
Brain Networks and Cognitive Architectures

Steven E. Petersen1,2,3,4 and Olaf Sporns5,6

1Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA

2Department of Psychology, Washington University School of Medicine, St. Louis, MO, USA

3Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA

4Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, 
MO, USA

5Department of Psychological and Brain Sciences, Indiana University, Bloomington IN, 47405, 
USA

6Indiana University Network Science Institute, Indiana University, Bloomington IN, 47405, USA

Abstract

Most accounts of human cognitive architectures have focused on computational accounts of 

cognition while making little contact with the study of anatomical structures and physiological 

processes. A renewed convergence between neurobiology and cognition is well underway. A 

promising area arises from the overlap between systems/cognitive neuroscience on the one side 

and the discipline of network science on the other. Neuroscience increasingly adopts network tools 

and concepts to describe the operation of collections of brain regions. Beyond just providing 

illustrative metaphors, network science offers a theoretical framework for approaching brain 

structure and function as a multi-scale system comprised of networks of neurons, circuits, nuclei, 

cortical areas and systems of areas. This paper views large-scale networks at the level of areas and 

systems, mostly based on data from human neuroimaging, and how this view of network structure 

and function has begun to illuminate our understanding of the biological basis of cognitive 

architectures.

INTRODUCTION

The term “cognitive architecture” used to refer to concepts that were entirely the domain of 

cognitive or computer scientists (see Box 1) whose efforts to elucidate the rules behind 

human cognition (Fodor and Pylyshyn, 1988) made little of no reference to the underlying 

biological substrate – the human brain. Times have changed. A new picture of cognitive 

sep@npg.wustl.edu

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Network approaches to brain function have begun to illuminate how structural and functional connectivity support cognition and 
behavior. The authors present an overview of how networks inform theories of cognitive architectures and discuss future issues in the 
field.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2016 October 07.

Published in final edited form as:
Neuron. 2015 October 7; 88(1): 207–219. doi:10.1016/j.neuron.2015.09.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



architecture has begun to emerge, as amply documented by the contributions to this Special 

Issue. Most “cognitive architectures” now are thought of as sets of brain regions that 

contribute to the performance of some set of related tasks, or a particular set of functions. 

Often these architectures are explicitly referred to as networks, for example the default mode 

network (Raichle et al., 2001), attention networks, etc (e.g. (Corbetta and Shulman, 2002)).

However, the meaning of the term “network” is highly variable. In many cases, the term 

network is informally applied to a simple collection of regions that is activated during a set 

of related fMRI imaging studies, without any explicit reference to connections between 

these regions. In contrast to this informal notion of networks as sets of regions stands the 

more formal definition of what constitutes a network, which is adopted in this article. A 

network is a set of pairwise relationships between the elements of a system – formally 

represented as a set of edges that link a set of nodes. Neurobiological networks come at 

many levels of scale from cell-specific metabolic or regulatory pathways inside of neurons 

to interactions between systems of cortical areas and sub cortical nuclei (see figure 1). At 

each level (neurons, neuronal circuits and populations, systems) different kinds of networks 

with importantly different properties are present. At each of these levels, it is important not 

just to understand how the individual elements work, but to understand the sets of pairwise 

relations that put the elements into the context of the larger interconnected system (Sporns, 

2011). With some exceptions, cognitive architectures mostly involve structures and 

mechanisms at this highest level of analysis (Sejnowski and Churchland, 1989). For this 

article, we would like to focus at these highest levels, with a view to understanding networks 

that relate to all or much of the brain. We would like to explore large-scale architectural 

principles and properties that encompass the more specific architectures discussed in other 

articles in this issue.

Approaching large-scale brain networks

The bulk of the article will entail looking at some of the concepts and results coming from 

taking an explicitly network perspective to brain organization in two related types of studies.

We first turn to work that has aimed to elucidate the anatomical networks upon which all 

functional activity unfolds. Anatomical networks provide the skeleton that constrains the 

passage of neuronal signaling and information that is crucial for shaping our thoughts, 

understanding and actions.

A second major way in which many brain network studies have been studied is through 

correlated fluctuations of the functional MRI BOLD signal (cf (Power et al., 2014)). These 

studies often observe these correlations without any explicit task, forming so-called resting 

state “functional connectivity” (RSFC). This work began with the important observation 

that, even at rest, fluctuations of the fMRI BOLD signal correlate in anatomically specific 

ways across the brain. For example, many regions that relate to motor function are strongly 

correlated with one another in the absence of any task. The organization of RSFC has been 

demonstrated to provide insight into common functional relationships between many brain 

regions beyond the motor system. The second main section of the article explores some 

basic observations and properties that these studies have provided.
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In the final section we explore the relationship between structural and functional networks 

which we think is fundamental for understanding the biological mechanisms that underpin 

cognitive architectures (see Box 2). While recent work has uncovered some relationships 

between these two types of brain networks, , many aspects of how structural connections 

constrain functional networks, and how these constraints play out on multiple time scales, 

remain incompletely understood. Integrative studies of networks across structure and 

function are an important goal for the future, and we end our article with charting some 

tentative footsteps down this path.

