hormones with 
poor affinity to heparin sulphate proteoglycans (HSPGs) that 
diffuse from the source of production into the circulation 
(58). Fibroblast growth factor signaling through FGFRs exerts 
diverse physiological and pathological activation, depending 
on the stage of maturation (58). In embryonic development, 
FGFs are involved in proliferation, differentiation, migration, 
and survival, and in adults, they participate in angiogenesis, 
wound healing and carcinogenesis.

Interaction of FGFs with their receptors triggers the trans-
phosphorylation of kinase domains, leading to the docking of 
adaptor proteins with SH2 domains such as FRS2 (fibroblast 
growth factor receptor substrate 2). Subsequently, 4 key down-
stream pathways are activated: RAS/RAF/MAPK, PI3K/AKT, STAT 
and PLCγ (58,60–62).

Basic fibroblast growth factor (bFGF) (namely FGF2) is 
known to participate in the development of many fibrotic 
and angiogenic diseases by encouraging the proliferation of 
various cultured cells including fibroblasts, endothelial cells, 
and vascular smooth muscle cells (63,64). Accordingly, bFGF 
was detectable in PD effluent (65), and increased expression 
of bFGF was also detected in cultivated HPMC with high-
glucose medium in the early stage (66,67). Exogenous bFGF 
enhances the proliferation of cultured human peritoneal 
fibroblasts (HPFBs), which has a far stronger effect than TGF-β 
(68). Bicarbonate-containing dialysis fluids are superior to 
lactate-containing ones with regard to their influence on 
the production of vascular endothelial growth factor (VEGF) 
and bFGF, although lactate and bicarbonate are both toxic 
for HPMCs (69,70). An in vitro study demonstrated that bFGF 
from the conditioned medium of cultured HPMCs increased 
mitochondrial activity in HPFBs and human umbilical vein 
endothelial cells (HUVECs), and this activation was markedly 
suppressed by co-incubation with an anti-bFGF antibody (68). 
Basic FGF is mitogenic for HPFBs and increases fibronectin 
secretion by these cells when they are exposed to high con-
centrations of glucose. Thus, investigators speculated that 
bFGF released from damaged mesothelial cells may have an 
important role in promoting fibroblast proliferation and accu-
mulation of ECM in peritoneal fibrosis (67). Additional studies 
are needed to examine the precise mechanism by which bFGF 
accelerates peritoneal fibrosis.

VEGFR

Vascular endothelial growth factor exerts its biologi-
cal effect by binding to VEGFR, a family of transmembrane 
receptors that belongs to subclass V of the tyrosine kinase 
receptor superfamily and shares a similar molecular structure. 

Interaction of PDGF with its receptor results in auto-
phosphorylation of the cytoplasmic tyrosine kinase domain 
of the PDGFR and subsequently recruits adaptor proteins 
carrying Src homology 2 (SH2) and SH3 domains to this site. 
Platelet-derived growth factor receptors thereby engage several 
well-characterized signaling transduction pathways mainly via 
JAK/STAT, PI3K, phospholipase Cγ (PLC-γ), or mitogen-activated 
protein kinase (MAPK) pathways, promoting gene expression 
and mediating the biological functions of the PDGF isoforms, 
such as proliferation, migration, and survival (46,48).

Activation of PDGFRs has been implicated in a broad range 
of pathophysiologic events, ranging from cell proliferation 
and migration, to ECM accumulation and production of pro- 
and anti-inflammatory mediators, to tissue permeability and 
hemodynamics (49). As an important fibro-genic mediator, 
PDGF facilitates fibroblast chemotaxis, proliferation, and 
fibroblast-mediated tissue matrix contraction (50,51). In 
renal fibrosis, PDGFR-β and its ligands are mainly involved 
in glomerulosclerosis, while the PDGFR-α seems to dom
inantly drive interstitial fibrosis (49,52). Escalation of PDGF 
expression was observed in the effluent of PD patients with 
progressive fibrosis. Beavis et al. (53) observed a consistently 
strong proliferative effect of PDGF-AB on peritoneal fibroblasts 
that was partially inhibited with a PDGF blocking antibody. 
Platelet-derived growth factor-B over-expression in the rat 
peritoneum led to increased vascularization with increased 
solute transport, as in the peritoneum of patients on long-
term PD (11), but significant fibrosis and EMT were absent. As 
such, investigators proposed that the phenomenon may result 
from a lack of TGF-β, and PDGF-B may play a role in response 
to peritoneal injury (54). On the other hand, it was observed 
that using an adenovirus expressing PDGF-B induced sustained 
angiogenesis in a TGF-β or Smad signaling dependent manner 
(55,56). In addition, PDGF-B also induces EMT in perito-
neal mesothelial cells but not mobilization, a phenomenon 
described as a novel “non-invasive” EMT. Furthermore, it is 
evident that PDGF plays an important role in the production of 
a number of fibro-genic mediators, such as TGF-β1, interleukin-
1β (IL-1β), tumor necrosis factor-α, bFGF and thrombin. Thus, 
it is possible that targeting PDGFR may have an anti-fibrotic 
effect in patients on PD.

