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Cognitive tutoring induces widespread
neuroplasticity and remediates brain function in
children with mathematical learning disabilities
Teresa Iuculano1, Miriam Rosenberg-Lee1,*, Jennifer Richardson1,*, Caitlin Tenison1, Lynn Fuchs2,

Kaustubh Supekar1 & Vinod Menon1,3,4

Competency with numbers is essential in today’s society; yet, up to 20% of children exhibit

moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be

effective, but the neurobiological mechanisms underlying successful intervention are

unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates

poor performance in children with MLD, but also induces widespread changes in brain

activity. Neuroplasticity manifests as normalization of aberrant functional responses in a

distributed network of parietal, prefrontal and ventral temporal–occipital areas that support

successful numerical problem solving, and is correlated with performance gains. Remarkably,

machine learning algorithms show that brain activity patterns in children with MLD are

significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting

that behavioural gains are not due to compensatory mechanisms. Our study identifies

functional brain mechanisms underlying effective intervention in children with MLD and

provides novel metrics for assessing response to intervention.
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T
he use of mathematics to categorize, visualize and
manipulate information extends to virtually all domains
of human activity in the modern world1–6. Yet,

mathematical difficulties are widespread in school-age children,
adolescents and even college students1,7–11, and up to 20% of
individuals have some form of mathematical learning disability
(MLD)1,5,11,12. Individuals with MLD have specific difficulties
with numerical and arithmetic problem solving, despite age-
appropriate schooling and absence of impairments in other
cognitive domains1,13. Although the prevalence rate of MLD is
comparable, or even higher, to that of reading disabilities14, MLD
has received considerably less attention from the research
community1. This is surprising because, to an even greater
extent than reading skills, mathematical abilities in early
childhood have been shown to impact later academic and
professional achievement15, socioeconomic well being5,16 and
health outcomes2–4. It is therefore imperative to increase
mathematical competence in all children, but most importantly
in those falling at the lower end of the distribution1,14.

School-based interventions designed to strengthen mathema-
tical problem solving skills have been shown to be effective in
improving performance in some children with MLD17–21, but the
neurobiological consequences of these programs are still
unknown1. Although lesion studies of individuals with math
impairments have primarily focused on the specific role of the
parietal cortex, recent neuroimaging research has begun to
suggest that MLD involves aberrations in multiple functional
systems1,6,22–24. These include brain systems implicated in visual
form judgement and symbol recognition, anchored in the ventral
temporal–occipital cortex; quantity and magnitude processing,
anchored in the intraparietal sulcus region of the parietal cortex;
as well as attention and working memory functions, supported by
a frontoparietal control network1,6,22–24. However, the profile
of differences in brain activation is currently an unresolved
issue, as previous research has reported both over25–30 and
underactivation31–33 in MLD, relative to control groups. This lack
of consensus is likely due to the limited number of studies, the use
of different cutoff criteria for identifying MLD groups, inadequate
matching on general cognitive measures such as intelligence
quotient (IQ), reading and working memory, as well as the use of
wide age ranges, and diverse experimental tasks and control
conditions. Despite the lack of consistency in the direction of
brain activations, previous studies have hinted that individuals
with MLD show atypical functional responses in multiple
brain areas, and not just parietal regions involved in quantity
manipulation25,27–29.

The extent to which effective behavioral intervention can alter
aberrant activations in distributed brain systems is currently
unknown. Specifically, it is not known whether successful
behavioural interventions can effectively normalize activity in
the same systems that show aberrant functional responses in
MLD, or whether children with MLD recruit atypical neural
resources to achieve the same level of performance as typically
developing (TD) children. A comprehensive quantitative char-
acterization of functional brain changes following effective
intervention is required to address these questions and to
elucidate the mechanisms by which poor math problem-solving
skills can be remediated in children with MLD. This, in turn, can
help identify neural factors mediating individual differences in
response to intervention.