ANATOMICAL NETWORKS

The search for anatomical principles of neurocognitive networks has a long history, 

extending at least as far back as the 19th century marked by the development of new 

histological methods and new ideas about the localization of brain function. Deeply rooted 

in this tradition is the view that human cognition relies upon an intricately connected cortical 

architecture that underpins its various functional capacities. The fundamental idea that 

cognitive architecture has a structural foundation remains valid today.

Insights from Non-Human Primates

Preceding the recent expansion of studies utilizing fMRI methodology in humans, the 

biological foundations of cognition were mainly explored from the vantage point of large-

scale anatomy and cellular physiology in model organisms such as nonhuman primates. 

These classic approaches have led to the formulation of candidate principles for the 

organization of neurocognitive networks that continue to influence our modern view. Key 

principles include functional specialization, distributed networks, segregated processing 

streams, cortical hierarchy and convergence zones. Functional specialization was articulated 

as principle of brain organization in the work of Semir Zeki (Zeki and Shipp, 1988) building 

on the finding that cortical regions maintained unique sets of afferent and efferent 

projections, later termed “cortical fingerprints” (Passingham et al., 2002). Distributed 

circuits, exemplified in the work of Patricia Goldman-Rakic and Vernon Mountcastle, 

consisted of sets of brain regions and interconnecting pathways that collectively performed a 

specific perceptual or cognitive function (Goldman-Rakic, 1988). Processing streams, for 

example the ventral and dorsal visual cortex, combined serial/hierarchical arrangements of 

regions with functional specialization. Cortical hierarchy was postulated based on projection 

patterns in collated anatomical data (Felleman and Van Essen, 1991), and was one of the 

hallmarks of Marcel Mesulam's seminal proposal for a cortical architecture that consisted of 

nested shells of areas ranging from unimodal sensory and motor regions to an inner core of 

transmodal or multimodal areas (Mesulam, 1990). A related idea was that of cortical 

convergence zones (Damasio, 1989), representing anatomical elements with key roles in 

binding and cross-referencing distributed sources of information.

More recent work has shed new light on some of these classic concepts, by applying data-

driven and quantitative analytic tools from graph theory and network science to 

neurocognitive systems. For example, analysis of the topology of projections among a 

subset of regions in macaque cortex has shown that unique sets of inputs and outputs, 

especially those made over longer distances convey functional specificity (Markov et al., 
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2013). Cortical hierarchies, while not always arranged in strictly serial order, define 

gradients of progressively more complex physiological properties in sensory and motor 

systems. Processing streams, for example those in visual cortex, may correspond to network 

modules or communities that are defined by the topology of interregional projections in 

cerebral cortex. Diverse and widespread anatomical connections have repeatedly been 

described as the defining feature of transmodal/multimodal areas, e.g. the various 

subdivisions of the prefrontal cortex (Markov et al., 2013)or the precuneus (Parvizi et al., 

2006). The network embedding of these regions renders them candidate network hubs, 

putative focal points that are important for attracting and dispersing a diverse set of neural 

signals (van den Heuvel and Sporns, 2013). Another prominent network feature is based on 

a high density of anatomical linkages among hub nodes, which are often seen as forming a 

core (Hagmann et al., 2008) or rich club (van den Heuvel and Sporns, 2011). Overall, 

modern network-based studies and analyses validate most classic anatomical principles and 

advance a coherent framework for the topology of neurocognitive systems that is rooted 

within the larger context of network science.

Going forward, the continued exploration of the anatomical basis of cognitive networks will 

benefit from the development of more sensitive quantitative methods for estimating the 

geometry and topology of cortical projection systems. Invasive labeling and tract-tracing 

technologies are evolving towards more comprehensive (Bota et al., 2015) and high-

throughput (e.g. (Oh et al., 2014)) detection of interregional pathways. Despite their status 

as “gold standards” in connectional anatomy, these methods also have some methodological 

limitations, as they require aggregating data across many individuals (often without tracking 

gender, age, or hemispheric location) and do not capture inter-individual variability.

Structural Networks in the Human Brain

In recent years, much work on the structural basis of human cognitive networks has relied 

on reconstructions of anatomical networks derived from diffusion imaging and tractography. 

Methodological advantages of this approach are partly complementary to the limitations of 

invasive tract tracing studies – for example, whole-brain coverage in neuroimaging allows 

construction of complete anatomical networks from single individuals and hence the 

potential systematic assessment of individual differences and heritability. However, 

diffusion imaging also suffers from numerous limitations and biases in data acquisition and 

computational reconstruction of connectivity. These include the complete lack of gray-

matter connections, an inability to determine directionality or physiological efficacy, and 

uncertain measures of connection strength or magnitude (Fornito et al., 2013). Considerable 

efforts are underway to further improve diffusion imaging acquisition and signal 

deconvolution. In addition, computational inference of anatomical pathways with 

noninvasive imaging is undergoing continuing development – one promising avenue is the 

introduction of model-based global tractography approaches (Pestilli et al., 2014). Cross-

validation between tract-tracing and diffusion data continues to be invaluable for verifying 

key features of human anatomical networks. In model organisms, such cross-validation has 

led to mixed results, with some studies reporting significant mismatches (Thomas et al., 

2014) and others finding significant convergence and overlap (Calabrese et al., 2015), with 
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gains in reliability and sensitivity that depend on the selection of optimal tractography 

parameters and parcellation schemes (Chen et al., 2015).

