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Despite the high frequency of asymptomatic carriage of bacterial pathogens, we understand little about the bacterial molecular
genetic underpinnings of this phenomenon. To obtain new information about the molecular genetic mechanisms underlying
carriage of group A Streptococcus (GAS), we performed whole-genome sequencing of GAS strains recovered from a single indi-
vidual during acute pharyngitis and subsequent asymptomatic carriage. We discovered that compared to the initial infection
isolate, the strain recovered during asymptomatic carriage contained three single nucleotide polymorphisms, one of which was
in a highly conserved region of a gene encoding a sensor kinase, liaS, resulting in an arginine-to-glycine amino acid replacement
at position 135 of LiaS (LiaSR135G). Using gene replacement, we demonstrate that introduction of the carrier allele (liaSR135G) into
a serotype-matched invasive strain increased mouse nasopharyngeal colonization and adherence to cultured human epithelial
cells. The carrier mutation also resulted in a reduced ability to grow in human blood and reduced virulence in a mouse model of
necrotizing fasciitis. Repair of the mutation in the GAS carrier strain restored virulence and decreased adherence to cultured
human epithelial cells. We also provide evidence that the carrier mutation alters the GAS transcriptome, including altered tran-
scription of GAS virulence genes, providing a potential mechanism for the pleiotropic phenotypic effects. Our data obtained us-
ing isogenic strains suggest that the liaSR135G mutation in the carrier strain contributes to the transition from disease to asymp-
tomatic carriage and provides new information about this poorly described regulatory system in GAS.

Human bacterial pathogens, including Neisseria meningitidis
(1), Staphylococcus aureus (2), Streptococcus pneumoniae (3),

and Streptococcus pyogenes (group A Streptococcus [GAS]) (4), are
frequently carried asymptomatically. However, in contrast to the
relatively sophisticated knowledge regarding how bacterial patho-
gens cause disease, we understand little of the processes used by
bacteria to persist on mucosal surfaces in the absence of symp-
toms. Asymptomatic carriage by or colonization of a susceptible
host is a key step in the development of a myriad of diseases caused
by bacterial pathogens. Inhibiting the ability of a pathogen to col-
onize a host may severely hamper its ability to subsequently cause
disease. For example, vaccination against S. pneumoniae reduces
the potential for disease by interfering with the organism’s ability
to colonize mucosal surfaces (5). In contrast, no effective GAS
vaccine exists, and the ability of current candidate GAS vaccine
formulations to prevent colonization is unknown. Thus, enhanc-
ing our understanding of the mechanisms used to colonize human
hosts is paramount to reducing the incidence of disease caused by
bacterial pathogens.

GAS is an ideal model organism for the study of bacterial
asymptomatic carriage. GAS causes a broad range of diseases in
humans, including severe invasive diseases, such as necrotizing
fasciitis (flesh-eating disease) and streptococcal toxic shock syn-
drome, and mild infections, such as impetigo and pharyngitis (6).
In addition, GAS is carried asymptomatically in the throats of
healthy individuals. Between 5 and 15% in children carry GAS
asymptomatically (7), but this rate of carriage exceeds the inci-
dence of any disease caused by GAS. For example, in the United
States, the rate of invasive disease caused by GAS ranges from 3 to
4/100,000 people per year (8). Despite the high rate of asymptom-
atic carriage and in contrast to the multitude of studies examining
GAS virulence, we have only a rudimentary understanding of the

bacterial molecular mechanisms that contribute to GAS asymp-
tomatic carriage.

Gene regulation is critical for GAS and other bacterial patho-
gens in the transition from initial colonization to disease or to
respond to host selective pressures. Gene regulation in GAS uses
several two-component regulatory systems (TCSs) consisting of a
membrane-anchored sensor kinase, used for sensing environ-
mental stimuli, that upon activation phosphorylates an associated
cytoplasmic transcriptional response regulator (9). The CovRS
regulatory system is the best-described TCS in GAS (10, 11). In-
activation of CovRS alters approximately 10% of the GAS tran-
scriptome and derepresses or increases the expression of several
virulence genes (10–12). Small mutations affecting CovRS regula-
tion may play a crucial role in the transition to an invasive disease
state. Studies of paired superficial and invasive isolates from the
same patient suggest that altered gene regulation through covRS
mutation may facilitate GAS breaching of epithelial barriers and
cause invasive disease (13, 14). Extensive whole-genome investi-
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gations with serotype M3 (15) and M1 (16) invasive GAS strains
also found high frequencies of mutation in covRS. In contrast to
CovRS, relatively few studies of the other TCSs in GAS have been
conducted, which means that their contribution to GAS disease or
asymptomatic carriage is unknown.