The ERK cascade acts as a critical step in downstream signal-
ing of PDGF stimulation. It was found that dipyridamole acting 
as an anti-proliferative and anti-fibrotic agent can inhibit 
PDGF-stimulated HPMC proliferation through attenuation of 
ERK activity and reduction of cell-cycle protein expression (57). 
This suggests that inhibition of ERK may also have therapeutic 
potential in attenuating peritoneal fibrosis.

FGFR

The FGFR family has 5 members: FGFR1, FGFR2, FGFR3, 
FGFR4, and FGFR5. They are highly conserved single-pass trans-
membrane tyrosine kinase receptors (58,59). While FGFR5 can 
bind FGFs with high affinity, it lacks an intracellular tyrosine 
kinase domain (58).
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The VEGFR family contains 3 main members: VEGFR-1/FLT1 
(FMS-like-tyrosine kinase), VEGFR-2/KDR/FLK1 (fetal liver 
kinase 1), VEGFR-3/FLT3 (FMS-like-tyrosine kinase-3) (71,72). 
Vascular endothelial growth factor receptor-1 and VEGFR-2 
are expressed in the cell surface of most blood endothelial 
cells (ECs) while VEGFR-3 is largely restricted to lymphatic EC 
(71). Each of those RTKs is composed of 3 identical domains: 
an extracellular part of seven Ig homology domains, a single 
transmembrane region and a tyrosine kinase sequence that is 
interrupted by a kinase-insert domain (73).

The VEGF family members are homo-dimeric glycoproteins 
with multiple isoforms such as VEGF121, VEGF165, VEGF189, 
and VEGF206 that are generated and bioavailable by alternative 
exon splicing (74). Vascular endothelial growth factor 121 is 
a non-heparin-binding acidic protein that is freely diffusible 
while VEGF165 has intermediate properties of a basic charac-
ter and moderate affinity for heparin. Vascular endothelial 
growth factor 189 and VEGF206 are highly basic proteins that 
bind tightly to extracellular heparin-containing proteoglycans 
(71,74) and may become bioactive by cleavage after plasmin 
generation and ECM breakdown (75). 

In response to a variety of stimuli, ligand binding to VEGFR-
2 induces activation of several signaling pathways, including 
PI3K/Akt, RAF/MEK/Erk, and PLCγ and results in extensive EC 
mitogenesis and survival, as well as angiogenesis and micro-
vascular permeability (76). Previous studies have shown that 
peritoneal mesothelial cells, macrophages or ECs have the 
capacity to produce VEGF in vitro and/or in vivo in response 
to a variety of stimuli such as GDPs, AGEs, and some other 
growth factors (77–79). Despite the denudation of these 
cells, mesothelial cells that have undergone EMT (80) are 
mainly responsible for the production of VEGF in PD patients 
and therefore may cause the elevated peritoneal transport 
rate (81); these cells also promote angiogenesis via VEGF and 
fibrosis via ECM formation (82). Evidence has shown that meso-
thelial cells (MCs) change the expression pattern of VEGFRs and 
co-receptors during mesothelial-to-mesenchymal transition 
(MMT), which determines a switch of the VEGF effect on MCs 
from a proliferative response to an invasive one (83).