Over the past few years, a large number of studies have attempted to reconstruct whole-brain 

(or at least cortical) network maps in humans and reported a number of significant features 

of network topology (Sporns, 2013, 2014). These network features include unique 

connectivity fingerprints, a high density of triangles (high clustering) and short path length, 

densely connected network communities or modules, and skewed degree distributions 

characterized by a small set of regions that maintain a large set of diverse connections. 

Several studies have reported these regions to comprise portions of the superior and lateral 

frontal cortex, and portions of medial parietal cortex, the cingulate and the insula. In 

addition to their high degree of connectivity, these regions have been found to be mutually 

densely interconnected (van den Heuvel and Sporns, 2011), paralleling the high density of 

connections among network hubs found in model organisms (Bota et al., 2015; Rubinov et 

al., 2015; Shih et al., 2015; Towlson et al., 2013)). It is worth noting that, while the methods 

for reconstructing human anatomical networks continue to evolve, there is strong 

convergence between humans and other species across very different anatomical 

measurement techniques with respect to prominent features of large-scale network topology 

(e.g. clustering, modules, hubs, core). This convergence raises the possibility that common 

architectural themes are the result of common driving forces shaping anatomical networks.

Factors Shaping Anatomical Networks

One of the most enduring observations in anatomical connectivity is an overabundance and 

high density of short-range projections and, as a consequence, a high propensity for 

neighboring brain regions to be anatomically linked (Averbeck and Seo, 2008; Young, 

1992). These findings suggest that the layout of anatomical projections is largely determined 

by spatial constraints, minimizing or at least conserving wiring length and volume as well as 

conduction delays. Recent studies have expanded on these views, for example proposing an 

exponential distance rule as the key generative factor for inter-regional projections (Ercsey-

Ravasz et al., 2013). However, distance or wiring length alone can neither account for all 

observed topological features of anatomical brain networks (Kaiser and Hilgetag, 2006), nor 

can it predict specific patterns of (often long-distance) couplings among areas that share 

high degree (van den Heuvel and Sporns, 2011) and common cytoarchitectonic patterns 

(Barbas, 2015). Thus, generative principles for anatomical networks likely comprise a 

combination of factors, including connectional geometry and cost as well as aspects of 

topology and microstructure, competing as part of an economic trade-off between low cost 

and efficient performance (Bullmore and Sporns, 2012). The search for generative principles 

that can explain the arrangement of network elements in nervous systems may eventually 

provide insights regarding the evolutionary origin of cognitive architectures. It appears that 

the anatomical substrate is subject to severe and ultimately inviolable constraints that force a 

trade-off between the expense of material, space and energy on the one side, and 

computational performance on the other. This trade-off places sharp boundaries around the 

subsets of architectures that can be physically realized and, at the same time, are biologically 

viable. A corollary of this perspective is that existing cognitive architectures may be 

optimally negotiating a trade-off among multiple design constraints but may also fall well 
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short of theoretical limits on any one dimension, i.e. combine suboptimal cost with 

suboptimal performance.

This last point reinforces the importance of considering the biological implementation (for 

example, in the topology of anatomical networks) as inseparably linked with the more 

abstract level of neural computation – a point that runs counter to David Marr's classic 

notion of separable levels of analysis (Marr, 1982). Instead, structure (implementation) and 

function (computation) appear inseparable. Anatomical networks define the space of what is 

functionally possible (Avena-Koenigsberger et al., 2015)– their structure imposes strong 

constraints on patterns of neural signaling and dynamics, effectively shrinking an impossibly 

large space of functional network configurations to a lower-dimensional manifold that 

defines an envelope of possible functional interactions. This envelope is expressed in 

spontaneous and task-evoked fluctuations in functional connectivity which in turn define 

functional networks.

FUNCTIONAL CORRELATION NETWORKS

As stated in the Introduction, one approach to large-scale brain networks is through the use 

of RSFC. At this time, there is considerable consternation by many about what correlations 

really represent in these very “unconstrained” situations. However, there is little question 

that observations of RSFC, both at the group and individual level, can show high levels of 

reliability and reproducibility. Indeed, many of the observations of network data from RSFC 

persist across different types of “rest” (eyes open vs. eyes closed (McAvoy et al., 2012) vs. 

light anesthesia, early stages of sleep (Horovitz et al., 2009; Larson-Prior et al., 2011) etc). 

Further, many of the overall network relationships appear to persist across task states (Cole 

et al., 2014). Nonetheless, tasks do produce perturbations on the underlying networks 

present during rest, (Cole et al., 2014; Davison et al., 2015) and deep sleep and deep 

anesthesia (Heine et al., 2012) also produce clear disruptions of the functional architecture 

of RSFC.

Thus real questions exist about what these RSFC fluctuations represent. They appear to be 

constrained by the underlying anatomical relationships, but overall they clearly do not 

duplicate anatomical relationships (see the next section). Very strong functional correlations 

can be found between brain regions that demonstrably are not linked by any direct (one-

step) anatomical connections. For example, functional correlations can be found between 

left motor cortex and right cerebellum (Buckner et al., 2011), two structures that are multiple 

steps away from one another in anatomical terms (figure 2). The eccentric representations of 

primary visual cortex in left and right hemispheres also clearly correlate, also without the 

presence of direct anatomical connections (Vincent et al., 2007).