The GAS carrier state has been described to be an enigma for
decades. However, exceedingly few studies examining the ability
of GAS carrier strains to colonize mucosal surfaces and cause dis-
ease exist. One hypothesis is that changes in the physiologic state
of the organism are key to the development of the carrier state (17)
and that the transition from a disease-causing state to a carrier
state is facilitated by mutation. Very early studies clearly demon-
strated that the longer that GAS was carried in the human throat
the less likely it was that those individuals would transmit disease
(17, 18). A decreased risk of transmission was also associated with
a decreased bacterial burden in the human upper respiratory
tract (19). Recently, using a mouse nasopharyngeal colonization
model, it was shown that a decreased bacterial burden was associ-
ated with single nucleotide mutations in GAS carrier strains that
eliminated capsule production (20). Despite relatively modest de-
creases in bacterial burden, the carrier mutations resulted in large
decreases in virulence. Similar patterns have been observed in
GAS carrier strains with mutations affecting expression of the
stand-alone regulator Mga (21) and the surface protein SclA (22).
Taken together, these data indicate that it is undoubtedly the case
that multiple genetic pathways contribute to GAS carriage, mak-
ing individual mutations rare events. That is, the frequency with
which an individual mutation would occur in a carrier population
is exceedingly low, given the multiple routes to a common pheno-
type. Importantly, relatively small genetic changes in GAS carrier
strains result in distinct phenotypes depending on the host niche,
revealing new information about the biology of this important
pathogen (20–22).

Herein, we describe a mutation in the gene encoding the sensor
kinase, liaS, of the three-component system (3CS) LiaFSR in a
GAS carrier strain. Using allelic exchange, we provide evidence
that the mutation in liaS contributes to the transition from disease
to persistence by increasing the ability or the organism to adhere
to and persist on mucosal surfaces and decreasing its virulence.
Furthermore, the carrier mutation significantly alters global gene
transcription, including the transcription of known virulence
genes. Little is known regarding the LiaFSR 3CS in GAS, and our
studies provide critical new information on GAS regulation of
virulence, in addition to new pathways leading to GAS carriage.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The strains used in this study
are listed in Table S1 in the supplemental material. MGAS10870 is a sero-
type M3 GAS strain isolated in 2002 from an individual with a soft tissue
infection in Ontario, CA (23). The genome of strain MGAS10870 has been
sequenced (23). MGAS23412 was isolated from an individual with GAS
pharyngitis, and MGAS23431 was isolated from the same individual
63 days later during asymptomatic carriage (20). The genomes of
MGAS23412 and MGAS23431 have been sequenced (20). All GAS strains
were grown in Todd-Hewitt broth containing 0.2% (wt/vol) yeast extract
(THY; Difco Laboratories) unless otherwise specified. Additional details
of the experimental growth conditions are provided in the supplemental
material.

Generation of isoallelic mutants of MGAS10870 and MGAS23431.
The plasmids and primers used in this study are listed in Table S2 in the
supplemental material. We used a previously described procedure for

generating the mutants MGAS10870liaSR135G (whose genome carries
liaS with an R-to-G change at position 135 [liaSR135G]) and
MGAS23431liaSWT (whose genome carries the liaS wild type [WT]) (20,
21). The sequences of all mutants were confirmed using Sanger sequenc-
ing (Applied Biosystems). Details of the methods used for mutant gener-
ation are provided in the supplemental material.

MIC determination. MICs were determined using broth microdilu-
tion in a 96-well plate. Serial dilutions of nisin (Sigma-Aldrich), poly-
myxin B (Sigma-Aldrich), LL-37 (AnaSpec), colistin (Sigma-Aldrich),
bacitracin (Sigma-Aldrich), daptomycin (Sigma-Aldrich), and vancomy-
cin (Sigma-Aldrich) were performed in THY. Strains were grown to mid-
exponential (ME) phase (optical density at 600 nm [OD600], �0.5) in
THY, and subsequently, 20 �l of culture was added to 180 �l of THY (with
and without antibiotic) in triplicate in a 96-well optically clear plate. The
plates were incubated at 37°C and scanned every 30 min for 8 h using a
plate reader (BioTek Synergy H1). The lowest concentration at which
growth was inhibited compared to the growth on plates lacking antibiotic
was considered the MIC. Assays were performed in triplicate with a min-
imum of 2 biological replicates.

