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Abstract

Background—Both CD4 count and viral load in HIV infected persons are measured with error. 

There is no clear guidance on how to deal with this measurement error in the presence of missing 

data.

Methods—We used multiple overimputation, a method recently developed in the political 

sciences, to account for both measurement error and missing data in CD4 count and viral load 

measurements from four South African cohorts of a Southern African HIV cohort collaboration. 

Our knowledge about the measurement error of lnCD4 and log10 viral load is part of an imputation 

model that imputes both missing and mismeasured data. In an illustrative example we estimate the 

association of CD4 count and viral load with the hazard of death among patients on highly active 

antiretroviral therapy by means of a Cox model. Simulation studies evaluate the extent to which 

multiple overimputation is able to reduce bias in survival analyses.

Results—Multiple overimputation emphasizes more strongly the influence of having a high 

baseline CD4 counts compared to a complete case analysis and multiple imputation (hazard ratio 

for >200 cells/mm3 vs. <25 cells/mm3: 0.21 [95%CI: 0.18;0.24] vs. 0.38 [0.29;0.48] and 0.29 

[0.25;0.34] respectively). Similar results are obtained when varying assumptions about the 

measurement error, when using p-splines, and when evaluating time-updated CD4 count in a 

longitudinal analysis. The estimates of the association with viral load are slightly more attenuated 

when using multiple imputation instead of multiple overimputation. Our simulation studies 
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suggest that multiple overimputation is able to reduce bias and mean squared error in survival 

analyses.

Conclusions—Multiple overimputation, which can be used with existing software, offers a 

convenient approach to account for both missing and mismeasured data in HIV research.

Background

It is well known that both CD4 count and viral load in HIV infected persons are measured 

with error, due to physiologic and biologic variation and to assay performance1,2. Biologic 

variation includes intrapersonal fluctuations of CD4 cell count over the course of a circadian 

cycle and from day to day as a result of psychological stresses, intercurrent illnesses, 

alcohol, caffeine, exercise, and other factors 1,3,4. Assay variation in CD4 measurements 

refers to flow cytometry itself and variation attributed to the assays used, their accuracy, 

specimen preparation techniques, the age of the sample at the time of preparation, and 

sample conditions during transport to a laboratory 2,3. Measured CD4 count may therefore 

not represent the true underlying CD4 count. The same applies to the accuracy of HIV RNA 

(viral load) measurements: biological variation, related to disease progression, illnesses and 

lifestyle factors as well as technical variation due to different assays, laboratory standards, 

technician's skills and storage temperatures can cause a considerable amount of 

measurement error 3,5-8.

Failure to appreciate the extent of measurement error may lead to biased results, for example 

regression estimates can either be attenuated or strengthened 9. This makes adjustment for 

measurement error a topic of considerable interest in the statistical analysis of HIV data 10. 

Suggestions for CD4 count measurement error correction include regression 

calibration 11-13, and approaches which correct the likelihood function 14-18. However, these 

methods have been rarely used in practice because of either their complicated 

implementation or their construction for a particular regression model or study question19-21. 

Furthermore, these approaches require complete data, which limits application in low-

income high-burden programmatic care settings where missing data - often related to missed 

laboratory visits, lost records, or incomplete data capture - is common 22,23. We are aware of 

only one approach which accounts for missing data in the presence of measurement error 15, 

using a particular non-ignorable missingness assumption for the outcome of a nonlinear 

mixed effect model. However, this specific setting would typically not be relevant to most 

HIV research as its motivation and assumptions relate only to long-term viral dynamics 

modelling.

To address the problem of missing data in HIV research several approaches can be 

considered. A general and relatively straightforward approach to deal with missing data is 

multiple imputation, which is implemented in many statistical software packages 24. Based 

on the user's assumptions about the data distribution (imputation model) missing values can 

be filled in (imputed) by means of draws from the posterior predictive distribution of the 

unobserved data given the observed data. This procedure is repeated to create M imputed 

datasets, the analysis is then conducted on each of these datasets and the M results are 

combined by a set of simple rules. Multiple imputation yields valid inference under the 
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missing-at-random assumption which states that the probability of any value to be missing 

from the data set depends only on the observed data 25.