The fact that RSFC does not represent single step anatomical correlations unfortunately call 

into question the appropriateness of some otherwise very useful network tools that are based 

on representations of paths and path lengths (referring to the number of steps between two 

locations). While some measures based on paths, including global efficiency and some 

centrality measures, are widely used in functional network studies they must be interpreted 

with caution. Path-based analyses in correlation networks may be useful for inferring 
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hierarchical relationships and multi-step associations among the brain's functional systems. 

However, interpretations that make direct reference to information flow or communication 

along functional connections may be inappropriate in light of the complex and indirect way 

that correlation networks relate to network paths in the underlying anatomical networks. 

Neural signals are passed along anatomical paths, and functional connections emerge as a 

result.

Hence, instead of interpreting functional connections as direct links between two brain 

regions, a more reasonable supposition is that an RSFC correlation represents composite 

(perhaps a weighted sum) of the functional relationships along many or all of the anatomical 

paths that exist between the two regions, e.g. see (Power et al., 2014) for review. 

Importantly, these correlations reflect not only the anatomical presence, but also the synaptic 

efficiencies of these connections. Thus functional relationships can vary not only as a result 

of the structural arrangements of paths but also as a result of changes in the synaptic 

efficiencies along these paths. For example, performance of a task a large number of times 

can increase the correlation between commonly activated regions e.g. (Lewis et al., 2009; 

Mackey et al., 2011). Thus an interesting way to think about the generic correlation structure 

across the brain is that it represents a very high-level statistical representation of historical 

coactivation between regions constrained (but not fully determined) by the underlying 

anatomy.

Early studies using RSFC used a seed-based approach. This technique took a seed or 

contiguous collection of voxels, and looked at how all the rest of the voxels in the brain 

correlated with the seed (Biswal et al., 1995). In many cases, the correlation patterns seem to 

represent functionally related regions. Notably, in 2003, a study by (Greicius et al., 2003) 

showed that placing a seed in the posterior cingulate region related to the default mode 

network revealed a set of correlations that looked very much like the set of regions 

comprising the default mode network, much as seeding the connections from left motor 

cortex reveals much of motor systems. The default mode network had previously been 

described as a set of regions that have the unusual property of decreasing their activity 

whenever a subject goes into many different kinds of active task states. This study unleashed 

a torrent of further studies with similar outcomes. Different attentional systems were defined 

using different seeds, and these networks again showed that resting correlation patterns 

followed coactivation patterns during tasks.

Community detection

The success of this piecemeal approach at describing local relationships of “neighbors” (and 

the difficulties in putting these different “neighborhoods” together) encouraged several 

different groups to attempt descriptions of all or much of the brain in terms of sets of 

modularized correlation relationships. In network science, the attempt to find underlying 

group structure in a large-scale network is termed community detection. A community is a 

set of objects or nodes (in this case, brain regions) that maintains denser and stronger 

relations among themselves than with members of other communities.

Using quite different techniques, similar community or cluster structures have been 

described by several groups (e.g., see figure 3) (Damoiseaux et al., 2006; Power et al., 2011; 
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Sorg et al., 2007; Yeo et al., 2011). Further, the community structure itself has a very high 

degree of face plausibility. In many cases, it replicated the neighborhoods found using seed-

based techniques, which in turn had replicated coactivation relationships found in task-based 

fMRI studies. For example, the “attentional” networks found in figure 4 had striking 

similarity to the dorsal and ventral attention systems of (Corbetta and Shulman, 2002), and 

the frontoparietal and cingulo/opercular systems of (Dosenbach et al., 2007) (see also 

executive control and salience systems of (Seeley et al., 2007)).

Some of the communities that were found in these studies had not been previously 

described. In some cases, the new communities identified regions that had previously 

described coactivation relationships. For example, a set of parietal regions were described, 

near default mode regions that shared specific coactivation relationships across memory 

encoding and retrieval tasks, and have come to be termed, perhaps inauspiciously, the 

parietal encoding retrieval network (PERN) (light blue regions on midline of Power 

communities, and gray regions in Yeo clusters in figure 3). Other communities were 

somewhat surprising in their configuration. For example, somatic motor regions were 

broken into regions related to the mouth representation and to the rest of the body 

separately. In further exploring this distinction, it was found that the mouth representation 

community more closely correlated with an auditory community than the body 

representation did (Power et al., 2011). This suggests the tantalizing speculation that the 

strong relationships created between oral and aural processing in language leads, perhaps by 

way of Hebbian plasticity, to this somewhat unintuitive result.

Several studies have taken a more formal approach to the question of the relationship of 

underlying correlation patterns at rest with what is seen during tasks. Meta-analyses of large 

databases recording task-evoked cortical activation patterns allow the description of co-

activation patterns estimated across a large number of cognitive tasks. These co-activation 

patterns often show significant overlap with RSFC clustering. The cluster structure of these 

patterns may also be used to extract relations among different cognitive tasks and domains, a 

step towards creating a data-driven ontology of cognitive states (e.g., (Smith et al., 2009)). 

Such ontology would further reinforce the notion that the capacities of human cognition 

have their roots in the network architecture of the human brain.