Mouse nasopharyngeal and intramuscular infection. All animal ex-
periments were conducted under a protocol approved by the Houston
Methodist Research Institute Institutional Animal Care and Use Commit-
tee. A total of 30 2-week old female CD1 mice (Harlan Laboratories) were
inoculated intranasally with 5 � 107 CFU of the appropriate GAS strain in
50 �l phosphate-buffered saline (PBS). Mouse throats were swabbed
prior to inoculation to document the absence of beta-hemolytic bacteria
and daily thereafter for a total of 14 days. For intramuscular infection,
mice were inoculated in the right hind limb with 5 � 106 CFU of the
appropriate GAS strain in 100 �l PBS. Infected mice were assessed for
histopathology, and bacteria were enumerated at 24 and 72 h postinfec-
tion as previously described (24). All mice were observed and sacrificed
when they reached a condition near mortality, determined using pre-
defined criteria (24).

Cultured human epithelial cell adherence assays. Adherence to cul-
tured human epithelial cells was carried out as previously described (20).
Approximately 1 � 107 CFU GAS (multiplicity of infection, �10) grown
to mid-exponential phase was added to 8 replicate wells previously seeded
with HaCaT cells, and the plate was rocked briefly and incubated for 2 h at
37°C. See the supplemental material for experimental details on the ad-
herence assays. Percent adherence was calculated by dividing the number
of CFU recovered by the number of CFU in the original inoculum.

Ex vivo bactericidal assays in human blood. Growth in whole human
blood was conducted under a Houston Methodist Research Institute In-
stitutional Review Board experimental protocol and performed as de-
scribed by Lancefield (25). Blood from a minimum of two, healthy, non-
immune adult donors was used for each experiment. Details about the
bactericidal assays in human blood are given in the supplemental mate-
rial. Multiplication factors were calculated by dividing the number of CFU
per milliliter obtained after 3 h of incubation by the number of CFU per
milliliter in the initial inoculum.

RNA isolation and qRT-PCR analysis. Growth of GAS strains, RNA
isolation, cDNA synthesis, and quantitative real-time PCR (qRT-PCR)
analysis were performed as previously described (21). See the supplemen-
tal material for experimental details. The primers and probes used in the
transcript analyses are given in Table S2 in the supplemental material. All
reactions were performed in triplicate using RNA purified from at least
three biological replicates.

RNA sequencing (RNA-seq). GAS strains were grown in THY, and
cells were harvested by centrifugation at either ME or early stationary (ES)
phase of growth. RNA isolation, RNA purification, rRNA depletion, and
the development of adapter-tagged cDNA libraries were performed as
previously described (26). cDNA libraries were run on an Illumina HiSeq
2000 to obtain 51-bp reads, and the reads were subsequently mapped to
the reference serotype M3 genome using the CLC Genomics Workbench,
version 8 (Qiagen). Pairwise comparisons of 1,672 coding regions (the
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total number after exclusion of tRNA- and rRNA-encoding regions) were
carried out following normalization using empirical analysis of differen-
tially expressed genes (genes for which the change in expression was �1.5-
fold with a P value of �0.05 after applying Bonferroni’s correction, which
was considered to be a statistically significant difference in expression).

Statistics. A two-tailed t test (unequal variance) was used to compare
multiplication factors between strains grown in human blood, adherence
of strains to epithelial cells, and gene transcript levels. Kruskal-Wallis
analysis of variance (ANOVA) was used to compare rates of nasopharyn-
geal colonization between strains. A two-way ANOVA with correction for
multiple comparisons (Bonferroni) was used to compare the in vitro
growth of the strains. A log rank test was used to compare survival, and a
Mann-Whitney U test was performed to compare bacterial CFU counts
following intramuscular infection in mice. A P value of less than 0.05 was
considered significant for all statistical tests.