We show how multiple overimputation 19, recently proposed in the political sciences and 

closely related to multiple imputation, can be used to account for both missing at random 

data and measurement error in HIV research under a general framework. Multiple 

overimputation treats mismeasured data as an extreme case of missing data: values 

measured with error are replaced with values obtained from an imputation model that 

incorporates the mismeasured values, as well as knowledge and assumptions about the 

measurement error process, in prior distributions on individual measurements. After 

generating multiple overimputed datasets, standard multiple imputation combining rules can 

be applied to obtain valid inference under assumptions which are similar to missing at 

random. The method has the main advantages of (i) being easy to implement with existing 

software, (ii) being applicable to a wide range of analysis models and settings, including 

longitudinal data analyses, and (iii) addressing measurement error and missing data 

simultaneously.

While the method has been tested in the political sciences and first simulations showed 

promising results in the context of linear and logistic regression models, little is known 

about the assumptions, behaviour, and success of the method in the context of HIV analyses, 

particularly survival analyses.

We therefore aim to 1) identify an appropriate measurement error model for CD4 count and 

viral load, 2) to investigate the implications, assumptions, and challenges related to the 

implementation of multiple overimputation in HIV research, using South African HIV 

treatment cohort data from patients starting on highly active antiretroviral treatment 

(HAART), and 3) to quantify the association of both baseline and follow-up CD4 count and 

viral load with all-cause mortality and to explore the possible bias resulting from ignoring 

measurement error and missing data in this illustrative example. In addition, 4) simulations 

are used to evaluate the extent to which multiple overimputation is able to reduce bias 

arising from measurement error and missing data in a wide range of survival analysis 

settings

Methods

Framework of multiple overimputation in general and for HIV research

Multiple Overimputation—Multiple Overimputation builds on multiple imputation by 

interpreting mismeasured values as missing data but including the mismeasured values as 

prior information in the imputation model. The procedure is as follows:

1. Multiply impute (say M=5 times) missing values and multiply overimpute (replace, 

overwrite) mismeasured values based on an appropriate imputation model which 

uses assumptions about the mismeasured data as prior information.

2. Conduct any statistical inference (Cox model, Kaplan-Meier estimator,…) on each 

overimputed set of data.

Schomaker et al. Page 3

Epidemiology. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Combine the M estimates related to the M overimputed sets of data according to 

standard multiple imputation combining rules (“Rubin's rules”) 26.

For example, if we had 1000 patients and 800 of them had available baseline CD4 counts, 

we would impute the remaining 200; the 800 measured CD4 counts would be treated as 

mismeasured, as we know that they don't exactly represent the true CD 4 count of a patient, 

but rather randomly differ from the true value. We would thus overwrite these values from 

an imputation model which uses our assumptions about the measurement error process as 

prior information. Subsequently we would perform our analysis on each overimputed dataset 

and combine the results accordingly.

Multiple imputation with Amelia II—It is known from multiple imputation theory that 

proper multiple imputations (yielding valid inference under the missing-at-random 

assumption) are realized via draws from the posterior predictive distribution of the 

unobserved data given the observed data 25. These draws can, for example, be generated by 

specifying a multivariate distribution of the data and simulating the predictive posteriori 

distribution with a suitable algorithm. For our analysis, we consider the Expectation 

Maximization Bootstrap (EMB) algorithm 27 from the R-package Amelia II 28, which 

assumes a multivariate normal distribution for the data D∼N(μ, Σ) (possibly after suitable 

transformations beforehand). In this algorithm B bootstrap samples of the data (including 

missing values) are drawn and in each bootstrap sample the EM algorithm 29 is applied to 

obtain estimates of μ and Σ which can then be used to generate proper imputations by means 

of the sweep-operator 27,30. Of note, the algorithm can handle highly skewed variables by 

imposing transformations on variables (log, square root,…) and recodes categorical 

variables into dummies based on the knowledge that for binary variables the multivariate 

normal assumption can yield good results 31.

Multiple Overimputation with Amelia II—We assume (i) a classical measurement error 

model, meaning that for any observation:  With  known 

or estimated and (ii) that the data are mismeasured at random, meaning that the presence of a 

mismeasured and/or missing value may depend only on observed quantities (and not the 

unobserved value itself), see eText 1 for a formal definition.