Large-scale network science tools also allow interpretation beyond the simple presence of 

separate communities. One way is by creating a representation of how the different 

communities relate to one another, not in an anatomical space, but in network space. A 

popular network visualization tool treats each of the correlations as a mechanical spring with 

a spring constant proportional to the correlation strength. A repulsive force is placed on all 

the regions/nodes of the network, and the springs between the nodes pull the entire network 

into a new energy-minimizing configuration. As can be seen in figure 5, spring embedding 

places the more enclosed processing type networks, the blue visual system and cyan and 

brown motor systems, on the edges of the network. The more control-related attentional 

systems reside more centrally, as if they would be expected to relate to other systems more 

broadly. Interestingly, the default mode “network” sits at the edge, more like a “processing” 

than a control system (see (Power et al., 2014) for more discussion).
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Relation to cognitive architectures

All of this leads to some interesting functional questions. The community-oriented studies 

have suggested that there may be somewhere between one and two dozen different systems 

in resting correlation. It is our supposition that several of these will relate to the more 

specific cognitive architectures that are addressed in the other articles in this issue. On the 

other hand, humans seem to have amazing behavioral flexibility with a myriad of well-

defined sets of functional capabilities. One can imagine that relatively separable RSFC 

systems should be associated with these different kinds of capabilities. So as we go through 

the other chapters in this Special Issue, one might be interested in mapping say a “reward 

system” onto one of our communities. What if this doesn't happen?

One explanation might be that network communities that manifest in the resting state just do 

not faithfully represent specific cognitive or behavioral functional distinctions. But the many 

counterexamples already explored here at least somewhat argue against a strong 

dissociation. A second explanation is that there may be further breakdowns within the dozen 

or so “coarse-grained” systems detected in most resting-state studies that represent more 

“fine-grained” functional distinctions. This, of course, can be explored in future studies. A 

third and more interesting possibility is that many kinds of task distinctions that may be 

important to us as humans do not represent statistically useful descriptions of overall 

coactivation in the life of the individual, and hence are not expressed in aggregate RSFC 

patterns.

To this end, let us look at a set of regions consistently activated during reading tasks that in 

some cases have been identified as the “reading network” e.g. ((Dehaene et al., 2010; Fiez 

and Petersen, 1998; Perfetti and Bolger, 2004). These include a region that has come to be 

called the “visual word form area” in extrastriate cortex, regions in the angular and 

supramarginal gyri, and others. When examining resting state among these regions, as well 

as viewing these regions inside of large-scale networks, their mutual RSFC correlations are 

unremarkable or non-existent. It is not that these regions do not have strong relationships at 

all (Vogel et al., 2013). In fact these regions seem to be very much parts of other quite 

coherent networks, particularly the dorsal attention system (Vogel et al., 2012), see figure 6 

So what's going on here?

Reading is clearly very important to humans – in fact it is a task that you, the reader, are 

currently engaged in and presumably spend a lot of time exercising. However, it also 

appears that the regions that are commonly utilized in reading tasks are also utilized for 

many other different kinds of tasks (Price and Devlin, 2003; Vogel et al., 2012). Thus the 

statistical nature of the relationships specific to reading may not represent the “day jobs” of 

many of the involved regions. This suggests that our behavioral flexibility may depend on 

our ability to usefully configure sets of regions for specific tasks, and that these 

configurations are not necessarily representative of the baseline way that those regions are 

“normally” conjoined. Reading appears to be a very interesting example of this – it involves 

breaking baseline network coherence to create task-specific new networks bound by new 

sets of dynamic relationships. This immediately implies that the relation between (relatively 

stable) anatomical networks and (highly dynamic) functional networks is bound to be a 

complex issue.
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RELATIONS ETWEEN ANATOMICAL AND FUNCTIONAL NETWORKS

Structure/Function Relations

So far, we have examined cognitive architectures separately from a structural/anatomical 

and functional/physiological perspective. A more complete understanding of the biological 

foundations of cognition requires considering their interaction – the emergence of functional 

brain activity and dynamics on top of structural networks, as well as the continued 

modification of structural networks that results from activity-dependent modulation and 

plasticity.

Functional Networks Emerging on Structural Networks

Patterns of structural and resting-state functional connectivity exhibit significant 

relationships in both nonhuman primates (Vincent et al., 2007) and humans ((Hagmann et 

al., 2008; Hermundstad et al., 2013). Components of functionally coherent resting-state 

networks are anatomically interconnected (Greicius et al., 2009), structural and functional 

connection strengths are significantly correlated (Honey et al., 2009), and the path structure 

linking indirectly connected node pairs is partly predictive of the strength of functional 

couplings (Adachi et al., 2012). Nonlinear dynamic simulations of spontaneous neural 

activity (Ghosh et al., 2008; Gollo et al., 2015; Honey et al., 2007) as well as formally 

simple generative models based on the topology of anatomical connections can create 

synthetic patterns of functional connectivity that resemble empirical resting-state 

(Abdelnour et al., 2014; Goni et al., 2014; Misic et al., 2015) (figure 7). These and other 

findings strongly suggest that anatomical connectivity plays an important role in shaping the 

patterns of functional connectivity that characterize long-time averages of spontaneous 

BOLD fluctuations. Recent work on relations between anatomical patterns and EEG 

functional connectivity further strengthens this idea (Chu et al., 2015). Structure is 

predictive of function in other domains as well. For example, in line with findings coming 

from nonhuman primates (see above), anatomical connectivity patterns can predict 

functional specialization of brain regions in the fusiform gyrus (Saygin et al., 2012) and in 

other portions of human temporal cortex (Gomez et al., 2015).