Several lines of evidence indicate that peritoneal fibrosis 
is generated in animal models after injection with chlorhexi-
dine gluconate (CG) and is characterized by thickening of the 
sub-mesothelial zone and increased number of vessels, myofi-
broblasts, and infiltrating macrophages (84–86). In addition, 
a large number of VEGF-, proliferating cell nuclear antigen-, 
and TGF-β-positive cells were observed in the thickening sub-
mesothelial area (85,86). The induction of structural and 
functional microvascular alterations by hyperglycemia could 
be largely prevented by long-term treatment with a neutral-
izing anti-VEGF monoclonal antibody whereas treatment with 
an isotype-matched control antibody was invalid (77,87). 
Accordingly, these investigations offer compelling evidence 
to support the substantial connection between peritoneal 
fibrosis and angiogenesis.

Motomura and colleagues demonstrated that the gene 
transfer of soluble VEGF type I receptor (sFlt-1) attenuated 

peritoneal fibrosis formation and was accompanied by approxi-
mately 81% reduction of collagen deposition in mesenteric 
tissue. They suggested that this may be due to inhibition of 
the pro-inflammatory and angiogenic effect of VEGF/placental 
growth factor (88). Subsequently, treatment with TNP-470 
and thalidomide, both known to prevent angiogenesis, can 
significantly ameliorate these fibrotic changes and decrease 
VEGF expression (84,85). All these studies suggest that the 
progression of peritoneal fibrosis can be attenuated by anti-
angiogenesis with reduction of VEGF expression. Therefore, 
inhibition of VEGF expression may be an interesting therapeutic 
approach for prevention of peritoneal fibrosis.

Angiogenesis is also regulated by inhibitors including 
endostatin (89,90). Growth inhibition of angiogenesis by 
endostatin has also been identified in an experimental mouse 
model, where endostatin can suppress VEGF expression (91). 
In patients on long-term PD, angiogenesis and vasculopathy 
have been shown to closely relate to increased sub-mesothelial 
fibrosis (11,92). Angiogenesis increases exchange efficiency 
accompanied by vascular wall alterations such as increased 
permeability so that the expanded vascular network decreases 
the glucose-driven osmotic pressure gradient of the PD fluid 
by an increase in small solute transport, thus leading to UFF 
(12,93). Since angiogenesis is associated with peritoneal fibro-
sis (94) and VEGF is a key angiogenic mediator (71), expression 
of VEGF is indicative of peritoneum damage in PD patients. 

Since lymphatic reabsorption may also contribute to UF fail-
ure, investigators studied the role of the lymph-angiogenesis 
mediator VEGF-C in human dialysis effluent, peritoneal tissues, 
and HPMCs, which indicated that lymph-angiogenesis is associ-
ated with fibrosis through the TGF-β/VEGF/C pathway (95).

Vascular endothelial growth factor can bind fibrinogen and 
fibrin specifically (96). Researchers have suggested that accu-
mulating fibrin by increased VEGF mediates the development of 
encapsulating peritoneal sclerosis (EPS) from simple sclerosis 
(92). Consistent with previous studies, fibrin deposition plays 
an important role in tissue fibrosis by contributing to recruit-
ment of inflammatory cells, macrophages, and fibroblasts, and 
leads to the synthesis of extracellular matrix (97).

The VEGF-VEGFR system is crucial for angiogenesis, and 
anti-VEGF-VEGFR molecules have considerable potential 
as shown in the clinical treatment of cancer patients (98). 
However, the molecular mechanisms of different VEGF/VEGFR 
isoforms in peritoneal fibrosis and angiogenesis require fur-
ther investigation. 

HGFR/C-MET

Hepatocyte growth factor (HGF), originally described as 
a potent mitogen for fully differentiated hepatocytes in the 
late 1980s, has been identified as a multifunctional polypep-
tide participating in a wide variety of cellular events such as 
mitogenesis, morphogenesis and angiogenesis (99,100). The 
biological effects of HGF are primarily mediated by the tyrosine 
kinase transmembrane receptor, hepatocyte growth factor 
receptor (HGFR), also known as cellular Met (c-Met), which is 
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an oncogenic gene product belonging to the RTK superfam-
ily. Cellular Met is expressed predominantly on the surface of 
endothelial and epithelial cells in many organs, including the 
liver, kidney, prostate, pancreas, muscle, and bone marrow 
(99). Upon bioactive HGF binding, c-Met undergoes receptor 
dimerization/multimerization and auto-phosphorylation of 
C-terminally clustered tyrosine residues of tyrosine kinase. This 
process can recruit intracellular adaptor proteins, including 
PI3K, growth-factor-receptor-bound protein 2 (Grb2), Grb2-
associated binder 1 (Gab1), PLCγ, and SH2-domain-containing 
protein tyrosine phosphatase (Shp2) to initiate downstream 
signaling (101).