Consider the unobserved data to consist of both the missing data and the true latent values 

xij. Blackwell et al. 19 extend the predictive posterior distribution of the unobserved data 

given the observed data so that both missing and latent values are treated as unobserved. 

Using this extended predictive posterior distribution, applying the Expectation 

Maximization Bootstrap algorithm onto this distribution to obtain imputations, and 

incorporating the classical measurement error assumptions, , into the E-

step of the algorithm, allows the use of a multiple imputation framework 19. Most crucially, 

the authors show that this modified Expectation Maximization Bootstrap algorithm leads to 

identical solutions when compared to using this algorithm implemented in Amelia II when 

prior distributions on mismeasured values that relate to  are used. The 

reason why multiple overimputation is different from multiple imputation and has the 

potential to correct for measurement error is because the draws are based on a modified 
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predictive posterior distribution which incorporates the classical measurement error 

assumptions; see eText 1 and the appendices of Blackwell et al. and Honaker et al. for more 

details 19,27.

Thus, in summary, using existing software for multiple imputation (Amelia II) and 

specifying observation level priors for each mismeasured value (normal distribution with the 

mean relating to the mismeasured value and the variance known or estimated), accounts for 

both missing and mismeasured data under the above-mentioned assumptions.

After creating M overimputed datasets, the analysis model (e.g. the Cox proportional 

hazards regression model) can be fitted in each overimputed dataset. The M estimates can 

then be combined easily either with existing commands contained in most statistical 

software packages or by hand: the point estimate is just the average of the M point estimates 

whereas the variance reflects both the uncertainty in each overimputed dataset and between 

imputed datasets (eText 1).

A measurement error model for CD4 count and viral load—Multiple 

overimputation can be applied to correct for measurement error in both baseline and follow-

up HIV RNA and CD4 count with the following assumptions:

i) A classical measurement error model for both natural logarithm CD4 count (cells/mm3) as 

well as log10 viral load (copies/μl):

ii) The data are mismeasured at random.

The first assumption is a classical measurement error model. This assumption has been used 

before in methodological work 12,14,17 and implies increased measurement error for higher 

absolute (non-log) CD4 count and (non-log) viral load measurements which is in line with 

clinical knowledge 2,3,6,32. The measurement error variance for the natural logarithm CD4 

was obtained from an estimate of a study with a large sample 3. The estimated variance was 

similar in a studies with smaller samples (0.2752, 14 and 0.252, 32); other studies report 

slightly lower estimates but do not necessarily reflect all sources of measurement error 1,8.

The measurement error variance for log10 viral load is based on Lew et al. 6 who conclude 

that variation due to biological and technical factors is fairly consistent and in the range of 

0.3 to 0.6 log10 copies/ml. Based on this observation we may assume that the upper and 

lower limits of a 95% confidence interval for the measured viral load correspond to the true 

viral load±0.5. This yields a measurement error variance of approximately 0.2552 (where 

0.255 = 0.5/1.96). This is in line with another report (0.2642 for viral loads >500 copies/

ml) 2.

The second assumption states that the probability of a missing or incorrectly measured value 

depends only on observed quantities, see eText1 for a detailed definition. In line with 
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previous work19 we therefore use the term “mismeasured at random” to mean that both the 

missingness process and the measurement error process must not depend on any unobserved 

values.

In situations where clerical or administrative errors cause a value to be missing, such as in 

large cohorts where data capturing capacity may be limited, this assumption is certainly 

fulfilled. If the probability of missingness (or occurrence of measurement error) depends on 

captured information, such as treatment facility, region, or date of treatment initiation, the 

assumption would also be fulfilled. In the case where unobserved values determine the 

probability of missingness (or occurrence of measurement error) the assumption would be 

violated; for example if particularly high CD4 or viral load measurements were missing or 

incorrectly measured, or if the missing data relates to a specific healthcare worker and this is 

not captured. Possible consequences of such situations are described in the discussion.