Despite strong and reproducible relations between structural and functional networks, their 

topology diverges in a number of important ways. A root cause for this divergence is a 

fundamental difference in the nature of structural and functional connectivity. Structural 

connections represent direct anatomical linkages and define (within fine-grained 

parcellations) relatively sparse networks. Functional connections express (in their most 

common usage) the similarity of BOLD time courses and define correlation networks that 

are dense due to transitive closure (Zalesky et al., 2012). Transitivity refers to the 

mathematical fact that individual correlations in functional connectivity are generally 

interdependent such that changes in individual correlations often propagate across the 

network. Transitive closure implies that this basic property of correlation networks induces 

topological structure such as triadic closure or clustering, an effect that should be accounted 

for in appropriate statistical comparisons and null models (Zalesky et al., 2012). As a result 

of these and other features, network measures must be interpreted differently across the two 

domains of structure and function (Power et al., 2014; Sporns, 2014). For example, while it 
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is appropriate to use node degree as a defining feature of network hubs in structural 

networks, “functional node degree” is confounded by the properties (e.g. transitivity) of 

networks built from pairwise cross-correlations. Node participation, i.e. the diversity of its 

functional connections relative to a module partition offers a more robust approach (Power 

et al., 2014). As different measures for functional connectivity (e.g. partial correlations or 

directed information flow) come into play, interpretation of network measures must remain 

sensitive to the nature of what is expressed in the edge weights and their topology.

Earlier in this Perspective, we discussed the important roles of resting-state or intrinsic 

connectivity networks as functional building blocks of cognitive architecture. It is therefore 

an important question to investigate how patterns of structural connectivity relate to the 

partitions defined by these functional building blocks. In general, structural and functional 

networks do not simply “line up” across domains – for example, structural network 

communities do not, for the most part, correspond to functional communities. Nevertheless, 

anatomical nodes and connections are organized in ways that relate to functional partitions. 

For example, several studies have shown that high-degree (anatomical) brain regions or 

network hubs are widely dispersed around the brain, across lateral and superior frontal 

cortex, parietal cortex and the insula, among others, and they are densely interconnected, a 

hallmark of “rich club organization” (van den Heuvel and Sporns, 2011). Comparison to 

functional modules has shown that these structural hubs are also widely dispersed among 

resting-state networks, and that their interconnections may be important for communication 

between such networks (van den Heuvel and Sporns, 2013). The latter point about the 

“importance of weak links” (Granovetter, 1973) (defined as links that connect different 

communities) has been reinforced by other studies that have shown significant anatomical 

links spanning functional modules (Gallos et al., 2012).

While structural and functional networks are clearly related, no structurally-based 

computational model has thus far succeeded in capturing all of the variance observed in 

functional brain recordings. Likely causes for this shortfall are complex physiological 

underpinnings of the BOLD response and its temporal fluctuations, the lack of important 

information on the directionality and physiological strength of pathways, as well as biases 

and noise corrupting both structural and functional data acquisition. While the latter may be 

partly addressable through future methodological refinements, current technology does not 

allow direct noninvasive observations of neural processes in the human brain that combines 

both spatio-temporal precision and whole-brain coverage. Extremely promising work 

addressing this gap in knowledge is underway in model organisms, where whole-brain 

connectomics and large-scale functional recordings are likely to converge soon, offering 

unprecedented glimpses of highly resolved network structure/function relationships.

Network Dynamics, Flexibility and Reconfiguration

In most previous studies, relations between structural and functional networks have been 

most evident when considering long-time averages of correlations among spontaneous or 

resting-state fluctuations. Over shorter time periods, however, structure/function relations 

diminish (Van Dijk et al., 2010). One possible interpretation of the latter finding is that 

shorter observation periods undersample the set of dynamic patterns that jointly contribute 
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to the long-term average of resting-state functional connectivity. The implication is that 

functional connectivity is “dynamic”, i.e. its spatial pattern changes over time (Hutchison et 

al., 2013). In line with this view, some theoretical and computational models have suggested 

that spontaneous dynamics in the brain occurs “near criticality”, a dynamic regime 

characterized by ongoing noisy fluctuations and a rich repertoire of brain states (Deco et al., 

2011; Haimovici et al., 2013). Others have suggested that observed fluctuations may result, 

more broadly, from processes that confer “dynamic instability” (Breakspear, 2002; Friston et 

al., 2012). In general, criticality and dynamic instability both suggest that noise-driven 

fluctuations should result in short-term deviations from the long-term average pattern of 

functional connectivity.