RESULTS
Identification of a GAS carrier strain with a single nucleotide
mutation in liaS. We previously reported the complete genome
sequence of serotype M3 GAS strains isolated serially over time
from the throats of human subjects (20). Examination of the ge-
nome sequences of strains recovered from one patient revealed
that the strain recovered during asymptomatic carriage (day 63)
contained three single nucleotide polymorphisms (SNPs) com-
pared with the sequence of the original infecting isolate (day 0):
one in SpyM3_1367, one in SpyM3_0244, and one in SpyM3_0499.
The SNP in SpyM3_1367, encoding a putative sensor kinase, re-
sulted in an amino acid change from arginine (R) to glycine (G) at
position 135 (R135G) in the putative protein. Importantly, at the
time of isolation of the initial infecting isolate, signs and symp-
toms of pharyngitis (e.g., sore throat, fever) were present. The
patient subsequently showed an immunological response to GAS
infection with an increase in both serum anti-streptolysin O
(ASO) and anti-DNase B (ADB) titers at day 63, further suggesting
bona fide GAS pharyngitis at day 0 (Fig. 1A). The carrier strain
isolated at day 63 differed from the initial infecting isolate by only
three polymorphisms in the entire genome, strongly suggesting
that the carrier strain is a lineal descendant of the original strain
and not a different strain causing a new infection. Previous anal-
yses of over 200 serotype M3 disease-causing GAS strains (15) did
not identify polymorphisms in SpyM3_1367, suggesting that the
mutation in this locus may be unique to carrier strains.

The inferred protein encoded by SpyM3_1367 has homology
(29% amino acid identity) to the sensor kinase, LiaS, of a three-
component system (3CS), LiaFSR, in Bacillus subtilis (27). BLAST
analysis of SpyM3_1367 revealed a high degree of conservation
(�99% protein identity) among sequenced GAS serotypes and
homology to the 3CS sensor kinase LiaS from other Firmicutes
(Fig. 1B and C). Based on the protein homology and the conser-
vation of a genome location adjacent to the putative genes for LiaF
and LiaR (Fig. 1B), we propose that SpyM3_1367 henceforth be
referred to as liaS. The amino acid change found in the carrier
strain (R135G) is in a very highly conserved region adjacent to the
invariant histidine (H box) (28) of the putative sensor kinase (Fig.
1C). Thus, we hypothesized that the mutation identified in liaS
contributes to the transition to asymptomatic carriage in GAS.

The carrier strain LiaSR135G increases antibiotic susceptibil-
ity. The Lia (lipid II-interacting antibiotics) 3CS was originally
identified in Bacillus subtilis as part of a regulatory network re-
sponding to cell wall stress induced by antibiotics, such as bacitra-
cin and cationic antimicrobial peptides (CAMPs) (29). Homolo-

gous systems have also been described in other members of the
Firmicutes family, including the human pathogens Listeria mono-
cytogenes (30), Staphylococcus aureus (31), Streptococcus agalactiae
(32), and Streptococcus pneumoniae (33). Studies of the Lia 3CS
have reported a response to antibiotics that interferes with the
lipid II cycle (29, 31, 32). Thus, we hypothesized that if the car-
rier mutation alters the LiaS function, we would observe in-
creased susceptibility to lipid II-interfering antibiotics. To
directly test this hypothesis, we generated a mutant strain
(MGAS10870liaSR135G) that differed from parental invasive se-
rotype M3 strain MGAS10870 by only the carrier liaS allele. No
significant difference in the growth rate between the parental
and mutant strains was observed (see Fig. S1A and B in the
supplemental material). However, mutant strain MGAS10870liaSR135G

exhibited a moderate increase in chain length in late exponential
phase compared to that of parental strain MGAS10870 (see Fig.
S1C in the supplemental material). The phenotype of an increase
in chain length in the mutant was no longer apparent in stationary
phase.

We next tested the strains for susceptibility to several antibiot-
ics. Consistent with our hypothesis of altered LiaS function in the
carrier strain, we observed an increased susceptibility of the mu-
tant strain to bacitracin, polymyxin B, colistin, daptomycin, and
nisin compared to that of the parental strain but no difference in
susceptibility to vancomycin (Table 1). Thus, the liaSR135G carrier
mutation increases susceptibility to antimicrobial agents targeting
cell envelope synthesis and maintenance, consistent with the find-
ings of previous studies of LiaFSR (29, 31, 32).

The carrier allele liaSR135G confers an increased ability to col-
onize and persist in the mouse nasopharynx in vivo. Previous
studies have suggested that GAS carrier strains are characterized
by an increased ability to adhere to mucosal surfaces and de-
creased virulence (20, 22). We hypothesized that the carrier allele
liaSR135G may alter the ability of GAS strains to adhere to and
colonize mucosal surfaces. To test this hypothesis, we inoculated
mice intranasally with either the parental invasive strain or
MGAS10870liaSR135G and compared the rates of bacterial recov-
ery from the mouse nasopharynx. No significant differences in
survival between mice inoculated with the parental strain and
mice inoculated with the mutant strain were observed (Fig. 2A).
However, beginning on day 8, MGAS10870liaSR135G was recov-
ered from mice at a significantly higher rate than the MGAS10870
parental strain (Fig. 2B), suggesting that MGAS10870liaSR135G has
an increased ability to colonize the mouse nasopharynx. This ob-
servation stands in stark contrast to the findings of previous stud-
ies of carrier strain mutations, where decreases in mouse nasopha-
ryngeal colonization were described (20–22).