Simulation studies

Generation of data—We generated data of sample size n=5000 for the main setting, and 

n=1000, 2500, 7500, 10000 for further settings. Two covariates, representing true log CD4 

count and true log viral load, were drawn from log-normal distributions with mean and 

standard deviations (adapted from the data analysis below) as follows: 

X1∼logN(4.286,1.086) and X2∼logN(10.76,1.8086).We used a Clayton Copula (with copula 

parameter θ=1 indicating moderate association) to model the dependency between these two 

variables 33,34. Survival times Y were simulated as follows:

where U is drawn from a distribution that is uniform on the interval [0,1], h0=0.1, and the 

linear predictor Xβ is defined as -0.3 ln X1 + 0.3 log10X2. Higher values of X1 are therefore 

associated with a lower risk of a (death) event, as is the case for CD4 count, while higher 

values of X2 are associated with a higher risk of an event, as is the case with viral load. The 

censoring times were simulated as

The observed survival time T in our simulation was thus T=min(Y,C).

Measurement error and missing data—To both log-transformed variables we added 

measurement error, as in our data, with mean 0 and variances of 0.262 and 0.2552 

respectively.

X1 and X2 were assumed to be missing at random and the missing indicator was simulated 

by means of the following missingness function:
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This yields approximately 9% missing values per variable. Since, in this simulation, the 

probability of missingness depends on the outcome, one would expect parameter estimates 

in a regression model of a complete case analysis to be biased 35.

Simulation studies: estimators and model—We compare the performance of (i) a 

complete case analysis (omitting observations with missing values), (ii) multiple imputation, 

and (iii) multiple overimputation when estimating the parameters in a Cox proportional 

hazards model. We also compare (i) the naïve estimator and multiple overimputation for the 

setting without missing data. The multiple (over)imputation model included all variables, 

but T on a log scale.

Measures of performance—We evaluate the bias, mean squared error (MSE), and 

distribution of each estimator of βi via R=1000 runs of the simulation study. The bias is 

estimated as , the MSE as .

Sensitivity—To explore the sensitivity of our simulation we varied our assumptions with 

respect to the amount of measurement error, the missingness process, the correct 

specification of the measurement error variance, and the linear predictor.

Results

Results of simulation studies

One can see that a complete case analysis yields biased results both when dealing only with 

mismeasured data (Table 1a) and when dealing with mismeasured and missing data (Table 

1b). Multiple imputation also yields biased results in our missing-at-random setting when 

confronted with measurement error (Table 1b). Multiple overimputation considerably 

reduces bias when compared to the two aforementioned approaches (Table 1). Comparing 

the distribution of parameter estimates from the different methods by means of Wilcoxon 

tests leads to rejection of the null hypotheses of identical distributions, confirming the shift 

of multiple overimputation estimates towards the true parameter.

The MSE is smaller for multiple overimputation when compared to a naïve or complete case 

analysis and multiple imputation, but the variance is larger (Table 1). However, the success 

of the three methods with respect to the MSE depends on the sample size as highlighted in 

Figure 1: the larger the sample size, the better the performance of multiple overimputation 

relative to the other methods. If the sample size is small, multiple overimputation does not 

outperform the two other methods with respect to the MSE. The bias can always be reduced 

using multiple overimputation, regardless of the sample size (Figure 1).

Sensitivity analyses show that under a correctly specified measurement error variance, 

changing the assumptions to allow for a higher amount of missing data, a different 
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missingness process, a larger amount of measurement error, a smaller effect of each 

variable, and the inclusion of more variables, yields similar conclusions (eFigure 2).

Illustrative Example: HIV-treatment Data from IeDEA-SA

We used data from the International epidemiological Databases Southern Africa cohort 

collaboration (IeDEA-SA) to illustrate the practical application of multiple overimputation 

in HIV treatment data. IeDEA Southern Africa is a collaboration of 19 mostly programmatic 

cohorts in five southern African countries 36. Data were collected at each site as part of 

routine monitoring and were transferred to the coordinating data centre at the University of 

Cape Town, South Africa. All contributing facilities obtained ethical approval from the 

institutional review boards before submitting anonymized patient data to the collaboration.

We limited data to four South African cohorts as those were the only ones with routinely 

assayed viral loads. Our dataset contained data on nearly 30,000 patients, initiating HAART 

between 1 January 2001 and 1 January 2010; all were followed from the time of first starting 

HAART (baseline).