Importantly, as with other learning disabilities34, response to
interventions varies considerably across individuals35. Analyses of
individual differences have pointed to behavioural factors, such as
severity of symptoms at the beginning of treatment (that is,
severity of math disability), or domain-general cognitive abilities
as potential mediators of success or failure in response to

population-wise effective interventions34,36,37. Here we
investigate the possibility that poor response to intervention
may be associated with weak functional neuroplasticity in
children with MLD38.

We combined cognitive assessments with event-related func-
tional magnetic resonance imaging (fMRI) acquired during
arithmetic problem solving (Fig. 1a), and advanced multivariate
pattern classification analyses, to investigate performance and
brain changes associated with an intensive 8-week 1:1 math
tutoring program17–19,39–41. We used a tutoring program that
combines conceptual aspects of number knowledge and speeded
practice on efficient counting strategies and systematic learning of
number families. These components are designed to facilitate
arithmetic fluency, and have previously been validated in school
settings17–19,39–41 (Fig. 1a,b).

We studied a well-characterized group of 7–9-year olds with
MLD (Supplementary Tables 1 and 2), and a group of TD children
matched on age, gender, IQ, reading and working memory
abilities (Supplementary Table 1). First, we use voxel-wise
univariate fMRI analysis to identify brain systems that are
aberrant in children with MLD during numerical problem solving,
and to characterize over or underactivation profiles of such
aberrations, relative to TD children. Second, by combining
univariate analyses with multivariate techniques of brain patterns
classification, we directly test three competing hypotheses of
functional brain changes in MLD: the (i) neural normalization
hypothesis, which posits that atypical brain responses in children
with MLD before tutoring become more similar to, and
statistically indistinguishable from TD peers after tutoring; (ii)
persistent neural aberration hypothesis, which posits that, even if
performance deficits are successfully remediated, children with
MLD will continue to show atypical responses in the same brain
areas that they did before tutoring; and (iii) neural compensation
hypothesis, which posits that children with MLD, after tutoring,
would recruit additional and distinct (compensatory) brain
systems compared with TD children. Finally, we developed novel
machine-learning-based quantitative metrics to investigate
whether a systematic relation exists between tutoring-induced
neuroplasticity and behavioural gains in children with MLD.

We find that, consistent with the multi-component neurocog-
nitive model of MLD6,22–24,42, before tutoring, the profile of brain
responses in children with MLD during arithmetic problem
solving is characterized by prominent and widespread aberrations
in multiple functional systems serving quantity, visuospatial,
attention, working memory and cognitive control processes, that
support successful numerical problem solving1,6,22. Critically, 8
weeks of 1:1 tutoring results in marked changes in brain
responses across all these systems. These widespread changes
are characterized by normalization of responses, such that brain
activation patterns in MLD children are no longer discriminable
from their TD peers after tutoring. Crucially, multivariate pattern
analyses provide novel evidence that the degree of such
widespread tutoring-induced functional brain plasticity is
uniquely associated with individual differences in response to
intervention in children with MLD.

Results
To investigate behavioural and neurobiological consequences of 8
weeks of 1:1 math tutoring, we examined differences in performance
and task-based fMRI activation levels during arithmetic problem
solving, between and within groups, before and after tutoring
(see Methods). Because tutoring could also alter performance and
brain function in TD children, tutoring-induced changes in the
MLD group were assessed with respect to both (a) pre-tutoring and
(b) post-tutoring sessions in the TD control group.
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Tutoring normalizes performance in children with MLD. We
first examined changes in math performance following 8 weeks of
tutoring and, as predicted by evidence from previous school-
based studies17,19,40, we found that this type of 1:1 tutoring is
effective in children with MLD, as assessed by significant
improvements in accuracy on the arithmetic problem solving
verification task performed inside the scanner (t(14)¼ 3.323,
P¼ 0.005, Cohen’s d¼ 0.86) (Fig. 1c). Moreover, we found
evidence for performance normalization in MLD: before tutoring,
children with MLD were significantly less accurate than their TD
peers (t(28)¼ � 2.318, P¼ 0.028, Cohen’s d¼ 0.85), while their
accuracy performance after tutoring did not differ from TD
children at pre-tutoring (t(28)¼ 0.471, P¼ 0.64, Cohen’s
d¼ 0.17), or post-tutoring (t(28)¼ � 0.598, P¼ 0.55, Cohen’s
d¼ 0.22; Fig. 1c). The TD group did not show significant
accuracy gains after tutoring (t(14)¼ 1.469, P¼ 0.16, Cohen’s
d¼ 0.37). However, they showed significantly reduced reaction
times after tutoring (t(14)¼ � 4.951, P¼ 0.0001, Cohen’s
d¼ 1.29), while this reduction was not evident in the MLD
group (t(14)¼ � 1.188, P¼ 0.25, Cohen’s d¼ 0.33). The groups
did not differ on reaction times before (t(28)¼ � 0.694, P¼ 0.49,
Cohen’s d¼ 0.25) or after (t(28)¼ 1.267, P¼ 0.22, Cohen’s
d¼ 0.46) tutoring.