In empirical resting-state fMRI studies, the status of time-dependent functional connectivity 

is still in flux. Some studies, usually carried out on the temporal evolution of windowed 

patterns of functional connectivity, have suggested that a subset of functional connections 

exhibits non-stationary fluctuations in magnitude (Zalesky et al., 2014) and others have 

provided evidence that functional connectivity passes through a restricted set of network 

states with distinct topology and community structure (Allen et al., 2014). Important and 

difficult methodological issues involve demonstrating the robustness of clustering methods 

used for deriving families of network states, inherent limitations in diagnosing network-wide 

transient connectivity states on the basis of mutually dependent sets of pairwise correlations, 

the uncertain level of persistence of such states in conservatively configured (e.g. phase-

randomized) null models, and the unknown nature of neurobiological mechanisms driving 

state transitions. Multimodal studies as well as studies in model organisms (Keilholz, 2014; 

Tagliazucchi and Laufs, 2015) will likely help to clarify the physiological origin of 

fluctuating rs-fMRI functional connectivity. It should be noted that fast non-stationary 

fluctuations in spontaneous task-free brain connectivity are well documented in the 

EEG/MEG and neurophysiological literature (Breakspear, 2002; Ioannides, 2007). For 

example, long-term recordings of spontaneous network patterns with intracranial EEG 

revealed a core of persistent functional connections as well as a set of connections that are 

consistently more variable and metastable (Kramer et al., 2011). More recently, rapid 

transitions (on the order of 100–200 ms) among transient brain states resembling cortical 

resting-state networks have been observed in MEG recordings of resting brain activity 

(Baker et al., 2014).

In addition to these fast responses of functional connectivity in response to sensory 

perturbations and momentary shifts in cognitive demands, structural and functional networks 

underpinning human cognitive architecture are also changing more slowly in the course of 

learning and plasticity. Resting-state functional networks were sensitively remodeled in the 

course of a visual perceptual learning task (Lewis et al., 2009) and the acquisition of a 

complex motor skill was found to be associated with changes in the modular organization of 

fMRI functional networks (Bassett et al., 2011). Taken together these findings demonstrate 

that the networks underlying human cognitive architecture partly reflect individual 

experience and skill acquisition. This view is supported by numerous studies that have 

shown that individual differences in neurocognitive networks (structural and functional) can 

be predictive of individual differences in cognitive and behavioral performance.
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CONCLUSIONS

The emerging picture is one in which dynamic processes of neuronal signaling and 

communication play out on an intricate web of anatomical projections. The resulting 

interplay between structure and function renders brain networks capable of both robust 

computational performance and flexible adaptive response – a cognitive architecture that as 

a “network of networks” maintains consistent, recognizable and reproducible topology 

across individuals, and yet retains many additional degrees of freedom for context, stimulus 

and task-dependent reconfiguration. Different networks make different contributions – while 

some may be more heavily engaged in domain-specific (e.g. visual, motor) processes, others 

may be more important for integrating multimodal information, or for task switching and 

control. Importantly, the view that emerges is one where the elementary building blocks of 

cognitive architecture are networks, not regions or individual neurons. We believe that this 

network-centric perspective provides a fruitful basis for how to understand the biological 

basis of human cognitive architecture.
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BOX 1: Current Status of the Field

• The classic notion of “cognitive architecture” postulated the basic idea that 

human cognition is a computational process carried out as a series of operations 

on symbolic representations. This view explicitly embraced functionalism, 

which implies that cognition can be studied and understood without much (if 

any) reference to its biological basis.

• In parallel, understanding of the neural bases of human cognition was materially 

advanced through the mechanistic study of neurocognitive circuits in non-

human primates and the application of noninvasive imaging technology in the 

human brain. An enduring achievement was the discovery of task-specific 

activations of specific neuronal populations and localized brain regions aided by 

the development of statistical tools for mass-univariate region-based analyses.

• Today, ROI-based analyses are increasingly complemented by an alternative 

perspective, based on the notion that cognitive function emerges from the 

dynamics of extended cortical and subcortical networks. Unlike classic “neural 

nets”, these networks have a distinct anatomical basis in the brain's structural 

connectivity (the connectome) and manifest through coherent fluctuations in 

neural activity at rest as well as distributed patterns of activation in task states.

• Network approaches are appealing because they (i) transcend local and global 

function, as connectivity simultaneously accounts for regional differences 

(segregation) and interregional signaling and communication (integration); (ii) 

can provide a common framework for describing both endogenously and 

exogenously driven neuronal activity, and their mutual relations; and (iii) they 

can be applied across spatial scales from neurons to regions, and even across 

different data domains from genes to neural dynamics to social interactions.

• Current challenges for network approaches include the development of novel 

data acquisition and analytic methodologies that can cope with the ever-

increasing volume and complexity of “big data”. Mapping cognition to the brain 

will increasingly rely on sophisticated multivariate statistical algorithms 

involving clustering, module detection and other dimension reduction 

approaches. In future the growing application of “data-driven” machine learning 

or pattern recognition approaches could substantially benefit from added 

constraints coming from the rich tradition of cognitive anatomy.
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BOX 2: Future Directions

• We need a more complete and more accurate view of the anatomical 

underpinnings of cognitive architectures. In the case of the human brain this will 

require the development of more reliable tools for noninvasive imaging of 

anatomical connections, as well as rigorous cross-validation with more invasive 

histological or imaging approaches in non-human primates. We need progress 

towards more consistent and biologically motivated quantification of the 

geometry, strengths and efficacies of anatomical pathways.