Multiple Overimputation (M=10) was implemented using the “amelia” function of the R-

package Amelia II 28. The (over)imputation model included the mortality outcome, time to 

event or censoring, cohort, sex, age, year of HAART initiation, baseline ln CD4, baseline 

log10 viral load. Our prior knowledge about the measurement error process was specified by 

means of the “priors” and “overimp” options of the amelia function, adding a prior normal 

distribution to each measured ln CD4 count and log10 viral load where the mean 

corresponded to the mismeasured value and the measurement error variance was set to 0.262 

and 0.2552 respectively. In sensitivity analyses, the measurement error variance was 

specified as 0.202 and 0.302 for CD4 and as 0.152 and 0.312 for viral load.

We used the Cox proportional hazards model to estimate the relationship between baseline 

CD4 count, baseline log10 viral load, year of treatment initiation, sex, cohort, and age with 

the hazard of death, based on the 10 overimputed datasets and applying multiple imputation-

combining rules. Baseline CD4 count and baseline log viral load were included in the model 

first by categorizing the variables and, secondly, non-linearly via p-splines 37. In addition, as 

a reference, results from multiple imputation and a complete case analysis were estimated.

This example shows how regression estimates of CD4 count and viral load can vary 

depending on whether missing data and measurement error are taken into account. We have 

therefore excluded other variables with high missingness percentages (haemoglobin, WHO 

stage, creatinine, platelets) and under-reporting (tuberculosis, cryptococcal meningitis, 

among others) to ensure that comparisons between the different methodological approaches 

are not complicated by the missingness and measurement error related to these variables.

We also performed a similar analysis for the same data with time-updated CD4 counts and 

viral loads being included. If a patient did not have a CD4 count/viral load measurement for 

6 months, then the respective values were treated as missing. The imputation model included 

the same variables as above, time-updated CD4 and virologic suppression (viral load <1000 

copies/μl), and took the longitudinal structure of the data into account. The prior information 
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for time-updated CD4 count was specified as for baseline CD4 count. Time-updated 

virologic suppression was preferred over time-updated viral load due to the bimodal 

distribution of the latter; the corresponding measurement error variance was assumed to be 

0.232 which related to an assumption of about 1.5% misclassification (which we assume 

based on simulated viral loads similar to our data, see eText 2).

To address the fact that patients lost to follow-up are more likely to die, we linked lost 

patients to the national South African vital registry to obtain the vital status of these patients. 

The linkage was performed by a trusted third party, the South African Medical Research 

Council. Lost patients with recorded IDs could thus be linked (and their outcome ascertained 

and corrected); these patients were up-weighted to represent all patients lost to follow-up: 

we took the inverse of the modelled probability of having an ID, based on a logistic 

regression model including age, sex, year of treatment initiation and cohort, in order to 

account for any differences between linkable and other patients lost to follow-up (patients 

with and without ID are known to be very similar though there are typically differences by 

cohort and year 38,39). Patients not lost to follow-up received a weight of one, while those 

lost to follow-up and not linkable received a weight of zero. 39 Alternatively, missing 

outcome data of patients lost to follow-up could have been imputed with multiple 

overimputation.

From the 29,256 patients included in our analysis more than 10% had a missing baseline 

CD4 count and more than 60% had a missing baseline viral load. Median follow-up time 

(1st; 3rd quartile) was 498 (197; 878) days. The Expectation Maximization Bootstrap 

algorithm utilizing multiple overimputation converged successfully for both the cross-

sectional and longitudinal data examples.

The results of the Cox regression analysis are presented in Figure 2 and eTable 1. Multiple 

overimputation emphasizes more strongly the relationship between a high baseline CD4 

count and a decreased hazard of death compared to the complete case analysis and multiple 

imputation (hazard ratio for CD4>200 cells/mm3 versus CD4<25 cells/mm3: 0.21[95%CI: 

0.18;0.24] vs. 0.38 [0.29;0.48] for the complete case analysis and 0.29 [0.25;0.34] for 

multiple imputation). Looking at the nonlinear association of CD4 count with the hazard of 

death, or excluding baseline viral load from the analysis, or adding additional variables leads 

to the same conclusions (Figure 2a, eTable 2, eTable 3): the higher the CD4 count, the lower 

the hazard of death; similarly, the larger the number of viral copies the greater the risk of 

death, which is more pronounced for multiple overimputation when compared to multiple 

imputation (Figure 2b). The sensitivity analyses show that different assumptions about the 

measurement error variance yield an almost identical non-linear association of CD4 count 

with mortality after applying multiple overimputation. Assuming a much smaller 

measurement error variance for log10 viral load yields similar results for multiple 

overimputation and multiple imputation (eFigure 1). Regression coefficients of covariates 

without measurement error and missing data did not vary much between the three different 

approaches.