Critically, these results were replicated in a separate arithmetic
problem-solving task performed outside the scanner in which,
instead of verifying addition equations, children were asked to
verbally generate the answer to addition problems (Methods).
Here again, performance differences that were evident between
MLD and TD groups before tutoring (t(25)¼ � 2.631, P¼ 0.014,

Cohen’s d¼ 1.01), were entirely absent after tutoring
(t(25)¼ � 1.141, P¼ 0.26, Cohen’s d¼ 0.44; t(25)¼ 0.007,
P¼ 0.99, Cohen’s d¼ 0.01 for TD’s performance before and
after tutoring, respectively; Supplementary Fig. 1). These data
demonstrate that tutoring-induced performance normalization
cannot be explained by confounding factors related to being in
the scanner the second time such as greater familiarity and/or
diminished anxiety, and furthermore, it is independent of the
response mode and the format in which the problems are
presented.

Tutoring normalizes brain activity in children with MLD.
Before tutoring, relative to TD children, children with MLD
showed higher activation levels in multiple brain systems. Spe-
cifically, they showed higher activity in the bilateral prefrontal
cortices including the dorsolateral and ventrolateral prefrontal
cortices, the bilateral anterior insular cortices (Fig. 2a,
Supplementary Table 3), the bilateral superior frontal gyri, and
the right orbitofrontal cortex (Supplementary Table 3). Higher
activation levels in the MLD group, compared to TD peers, were
also seen in the inferior and superior parietal cortices encom-
passing the left intraparietal sulcus (Fig. 2a, Supplementary
Table 3), the left supramarginal gyrus, and the right precuneus
(Supplementary Table 3), as well as in the ventral temporal–
occipital cortex including the bilateral fusiform gyri and the right
lingual gyrus (Fig. 2a, Supplementary Table 3). Subcortical areas,
including the bilateral cerebellum, right subcallosal cortex, left
putamen and left anterior hippocampus and adjoining
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Figure 1 | Overall study design, math games and behavioural results. (a) Before 8 weeks of tutoring, all children underwent an extensive battery of

neuropsychological (NP) assessments for IQ, academic achievement, and working memory. Before tutoring, each child underwent a functional MRI (fMRI)

scan session during which they had to verify addition equations—Addition task (that is, 3þ4¼ 7), and assess the validity of number identity expressions—

Control task (that is, 7¼ 7). High-resolution structural MRI (sMRI) images were also acquired in each participant for anatomical co-registration. During this

session, and before entering the scanner, children also performed an arithmetic production task (that is, 4þ 3¼ ?). On successful completion of the

aforementioned sessions, children went through an intensive 8-week, 1:1 tutoring program focused on conceptual aspects of number knowledge and

speeded practice on efficient counting strategies and systematic learning of number families (that is, all the problems that summed to 5, and the

corresponding subtraction problems). After 8 weeks of tutoring all children underwent a second MRI scan session. (b) Examples of the physical math

games used in the tutoring: Math Bingo—in which the child has to calculate the sum of a given problem and verify whether the answer is on their Bingo