In vitro adherence to cultured human epithelial cells is in-
creased in strains with liaSR135G. To further characterize the abil-
ity of the carrier mutant to colonize mucosal surfaces, we per-
formed assays of in vitro adherence to cultured human epithelial
cells. Based on the increased ability of strain MGAS10870liaSR135G

to colonize the nasopharynx of mice, we hypothesized that the
carrier allele would confer an increased ability to adhere to cul-
tured human epithelial cells. Consistent with the differences in
mouse colonization observed, MGAS10870liaSR135G had sig-
nificantly increased adherence to HaCaT cells compared to pa-
rental strain MGAS10870 (Fig. 2C). As a further test of the
hypothesis, we repaired the mutation present in carrier strain
MGAS23431 recovered on day 63 (Fig. 1A) and compared the
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ability of both the carrier [MGAS23431(liaSR135G)] and the
mutant (MGAS23431liaSWT) strains to adhere to cultured hu-
man epithelial cells. In line with the hypothesis that liaSR135G

contributes to increased adherence, the parental carrier
strain [MGAS23431(liaSR135G)] had significantly increased
cell adherence compared to the repaired mutant strain
(MGAS23431liaSWT) (Fig. 2D).

Strains with the carrier liaSR135G allele have decreased viru-
lence in an in vivo mouse model of GAS invasive disease. GAS
carrier strains have significantly reduced virulence in mice com-

pared to invasive strains of the same serotype (22, 34). We
hypothesized that the carrier mutation, liaSR135G, results in
decreased virulence in in vivo models of GAS disease. We tested
the virulence of the parental invasive strain and mutant strain
MGAS10870liaSR135G in a mouse model of necrotizing fasciitis.
We observed similar rates of survival for mice infected with the
parental strain and the MGAS10870liaSR135G strain (Fig. 3A).
However, at 72 h significantly fewer numbers of CFU were recov-
ered from mice infected with MGAS10870liaSR135G than from
mice infected with the parental strain (Fig. 3B). Visual inspection
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of mouse limbs at 72 h postinfection showed a smaller abscess-like
lesion after infection with MGAS10870liaSR135G (Fig. 3C, top).
The histopathology at 24 h postinfection correlated with the visual
appearance (Fig. 3C, bottom). The parental invasive strain pro-
duced severe necrotizing fasciitis and myositis, while the amount
of necrosis caused by strain MGAS10870liaSR135G was decreased
and more viable tissue was present, consistent with the smaller
lesion size.

The liaSR135G carrier allele results in a decreased ability to
grow ex vivo in human blood. In the one previous study to ex-
amine LiaS in GAS, a serotype M1 GAS liaS deletion mutant had a
reduced ability to survive in human blood (35). Thus, we next
hypothesized that the carrier mutation in liaS in serotype M3 GAS
would decrease the ability to grow in human blood. We tested the
ability of parental strain MGAS10870 and the derived mutant
strain to survive in human bactericidal assays. Compared to the
parental invasive strain (with liaSWT), MGAS10870liaSR135G had a

significantly reduced ability to multiply in human blood (Fig.
3D). To further test the hypothesis, we compared the abilities
of the MGAS23431 carrier strain recovered on day 63
[MGAS23431(liaSR135G)] (Fig. 1A) and the MGAS23431liaSWT

mutant to grow in human blood. Again, consistent with
liaSR135G reducing virulence, we observed a significantly in-
creased ability of MGAS23431liaSWT to multiply in human
blood compared to that of the carrier strain MGAS23431 with
the liaSR135G mutation (Fig. 3E). Taken together, the data on
virulence for mice in vivo and growth in human blood ex vivo
suggest that the carrier mutation liaSR135G decreases virulence
in GAS.

liaSR135G significantly alters the GAS transcriptome in vitro.
The data presented thus far demonstrate that the carrier allele
liaSR135G confers an increased ability to adhere to and persist on
mucosal surfaces and decreased virulence. Inasmuch as liaS is part
of a 3CS whose homologues are known to regulate global