The longitudinal Cox regression analysis (Figure 2c/d, eTable 4) yields attenuated estimates 

for CD4 count in the complete case analysis and multiple imputation compared to multiple 
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overimputation (HR for CD4>200 cells/mm3 vs CD4<25 cells/mm3: 0.10 and 0.13 vs. 0.06); 

this analysis also shows that a complete case analysis yields very different results from the 

imputation approaches when assessing the estimates of viral suppression (HR 0.28 vs. 0.67 

and 0.60).

In both analyses the confidence intervals for all point estimates of multiple imputation and 

multiple overimputation were similarly wide (eTable 1, eTable 3). It can also be seen that in 

all analyses the correction made for measurement error was at least as great as the correction 

made to account for missing data (Figure 2, eTables 1-3).

The above analyses demonstrate that multiple overimputation for both baseline and follow-

up CD4 count and viral load data can be easily incorporated into existing software (Amelia 

II for R), that the overimputation algorithm converges successfully for this data, that results 

may vary depending on whether one adjusts for missing data and measurement error or not, 

and that attenuation due to measurement error can occur, but this may not always be the 

case.

Discussion

Statement of principal findings

We have demonstrated that multiple overimputation offers a convenient approach to address 

both measurement error and missing data and can be implemented easily for a variety of 

situations relevant to HIV research. Our simulation studies suggest that this approach is able 

to reduce bias and MSE in the context of survival analyses.

Strengths of the study

This is, to the best of our knowledge, the first attempt to address simultaneously the the 

treatment of missing data and measurement error in HIV research under a general 

framework. It is fast and easy to implement and, after applying multiple overimputation, 

many estimators relevant to HIV research can be obtained: for example the Kaplan-Meier 

estimator, and estimates from survival models such as the Cox proportional hazards model 

and parametric survival models, among many others. We have demonstrated that existing 

clinical knowledge about the accuracy of CD4 measurements can be used to specify the 

measurement error process, model and variance, which we have shown to be crucial for the 

success of method; moreover, our simulations highlight that not only for generalized linear 

models (as partially investigated by Blackwell et al. 19) but also in survival analyses 

multiple overimputation can be successful.

Limitations

There remain, however, some limitations: As with multiple imputation, multiple 

overimputation cannot necessarily address situations where data are mismeasured not at 

random because the overimputed values drawn with the Expectation Maximization 

Bootstrap algorithm may not properly reflect the joint distribution of both the data and the 

missingness/mismeasurement process (eText 1, formula (1)). In this case, the application of 

multiple overimputation can lead to biased estimates. Using a complete case analysis (and 
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possibly correcting for measurement error in the respective sample) can also yield biased 

estimates in this setting, i.e. when the probability of a missing value depends on the outcome 

or external variables 31,40. However, if the probability of missingness depends on the 

unobserved values of the variable itself, a complete case analysis still yields valid inference 

and may be preferable to multiple overimputation 40. As we have argued above, in many 

cases, we would expect CD4 and viral load data to be mismeasured at random; however, 

time-updated viral load may be missing not at random if unobserved treatment interruptions 

due to non-adherence predict missingness.

We also have assumed that a successful specification of the imputation model is 

straightforward. The implementation of multiple overimputation is closely related to the 

joint modelling approach of Amelia II and thus natural constraints relate to specifying 

suitable transformations for skewed variables, additional imputation uncertainty with respect 

to categorical variables, and restrictions regarding complex longitudinal data 28,41. An 

inappropriate imputation model or incorrect assumptions about the measurement error 

process can potentially cause multiple overimputation to be inferior compared to naïve 

estimators.

Meaning of the results

Our results suggest that regression estimates related to true CD4 count and true viral load 

may be biased in many studies. Both markers are a cornerstone in HIV research and thus it 

may be advisable to consider accounting for error in their measurement. Our data example 

illustrates how the application of multiple overimputation can change regression estimates: 

for example, the association of CD4 count with the hazard of death was more strongly 

pronounced under multiple overimputation compared to the approaches which neglected 

measurement error. This does not, however, imply that for any regression analysis the 

estimates of a complete case analysis are biased towards the null, nor does it imply that 

corrected estimates of CD4 count are necessarily better just because their estimates yield 

stronger associations than naïve analyses.