card; Math War—in which the child competes with the tutor to get the highest sum from their decks of cards; and Treasure Hunt—in which the child has to

calculate the answer of a given problem, and write down both the equation and its correct solution on the stepping stones of the ‘treasure map’ to get to the

treasure chest. (c) Performance normalization on the arithmetic problem-solving task in children with MLD (n¼ 15) after 8 weeks of math tutoring, plotted

against TD (n¼ 15) children’s performance at pre- and post- tutoring sessions. Error bars indicate one s.e.m. *Po0.05; **Po0.01, significant by

independent samples t-test. Effect sizes for group differences are shown as Cohen’s d.
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amygdaloid complex, also showed significantly higher functional
activation in the MLD group compared with the TD group before
tutoring (Supplementary Table 3). Additional analysis controlling
for accuracy scores before tutoring identified similar profiles of
overactivation in the prefrontal, parietal, and ventral temporal–
occipital cortices (Supplementary Fig. 2). This result suggests
that differences in brain activation cannot be explained by
performance differences between the groups before tutoring.

Before tutoring, TD children also showed significant activation
in similar prefrontal, parietal and ventral temporal–occipital
cortical areas as the MLD group, but their functional responses
were much more focal (Supplementary Fig. 3, Supplementary
Table 4). Crucially, compared with children with MLD, they did
not show significantly higher activation levels in any brain
regions. To summarize these findings, before tutoring, group
differences in brain responses to arithmetic problems were
characterized by overengagement of distributed brain regions
across prefrontal, parietal and ventral temporal–occipital cortices
important for numerical problem solving6,43,44, and previously
reported to be aberrantly engaged in MLD25,27–29.

To assess the nature of tutoring-induced functional brain
changes in children with MLD we then examined brain responses
in regions that were overengaged by MLD children before
tutoring. After 8 weeks of tutoring, children with MLD did not
show greater activity in any of these brain regions when
compared with either (a) pre-tutoring or (b) post-tutoring
sessions in TD children (Fig. 2b), consistent with the neural
normalization hypothesis, rather than the persistent neural
aberration hypothesis. To further validate these findings we
used Bayesian estimation analyses, which provide complete

distributions of credible values for group means and their
differences45. These analyses were conducted on beta parameter
estimates from the individual General Linear Model (GLM)
analysis for all brain areas that displayed significant differences
between MLD and TD children before tutoring (Supplementary
Table 3). We found that the differences in mean betas between
the groups were non-significant in the post-tutoring data (all
P40.15), with the 95% highest density confidence intervals all
centered on 0 (Supplementary Figs 4 and 5). This result suggests
that the lack of differences in functional brain activation between
MLD and TD children during the post-tutoring session cannot be
explained by low statistical power.

To test the neural compensation hypothesis, we examined
whether tutoring elicited the recruitment of additional brain
regions in the MLD group, when compared with the TD group.
Notably, after tutoring, children with MLD did not engage any
other brain area more than their TD peers at either (a) pre-
tutoring or (b) post-tutoring sessions (Fig. 2b). Similarly, after
tutoring, TD children did not show greater activation levels in
any of the brain systems undergoing functional normalization in
the MLD group. However, after tutoring, compared with children
with MLD, TD children showed higher activation levels in the
right ventrolateral prefrontal cortex, and in the left motor cortex
(Supplementary Fig. 6, Supplementary Table 5). An additional
analysis of group (MLD, TD) by tutoring-session (pre, post)
interactions identified the same brain systems described above
(Supplementary Fig. 7, Supplementary Table 6).

To further characterize the nature of tutoring-induced
functional brain plasticity in children with MLD, we conducted
additional within-group analyses contrasting brain activity levels
before and after tutoring. Compared with the post-tutoring
session, functional activation before tutoring was characterized by
greater signal intensity levels in the same brain systems described
above, encompassing prefrontal, parietal and ventral temporal–
occipital cortices (Fig. 3a, Supplementary Table 7). Crucially,
children with MLD did not show greater functional activation in
any of these or other brain regions after tutoring (Fig. 3b).