TABLE 1 MICs of selected antimicrobials
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MIC (�g/ml)
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FIG 2 Carrier allele liaSR135G increases mouse nasopharyngeal colonization and in vitro adherence. (A) Kaplan-Meier survival curve following nasopharyngeal
infection with either the invasive (liaSWT; red line) or the mutant (blue line) strain. P values were determined by the log-rank test. (B) Rates of bacterial recovery
from mice (n � 30) following inoculation of the invasive (liaSWT; red line) or the mutant (blue line) strain. P values were determined using Kruskal-Wallis
repeated-measures ANOVA. (C and D) Cultured epithelial cell (HaCaT) adherence assay using the invasive strain and the derived mutant (C) or the carrier strain
[MGAS23431(liaSR135G)] and the repaired mutant (MGAS23431liaSWT) (D). Error bars represent SEMs, and P values were determined using a t test (unequal
variance). NS, not significant.
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gene transcription in other Gram-positive pathogens (32), we
hypothesized that the phenotypic differences observed in strain
MGAS10870liaSR135G are the result of an altered transcriptome,
including altered transcription of GAS virulence genes. Prior to
global transcript analyses, we first assayed the transcript levels of
liaF, liaS, and liaR at three stages of growth in vitro in parental
invasive strain MGAS10870 using qRT-PCR (Fig. 4A). Gene tran-
scripts were detected in all phases of growth assayed. We com-
pared the transcript levels between the parental and mutant
strains at mid-exponential (ME), late exponential (LE), and early
stationary (ES) phases of growth. We observed modest but
significant differences in the levels of liaS transcripts from
MGAS10870liaSR135G and the parental wild-type strain at the ME
and ES phases of growth (Fig. 4B). In contrast, no significant dif-
ferences in liaR or liaF transcript levels were observed between
MGAS10870liaSR135G and MGAS10870.

Few studies have defined the global regulation by LiaFSR in
Gram-positive human pathogens. Most recently, comparison of a
wild-type strain and an liaR deletion strain in group B Streptococ-
cus (GBS; Streptococcus agalactiae) found altered expression of
�200 genes, including genes encoding known and putative viru-
lence genes (32). To test our hypothesis that the carrier mutation
alters GAS global gene regulation, we compared the transcrip-
tomes of parental strain MGAS10870 and the isoallelic mutant

MGAS10870liaSR135G using RNA-seq. Differential gene expres-
sion was compared at both ME and ES phases of growth, as modest
but significant differences in liaS transcript levels were identified
by qRT-PCR (Fig. 4B).

Compared to the levels of expression in the wild-type parental
strain, 111 genes (6.6% of the genome) were significantly differ-
entially expressed (�1.5-fold, P � 0.05 after Bonferroni correc-
tion) in MGAS10870liaSR135G in the ME phase of growth (Table 2;
see also Table S3 in the supplemental material). Of the 111 differ-
entially expressed genes, 52 were significantly upregulated and 59
were significantly downregulated. Of note, decreased D-alanyla-
tion of teichoic acids is known to reduce virulence in GAS (36, 37),
and we observed significantly reduced transcription from the
operon encoding the genes (dltABCD) necessary for D-alanylation
of teichoic acids in MGAS10870liaSR135G compared to their levels
of transcription in the parental strain (Table 2; see also Table S3 in
the supplemental material). A summary of the most highly up-
and downregulated genes is presented in Table 2.

Transcriptome comparisons at ES phase revealed 127 signifi-
cantly differentially expressed genes (7.6% of the genome), with
82 genes being upregulated and 45 genes being downregulated in
MGAS10870liaSR135G compared to their levels of expression in the
parental strain (Table 3; see also Table S4 in the supplemental
material). We previously reported that a mutation decreasing the
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level of transcription of the gene encoding the stand-alone regu-
lator Mga contributed to a carrier phenotype (21). Similarly, com-
pared to the level of expression in the parental strain, we observed
a significant downregulation of mga in the carrier mutant
MGAS10870liaSR135G (see Table S4 in the supplemental material).
The gene emm3, encoding M protein and regulated by Mga (38),
was downregulated in ES but did not meet the statistical criteria
for inclusion (	1.6, P � 0.056).

A total of 32 genes (28.8% of genes differentially expressed in
ME phase and 25.2% of genes differentially expressed in ES phase)
were similarly differentially expressed between the two phases of
growth (see the bold font in Tables S3 and S4 in the supplemental
material). Uncharacterized or hypothetical proteins accounted for
31% (10/32) of these shared genes. Common to both phases of
growth was the upregulation in MGAS10870liaSR135G of the gene
speB, encoding the secreted cysteine protease. The most highly
differentially expressed gene at both phases of growth was spxA2
(SpyM3_1799; Tables 2 and 3), which encodes an RNA polymer-

ase binding protein conserved in many Gram-positive bacteria
(39). In summary, the carrier mutation identified in liaS signifi-
cantly and distinctly altered the GAS transcriptome at multiple
phases of growth in vitro, and the patterns of differential gene
expression are consistent with the observed phenotype of the car-
rier mutant.