While our data example is illustrative and descriptive in nature, and none of the reported 

regression coefficients report a causal relationship, there are several applications for which 

our findings are of interest. For example, predictive models can be used to inform 

mathematical modelling studies that require mortality rates stratified by true CD4 count and 

viral load 42,43. It is evident from both our simulation studies and the data example that 

adjusting for missing data and measurement error can yield different predicted mortality 

rates; indeed, fitting the predictive model of May et al. 44 to our data shows that the 

differences between multiple overimputation and naïve approaches found in our illustrative 

example persist in this context (eTable 5).

Our numerical investigations confirm previous studies showing that even a moderate amount 

of measurement error and/or missing data can cause bias in regression estimates 9,45. 

Multiple overimputation reduced the bias in these estimates and also improved the MSE if 

the sample size was not too small. The latter observation implies that multiple 

overimputation may yield estimators with a higher variance compared to a naïve analysis 

(reflecting the underlying uncertainty) and the success with respect to the MSE depends on 
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the sample size. This is in line with the literature on measurement error correction in the 

case of complete data 9,45,46. Generally, multiple overimputation yields asymptotically 

unbiased estimates under the mismeasured at random assumption (eText 1) given an 

appropriate imputation model is used, but its performance may vary from context to context.

Research in context

Methods dealing with measurement error in CD4 count have already been suggested for 

particular applications and models under the assumption of no missing data 10-18. One could 

think of applying these methods in the appropriate context in conjunction with multiple 

imputation. Since these methods are often very specific, combining the more general 

simulation extrapolation method 47 with multiple imputation might be a fruitful alternative. 

An implementation of simulation extrapolation in the statistical software R48 is already 

available for (generalized) linear models, allows for both homoscedastic and heteroscedastic 

measurement error and can be naturally combined with existing multiple imputation 

procedures in R28; similar implementations are available for Stata 49. However, it is an open 

question whether the imputations generated from mismeasured data yield valid inference or 

not.

It also remains important to check model assumptions after applying multiple 

overimputation: for example, when assessing the proportional hazards assumption of a Cox 

proportional hazards model, one may evaluate graphical diagnostics in each overimputed 

dataset; or, alternatively, the estimates of an interaction of analysis time with the covariate 

of interest can be easily combined by means of Rubin's rules.

We have concentrated our investigations on measurement error and missing data in CD4 

counts and viral load measurements. There are however many more variables prone to 

measurement error and missing data and relevant in HIV research: CD4 percentage, 

haemoglobin, creatinine, p24 antigenemia, concentrations of antiretroviral drugs, among 

others. Existing knowledge can be used to account for both measurement error and missing 

data in many of these variables 1,2,8. We stress, however, that an overestimated 

measurement error variance may yield biased estimates when applying multiple 

overimputation, see eFigure2l and Blackwell et al.19. Complicated measurement processes 

such as in pharmacokinetics, where metabolism, concomitant medication, and genetic 

factors influence measurement error, may, however, require special care and knowledge.

Conclusion

In conclusion, our investigations show that multiple overimputation is a convenient and 

possibly promising approach to account for both missing and mismeasured data in HIV 

research. Further studies are needed to explore the implications, feasibility, and challenges 

of multiple overimputation for other models and applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results of the simulation studies: estimated bias and Mean Squared Error (MSE) of β1 

depending on the sample size, in the setting where the data are missing at random.
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Figure 2. 
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Nonlinear association of (a) baseline CD4 and (b) baseline log10 viral load with the hazard 

of death, modelled via p-splines. The estimates of (c) categorical time-updated CD4 

(reference category: <25 cells/mm3) and (d) categorical time-updated virological 

suppression (reference category: unsuppressed) are obtained from a Cox model fitted onto 

the longitudinal data. Results are reported for a complete case analysis, multiple imputation 

and multiple overimputation and relate to the illustrative data example. The intervals 

reported in (c) and (d) are 95% confidence intervals.
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