Taken together, these results provide convergent evidence for
the hypothesis that 1:1 math tutoring can normalize activity levels
in children with MLD, to the level of their TD peers, in multiple
brain systems important for numerical problem solving that are
aberrant in children with MLD6,22–24,42.

Normalization of brain activity patterns in MLD. To further
evaluate the neural normalization hypothesis, and contrast it with
the persistent neural aberration hypothesis in a quantitatively
rigorous manner, we used Support Vector Machine (SVM)46, a
multivariate classification technique (Methods), to assess whether
functional brain activity patterns in the brain systems identified
above (Fig. 2a) could be used, over and above signal level intensity
differences, to discriminate children with MLD from their TD
peers either before or after tutoring (Fig. 4a). Brain activity
patterns (t-maps) were first z-transformed (demeaned and
scaled by variance), thus ensuring that group differences are
independent of differences in task-related activity levels. The
z-transformed activity maps were used as input features to a
pattern-based SVM classifier46, and Leave-One-Out Cross-
Validation (LOOCV) procedures were used to assess
discriminability of task-related activation patterns between the
MLD and TD groups. We hypothesized that if, before tutoring,
and in line with our univariate analysis, children with MLD
engage brain areas differently, their task-related brain activity
patterns would be highly discriminable from the TD group.
Consistent with this hypothesis, multivariate pattern analyses
revealed high (83.33%), and significant (P¼ 0.01), classification
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Figure 2 | Normalization of aberrant functional brain responses in

children with MLD after 8 weeks of math tutoring. (a) Before tutoring,

children with MLD (n¼ 15) showed significant differences in brain

activation levels compared with TD children (n¼ 15). Significant group

differences were evident in multiple cortical areas in the Prefrontal Cortex,

including the bilateral Dorsolateral Prefrontal Cortices (DLPFC), and the left

Ventrolateral Prefrontal Cortex (VLPFC), as well as the bilateral Anterior

Insular Cortices (AIC); in the Parietal Cortex encompassing the left

Intraparietal Sulcus (IPS); and in the Ventral Temporal–Occipital Cortex

including the right Fusiform Gyrus (FG). (b) After 8 weeks of tutoring,

functional brain responses in MLD children (n¼ 15) normalized to the levels

of TD children (n¼ 15). Height threshold Po0.01, extent threshold Po0.01,

significant by whole-brain voxel-wise independent samples t-test.
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accuracies in discriminating MLD from TD children before
tutoring (Fig. 4b). This classification analysis was repeated using
post-tutoring brain activity patterns as the input features into the
SVM classifier. High levels of discriminability between MLD and
TD children after tutoring would suggest that even after
performance normalization (Fig. 1c), children with MLD still
recruit these brain systems (Fig. 2a) differently from their TD
peers, in line with the persistent neural aberration hypothesis.
After 8 weeks of tutoring, classification accuracy values
discriminating between MLD and TD children based on task-
related brain activity patterns dropped to 43.33% and were not
significantly different from chance (P¼ 0.42) (Fig. 4b).

Altogether, these results provide novel and strong converging
evidence for normalization of brain activity patterns after tutoring
in children with MLD.

Functional brain plasticity predicts MLD performance gains.
Finally, to assess individual differences of tutoring-induced
functional brain plasticity in children with MLD, we computed a
brain-based distance metric defined as the Brain Plasticity
Index—BPI—(Fig. 4c). Specifically, BPI was calculated for each
MLD child by computing a multivariate spatial correlation
between pre- and post-tutoring patterns of brain activity,
and subtracting it from 1 (Methods). Thus, high levels of
BPI reflect greater tutoring-induced functional brain plasticity
associated with tutoring. We then examined whether BPI was
related to individual differences in performance improvement in
children with MLD. Our analysis revealed a significant positive
correlation (r¼ 0.526, Po0.05), such that children with MLD
who showed greater tutoring-induced functional brain plasticity,
as indexed by BPI, exhibited larger performance gains with
tutoring (Fig. 4d).