• We need increasingly accurate functional parcellations, both within groups as 

well as within individuals. The overarching goal behind these efforts is to more 

clearly define the functional building blocks from which large-scale brain 

networks are configured. Key challenges here are related to the quality of 

functional imaging data, excluding systematic biases and sources of noise, as 

well as deploying sophisticated data analysis techniques that can reveal network 

communities across scales, down to the level of individual brain regions.

• We need new approaches for mapping brain networks engaged in specific 

cognitive tasks that can capture their rapid reconfiguration and dynamic 

functional connectivity. Current methods for creating functional connectivity 

maps with fMRI are limited in terms of their temporal resolution, and they 

cannot reveal the direction of information flow.

• We need more systematic assessment of individual variability in brain structure 

and function as a basis for revealing biological mechanisms that drive individual 

differences in behavior and cognition. Going beyond work that aims at creating 

“population averages” of brain networks, mapping the anatomical and functional 

networks of individuals will be essential for revealing the network basis of their 

specific cognitive capabilities and styles.

• We need more accurate and more powerful computational models of dynamic 

brain activity. Such models will be indispensable for understanding the complex 

patterns of signaling and communication within and between brain networks. 

Also, such models will be able to inform empirical research by generating 

predictions about the network structures and dynamic relationships that are most 

important for maintaining cognitive function.

• We need better understanding of the neurobiological mechanisms that determine 

switches or transitions between cognitive states. While convergent lines of 

evidence suggest that such transitions are associated with reconfigurations in 

functional brain networks, we know very little about what the underlying 

causes. One possibility is that specific network nodes are responsible for 

triggering transitions in global network states. An alternative possibility is that 

switches reflect metastable transitions in brain dynamics. Understanding the 

mechanisms behind network transitions is crucial for moving the field beyond 

mere description and towards prediction and control.
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Figure 1. 
Schematic representation of levels of structure within the nervous system. The large scale 

analyses discussed in the paper focus on the levels of areas/maps and systems, but network 

ideas clearly extend down to the level of neuronal circuits and populations, individual 

neurons and synapses, as well as genetic regulatory and protein interaction networks. 

Adapted from a similar illustration in (Churchland and Sejnowski, 1992; Sejnowski and 

Churchland, 1989).
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Figure 2. 
The top half of the figure shows two regions of interest from motor cortex in red and blue on 

a brain image. On the right are resting time courses from these two regions showing high 

correlation across several minutes. This is resting state functional correlation (RSFC). The 

bottom panel shows regions of the brain that have high correlation with the red ROI from 

above. Each of these regions is nominally related to motor and somatosensory processing 

suggesting that RSFC illuminates regions that are functionally related. Note also that the 

right cerebellar response in the rightmost brain section is several anatomical steps from the 

ROI.
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Figure 3. 
Two versions of community detection are presented in figure 3. On the left is the layout of 

communities from a network science infomap community detection algorithm on group 

RSFC data. On the right is the layout of communities from a clustering approach. Notice the 

high spatial similarity from the two versions. Adapted from figures in Power et al 2011 and 

Yeo et al. 2011 (Power et al., 2011; Yeo et al., 2011)
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Figure 4. 
The isolated layout of some frontal and parietal communities. These spatial layouts are 

recognizable as the cingulo-opercular (purple) and fronto-parietal (yellow) systems from 

fMRI studies of Dosenbach, 2007 (Dosenbach et al., 2007) and the dorsal and ventral 

attention systems, based on fMRI studies of Corbetta and Shulman, 2002 (Corbetta and 

Shulman, 2002).

Petersen and Sporns Page 23

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
A spring embedded representation of 264 region RSFC from Power 2011(Power et al., 

2011). This pulls anatomically disparate members of systems together in a “network space” 

(see text for description of spring-embedding. Important to note is that the circles 

emcompass visual (blue), motor (cyan and brown) and default systems (red) that are located 

along the edge of the network, while control-related and attentional systems are more 

centrally located.
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Figure 6. 
The upper panels show RSFC (color bar patches across cortex) from the putative visual 

word form area (pVWFA)(red sphere) (Adapted from (Vogel et al., 2012)). “Reading 

regions” from metanalysis are shown in blue, and dorsal attention network areas are shown 

in green. The RSFC from pVWFA are almost exclusively related to dorsal attention regions 

and avoid members of the task-based reading network.
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Figure 7. 
A network-based computational model of functional connectivity (Goni et al., 2014). The 

left side of the figure represents empirical RSFC, while the right side represents results from 

a model of functional connectivity based on the network architecture of structural 

connectivity. In the middle, the left triangular half of the plot shows a functional 

connectivity (crosscorrelation) map of 500 parcels comprising the right cortical hemisphere 

(Hagmann et al., 2008). The right triangular half of the plot shows modeled or predicted 

functional connectivity derived from the computational model. The model was based 

entirely on network measures of communication applied to the underlying structural 

connectivity (connectome) matrix. The two halves of the plot are significantly correlated (R 

= 0.60). The outer plots (left and right) show examples of a seed-based cross-correlation 

map (with the seed placed in the superior parietal cortex) projected onto the lateral and 

medial surface of the cortex. Plots on the left depict a correlation map from empirical data 

(Hagmann et al., 2008). Plots on the right depict model predictions (R = 0.55).

Petersen and Sporns Page 26

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