DISCUSSION

The mechanisms used by GAS and other bacterial pathogens to
persist in the human throat in the absence of symptoms are poorly
understood. Recent longitudinal studies of bacterial isolates ob-
tained from chronic infections have identified similar patterns of
in vivo adaptation. That is, mutations predicted to negatively af-
fect virulence were frequently identified in chronic infections with
Pseudomonas aeruginosa (40, 41), Burkholderia dolosa (42), and
Burkholderia pseudomallei (43). In addition to studies in GAS (20,
34), comparison of the genome sequences of disease-causing and
carrier strains of Staphylococcus aureus (44) and Neisseria menin-
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TABLE 2 Most highly differentially expressed genes in
MGAS10870liaSR135G versus MGAS10870 at ME phase of growth

Regulation Locus taga Gene name Fold change P valueb

Downregulated SpyM3_1799 spxA2 	5.4 �1.0E	23
SpyM3_0411 	3.3 �1.0E	23
SpyM3_1713 trpG 	2.7 5.8E	09
SpyM3_0993 dltB 	2.6 1.0E	11
SpyM3_0364 	2.5 5.6E	11

Upregulated SpyM3_1409 sdn 2.7 2.8E	12
SpyM3_0535 2.7 5.0E	12
SpyM3_0077 3.0 4.8E	11
SpyM3_1666 3.2 1.4E	09
SpyM3_0068 4.7 4.4E	23

a Locus tag defined in the serotype M3 strain MGAS315 reference genome.
b P value after Bonferroni correction.

TABLE 3 Most highly differentially expressed genes in
MGAS10870liaSR135G versus MGAS10870 at ES phase of growth

Regulation Locus taga Gene name Fold change P valueb

Downregulated SpyM3_1799 spxA2 	3.8 �1.0E	38
SpyM3_0985 malG 	2.4 1.9E	07
SpyM3_0014 	2.4 1.1E	08
SpyM3_0984 malF 	2.3 2.0E	08
SpyM3_0375 rnc 	2.3 3.7E	05

Upregulated SpyM3_0617 pyrE 5.4 5.2E	25
SpyM3_0578 fruR 5.4 7.0E	32
SpyM3_0579 fruK 5.6 1.5E	34
SpyM3_0561 carA 5.6 1.9E	38
SpyM3_0562 carB 6.2 2.7E	29

a Locus tag defined in the serotype M3 strain MGAS315 reference genome.
b P value after Bonferroni correction.
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gitidis (45) suggests a role for small genetic changes in the transi-
tion from disease to carriage. Our line of investigation represents
one of the only ones to compare the genome sequences of GAS
disease-causing and carrier strains from the same individual and
improves upon previous investigations by linking carrier-specific
mutations in the transition from disease to asymptomatic car-
riage.

The current study expands our knowledge of GAS carriage.
Using precise gene replacement, we conclusively demonstrate that
the mutation in liaS identified during asymptomatic human car-
riage contributes to both decreased virulence and increased ad-
herence. This finding is consistent with that of previous studies in
which mutations identified in GAS carrier strains led to similar
phenotypes (20–22). However, in contrast to the findings of pre-
vious GAS carrier studies, the presence of the liaSR135G carrier
mutation increased the ability to recover GAS from the mouse
nasopharynx, which perhaps suggests an advantage for persis-
tence in the human throat.

In addition to providing new data on GAS carriage, our find-
ings represent one of the few studies connecting the LiaFSR 3CS to
virulence. A single study with a serotype M1 GAS strain showed
that deletion of liaS results in decreased survival in human blood
and in a mouse subcutaneous model of infection (35). However,
complete restoration of the wild-type phenotype was not achieved
with complementation, and no follow-up investigations ascribing
a mechanism to the observed findings have been published. Two
studies with S. pneumoniae link LiaFSR to virulence. In the first,
signature-tagged mutagenesis (STM) revealed LiaF to be essential
for murine pneumonia (46). Deletion of liaS in another study led
to increased pilus expression (i.e., negative regulation) but de-
creased virulence in a mouse intranasal infection model (33).
More recently, deletion of the gene encoding the LiaR response
regulator in GBS decreased pilus expression and virulence in
mouse models of sepsis and pneumonia (32).