Behavioural measures do not predict MLD performance gains.
None of the standardized measures (IQ, working memory or
math) collected before tutoring were related to performance
improvement in children with MLD (all P40.15)
(Supplementary Fig. 8). Our results confirm that in contrast to
these cognitive assessments47, multivariate quantitative measures
of functional change in brain activity (Fig. 4c), can provide a
more sensitive metric for how well children with MLD respond to
an intervention.

Discussion
Consistent with previous school-based studies, we found that 8
weeks of 1:1 math tutoring focused on strengthening conceptual
and procedural knowledge can effectively improve arithmetic
problem solving skills in primary-school children with MLD
(Fig. 1c, Supplementary Fig. 1). Importantly, we demonstrate that,
in parallel with performance normalization40, 1:1 tutoring elicits
extensive functional brain changes in children with MLD,
normalizing their brain activity to the level of neurotypical peers.
Prominent differences in brain activation between MLD and TD
groups in prefrontal, parietal, ventral temporal–occipital cortices
that were evident before tutoring, were entirely absent after
tutoring (Fig. 2). Remarkably, tutoring resulted in significant
reductions of widespread overactivation in multiple neurocognitive
systems important for numerical problem solving (Fig. 3)6,22–24,42,
and machine-learning algorithms revealed that brain activity
patterns in MLD learners were no longer discriminable from those
of their peers after tutoring (Fig. 4b). Finally, children with MLD
who displayed greater tutoring-induced functional brain plasticity
also exhibited larger performance gains (Fig. 4d), highlighting, for
the first time, the behavioural significance of widespread brain
changes in response to intervention.

Although MLD was initially conceptualized as a disorder
of a single brain region characterized by a localized deficit
in the intraparietal sulcus33,48,49, more recently, prominent
neurocognitive models of MLD have posited that the disorder
stems from more extensive functional aberrations in a distributed
network of brain areas encompassing not only posterior parietal,
but also prefrontal, as well as ventral temporal–occipital cortices
that are known to serve multiple cognitive functions necessary for
successful numerical problem solving1,22. Consistent with this
view, before tutoring, we found that, during arithmetic problem
solving, children with MLD showed differential and widespread
overactivation in multiple neurocognitive systems (Figs 2a and
3a), likely reflecting the need for greater neural resources during
arithmetic problem solving22,25,27–29, rather than an inability to
activate task-relevant brain areas32,33,50,51.

Furthermore, effective intervention in MLD markedly altered
aberrant neural responses by inducing functional changes in
multiple brain systems (Fig. 2). These functional changes were
characterized by reduction of activation following tutoring
(Fig. 3b) and were much more widespread than frontoparietal
cortex reductions of activation previously reported in brief
(typically 5 days) arithmetic training studies in neurotypical
adults52,53, neurodevelopmental studies of neurotypical
children and adults54, and computer-based training studies in
children with low math abilities55. This suggests that a
comprehensive tutoring program, based on effective school
interventions17,19,40 and designed to strengthen both number
knowledge and arithmetic fluency17–19,39–41, can induce changes
across distributed brain systems that encompass multiple stages
of the information processing hierarchy necessary for successful
numerical problem solving6,22,42.

Crucially, our finding of no differences in brain activation
between MLD and TD children after tutoring (Fig. 2b) was
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Figure 3 | Tutoring-induced functional brain plasticity in children with
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confirmed by more stringent Bayesian estimation procedures
(Supplementary Figs 4 and 5) and, consistent with the neural
normalization hypothesis demonstrates that this type of 1:1
tutoring can restore brain activity in children with MLD to the
level of their TD peers. This is in stark contrast to the neural
compensation hypothesis, which predicts that effective tutoring
would be supported by compensatory mechanisms in other brain
regions, and we found no evidence of greater activity in any brain
area, after tutoring, in children with MLD, compared with their
TD peers (Fig. 2b). Furthermore, univariate analysis found no
evidence for the persistent neural aberration hypothesis either, as
tutoring altered activity levels in all these systems (Fig. 3b), and
the brain activity levels were no longer different in the two groups
post-tutoring (Fig. 2b).