Studies have shown that HGF is an intrinsic anti-fibrotic 
factor that directly antagonizes the pro-fibrotic actions of 
TGF-β (102,103). As elucidated in renal fibrosis (102), HGF 
exerts its anti-fibrotic actions through suppression of myo-
fibroblast activation and matrix overproduction, blockage of 
tubular EMT, modulation of cell proliferation and apoptosis to 
preserve normal kidney structure and function under patho-
logical conditions and acceleration of matrix degradation. 
Since HPMCs play an important role in peritoneal function and 
are damaged by high glucose solution via the signal of TGF-β1 
produced by HPMCs (104), the possible effect of HGF in rescu-
ing HPMCs from peritoneal fibrosis induced by TGF-β1 also has 
been reported (105,106). Administration of recombinant HGF 
significantly inhibited the growth of HPMCs induced by high 
concentrations of D-glucose and/or TGF-β1. Moreover, the 
growth inhibition can be completely restored by transfecting 
HGF cDNA into HPMCs (105). It has also been shown that high 
glucose and TGF-β1 decreased HGF production from HPMCs, 
whereas addition of HGF restored HPMCs’ viability when dam-
aged by glucose. In addition, suppression of TGF-β1 production 
by HGF can induce up-regulation of metal matrix proteinase-2 
(MMP-2) and decreased tissue inhibitor of metalloproteinase-2 
(TIMP-2) production by HPMCs (105).

In addition, animal experiments indicated that HGF 
prevented the thickening of peritoneum induced by PD and 
down-regulated expression of TGF-β1, VEGF, and type I collagen 
(103). High concentrations of glucose induced EMT of HPMC 
associated with decreased production of HGF while exogenous 
treatment with HGF resulted in a dose-dependent prevention 
of high-glucose-induced EMT. 

Several possible mechanisms may account for the anti-
fibrotic effect of HGF. First, HGF counteracts the profibrotic 
action by down-regulating production of TGF-β1 (103,105). 
Second, HGF can intercept Smad signaling in various types 
of kidney cells. It has been reported that HGF signaling can 
block phosphorylated Smad-2/3 nuclear translocation in 
interstitial fibroblasts. Third, HGF affects cell-cell interac-
tion and cell-extracellular matrix interaction and stimulates 
or activates proteolytic networks involved in the breakdown 
of ECM proteins by up-regulating expression of urokinase-
type plasminogen activator and matrix metalloproteinase 
(101,106,107). Therefore, the reciprocal balance between HGF 
and TGF-β plays a decisive role in the pathogenesis of chronic 
fibrotic diseases, especially in peritoneal fibrosis.

CONCLUSION AND PERSPECTIVE

Fibrosis is a common and advanced pathological outcome in 
progressively injured organs, including lung, liver, kidney, and 
skin. In PD, chronic exposure to glucose (dextrose) in PD fluid 
can lead to peritoneal fibrosis and failure of the peritoneum 
as a dialysis membrane (108). Although exact mechanisms 
are not completely understood, knowledge of the molecular 
pathways leading to fibrosis is growing rapidly. Receptor tyro-
sine kinases have been recognized as important mediators in 
fibrogenic diseases (109). On this basis, some tyrosine kinase 
inhibitors (TKIs) have been tested for their anti-fibrotic effi-
cacy in humans. For example, imatinib has been proven to be 
efficient in treating systemic sclerosis by blocking activation 
of the ATP-binding pocket of Abl on kinase via TGF-β signaling 
and PDGFR (110–112). Other studies have also demonstrated 
the anti-fibrotic effect of TKIs such as VEGFR and EGFR inhibi-
tors in animals (110,112). Increasing evidence suggests that 
progressive peritoneal fibrosis is the predominant mechanism 
of UFF leading to discontinuation of PD; it is speculated that 
TKIs may also be promising drugs for prevention and treatment 
of peritoneal fibrosis. But it is still unclear how RTKs mediate 
peritoneal fibrosis and whether TKIs are effective in treating 
or preventing human peritoneal fibrosis. As more TKIs become 
commercially available, it will be interesting to further study 
the actions of TKIs in the animal model of peritoneal fibrosis 
and conduct clinical trials to investigate their efficacy in pre-
venting and/or attenuating this complication in PD patients.
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