The liaSR135G polymorphism is the first mutation identified in
a human GAS carrier strain that has been found to alter global
gene regulation. Transcriptome analysis strongly suggests that this
carrier mutation affects protein function. Our finding that be-
tween 6% and 7% of GAS genes were differentially expressed is
similar to the finding in GBS, in which approximately 8% of the
genes were differentially expressed in an liaR deletion mutant
(32). However, in contrast to investigations into LiaFSR in GBS
(32) and S. pneumoniae (33), pilus gene expression was not signif-
icantly affected by the liaS carrier mutation in our analyses. It is
important to note that this carrier mutation is predicted to alter
but not eliminate LiaS protein function. Thus, it is plausible that
deletion and thus a complete loss of function of liaS (or liaR) in
GAS would affect pilus or other gene expression not observed with
the carrier mutation alone.

Differential expression of several GAS virulence genes provides
potential mechanisms for the pleiotropic effect of the liaSR135G

carrier mutation. For example, in ME phase of growth, we ob-
served decreased expression of the dlt operon (dltABCD), encod-
ing the enzymes necessary for D-alanylation of lipoteichoic acids
(LTAs) (47, 48). Modification of LTAs with D-alanine residues
occurs in many Gram-positive bacteria, including S. aureus, GBS,
and GAS (49). The LiaFSR 3CS has also been shown to positively
regulate the dlt operon in Streptococcus gordonii (50). Mutants
lacking the ability to form D-alanyl-LTA in GAS have increased
susceptibility to cationic antimicrobial peptides (CAMPs), in-

creased killing by human neutrophils, and reduced growth in hu-
man blood (36, 37). In addition to the decreased expression of the
dlt operon, expression of the gene encoding the stand-alone reg-
ulator Mga was decreased in ES phase of growth in the carrier
mutant, as was that of emm, although the decreased expression of
emm did not reach statistical significance. Of note, GAS mutants
lacking the ability to form D-alanyl-LTA have also been reported
to have decreased amounts of cell wall-associated M protein (36).
Furthermore, deletion of mga in serotype M2 and M49 GAS
strains resulted in increased adherence to and internalization of
cultured human epithelial cells (51). GAS carrier mutations that
decrease mga and emm transcript levels have also been identified
(21), suggesting an important role of Mga and M protein in the
transition from disease to carriage. Specifically, decreased Mga
and M-protein levels appear to be associated with carriage, a find-
ing that may make an M-protein-based vaccine strategy subopti-
mal due to a lack of sterilizing immunity.

We also observed significantly increased speB transcript levels
in the carrier mutant at both phases of growth studied. The SpeB
cysteine protease secreted by GAS plays a significant role in GAS
virulence (52). However, evidence also suggests that SpeB may
promote colonization through a tight association with the bacte-
rial cell surface and mediation of adhesion to the extracellular
matrix component laminin (53). Increased adhesion to laminin
has also been associated with a carrier mutation restoring function
to the streptococcal collagen-like protein SclA (22). Thus, the sum
of the evidence suggests that the liaSR135G carrier mutation con-
tributes to the transition from disease to carriage by altering the
expression of multiple GAS virulence genes. The precise mecha-
nism leading to altered gene expression and the subsequent pleio-
tropic phenotypic effects requires further investigation.

Our study is limited in that we examined only the contribution
of the liaSR135G mutation to the GAS carrier phenotype. In prin-
ciple, it is possible that one or both of the other two polymor-
phisms identified in the carrier strain also contribute to the carrier
phenotype and the transition from disease to carriage. However,
the phenotype of the isogenic mutant strain MGAS10870liaSR135G

recapitulates the carrier strain phenotype of increased adherence
and decreased virulence (Fig. 2 and 3). Likewise, repair of the
liaSR135G mutation in the carrier strain restored virulence and de-
creased adherence (Fig. 2D and 3E). Thus, the data support the
conclusion that the liaSR135G carrier mutation is the major con-
tributor to the carrier phenotype in this strain.

In summary, a unifying theme in GAS carriage research is
beginning to emerge and may serve as a paradigm for carriage
research with other human pathogens. Whole-genome com-
parisons of human disease and carrier strains reveal multiple
independent pathways toward a carrier phenotype of persis-
tence and decreased virulence. A recurring theme is that inde-
pendent genetic changes that alter cell surface components and,
thus, the host-microbe interaction are central to the carrier phe-
notype. Importantly, study of the carriage state may expose pre-
viously unrecognized virulence mechanisms leading to new con-
trol and prevention strategies.
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