Computationally rigorous multivariate analyses further sub-
stantiated these findings (Fig. 4a,b). First, we tested whether,
before tutoring, children with MLD could be discriminated from
TD children on the basis of their mean-corrected brain activity
patterns. We found that an SVM-based classifier distinguished
brain activation patterns in MLD and TD children with an
accuracy of 83%; thus, pre-tutoring brain activity patterns during
arithmetic problem solving were significantly different in children
with MLD from their TD peers. Next, we investigated whether
children with MLD could be discriminated from their TD peers
based on their brain activity patterns after tutoring. In this case,
the classifier accuracy was 43%, indicating that post-tutoring brain

activity patterns during arithmetic problem solving were indis-
tinguishable between the two groups. These results demonstrate
that MLD and TD groups can be discriminated with high levels of
accuracy prior, but not after tutoring, consistent with the neural
normalization hypothesis. Critically, they are inconsistent with the
persistent neural aberration hypothesis, which would have resulted
in high discriminability between brain activity patterns in the
MLD and TD groups at both the pre- and post-tutoring sessions.
It is important to note that because the brain activity maps used as
inputs to the classifier were normalized before classification
analysis, discriminability between groups is independent of
differences in task-related brain activity levels. These results
further highlight the robustness of our findings and suggest that 8
weeks of tutoring not only normalizes brain activation levels, but
also activity patterns in children with MLD. Strong multivariate
evidence for the neural normalization hypothesis (Fig. 4b) high-
lights the possibility that this type of 1:1 tutoring program might
prove beneficial for future learning in these children, without
placing additional burden on effortful processing resources. More
generally, the multivariate and quantitatively rigorous approaches
used here to investigate learning-induced functional brain
plasticity associated with tutoring offer powerful new metrics for
detecting individual differences in brain activity patterns asso-
ciated with interventions.

Finally, leveraging our quantitative approach, and after
characterizing the nature of tutoring-induced functional brain
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Figure 4 | Multivariate brain activity patterns-based classification of MLD children and association with performance gains. (a) Classification Analysis

flowchart. A linear classifier built using support vector machines (SVM) with Leave-One-Out Cross-Validation (LOOCV) was used to classify children with

MLD (n¼ 15) from TD (n¼ 15) children based on patterns of brain activation during arithmetic problem solving, before and after tutoring. (b) Classification

accuracies pre- and post-tutoring. Brain activation patterns between MLD (n¼ 15) and TD (n¼ 15) children during arithmetic problem solving were

significantly and highly discriminable before tutoring at 83.33% accuracy (P¼0.01), while the groups were no longer discriminable by their patterns of

brain activity after tutoring (43.33%, P¼0.42). (c) Brain Plasticity Index (BPI) in children with MLD. A distance metric d was computed to quantify

tutoring-induced functional brain plasticity effects pre-tutoring versus post-tutoring in children with MLD (n¼ 15). d was calculated individually for each

MLD child by computing a multivariate spatial correlation between pre- and post-tutoring patterns of brain activity, and subtracting it from 1. (d) Relation

between tutoring-induced functional brain plasticity and performance gain. A significant positive correlation (r¼0.526; Po0.05) was observed between

BPI and individual performance gains associated with tutoring in children with MLD (n¼ 15). Performance gain represents change in arithmetic problem

solving accuracy from pre- to post-tutoring.
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plasticity in MLD (Figs 2 and 3), we extended our brain-based
multivariate framework to assess individual differences in
response to intervention in children with MLD, and assess
whether tutoring-induced functional changes are behaviorally
meaningful. Specifically, we computed a BPI for each MLD child
based on the multivariate spatial correlation between pre- and
post-tutoring patterns of brain activity. Remarkably, individual
differences in performance gains in children with MLD were
strongly correlated with their BPI measures: children who
demonstrated greater tutoring-induced functional brain plasticity
(that is, greater brain normalization) also exhibited larger
performance gains with tutoring (Fig. 4d). In contrast, perfor-
mance gains in children with MLD were not related to general
cognitive abilities (for example, IQ; Supplementary Fig. 8).
Furthermore, neuropsychological measures of math abilities
before tutoring also did not predict performance gains
(Supplementary Fig. 8), further highlighting the robustness and
specificity of our brain-behavioural findings.

Our quantitative approach for measuring brain changes
following intervention represents a significant advance over
previous approaches that have primarily used neuroimaging data
to investigate the anatomical loci and direction of change in
activation. To our knowledge, this is the first use of a rigorous
quantitative approach to assess distributed changes in brain
activity pre- and post-intervention in children with MLD, which
in turn is essential for more fully characterizing brain mechan-
isms underlying individual differences in response to
intervention.

Further studies are needed to examine transfer to untrained
and more complex math problems, and to assess the long-term
stability of tutoring-induced functional brain plasticity in
individuals with MLD, to make further assertions about the
sustained effects of this intervention in the remediation of MLD.
Future work should also contrast different types of tutoring
programs and intervention groups, to further disentangle
cognitive, motivational and psychological factors associated with
remediation of learning disabilities. Finally, long-term follow-up
studies should also clarify the extent to which the BPI metric
developed here can serve as a predictive biomarker of long-term
response to treatment56.

In conclusion, our study provides the first evidence that 8
weeks of 1:1 targeted cognitive tutoring can successfully
remediate both poor math performance as well as aberrant brain
responses in primary-school children with MLD. Children with
MLD showed strong tutoring-induced functional neuroplasticity
across distributed brain systems that support quantity, visuospa-
tial, attention, working memory and cognitive control processes
necessary for successful numerical problem solving. Critically, our
findings demonstrate for the first time that quantitative measures
of functional brain plasticity can significantly predict individual
differences in response to treatment in children with MLD,
further highlighting the unique potential of systems neu-
roscience-based approaches to the advancement of educational
practice in remediating MLD. More generally, the quantitative
framework developed here is likely to be useful for investigating
brain plasticity associated with response to intervention in other
forms of learning disabilities as well as in psychiatric, neurolo-
gical, neurodevelopmental and neurodegenerative disorders56.

Methods
Participants. A total of 46 children in their third grade of schooling (ages 7.5–9.6
years) were recruited from multiple school districts in the San Francisco Bay Area.
All participants were right-handed and without medical, neurological or psychia-
tric illness. Informed written consent was obtained from the legal guardian of the
child and all study protocols were approved by the Stanford University Review
Board. All participants were volunteers and were treated in accordance with the

American Psychological Association ‘Ethical Principles of Psychologists and Code
of Conduct’.

A total of 16 children were excluded from the study because they did not meet
inclusion criteria for (i) in-scanner motion parameters (total frames interpolated
o20%) and adequate whole-brain coverage, (ii) in-scanner accuracy performance
(450%) and (iii) neuropsychological scores (Supplementary Methods). Thus, the
analyses presented in this study used a sample of thirty children, 15 of whom were
characterized as having MLD, and 15 who were determined to be TD control
children. This sample size was based on previously published studies of children
with MLD27,29,30,33. Bayesian analyses confirmed that before tutoring, between-
group differences in brain activation could be detected with a confidence interval of
95% using this sample size (Supplementary Figs 4 and 5).Additional details
regarding participant selection, demographic as well as cognitive assessments, are
presented in the Supplementary Methods.

Overall study design. Figure 1a illustrates the tutoring study design. Demo-
graphic, neuropsychological, cognitive and brain-imaging measures were acquired
from each participant prior to tutoring. Before commencing 8 weeks of 1:1 math
tutoring, participants underwent an MRI scan session, which included both a fMRI
as well as a structural MRI acquisition protocol. The fMRI tasks consisted of an
arithmetic verification task (Addition task), where the child had to verify the
validity of addition equations (for example, 3þ 4¼ 7), and a number identity
verification task (Control task), where the child had to assess the validity of number
identity expressions (for example, 7¼ 7). After successful completion of the MRI
scan session, children started the 8-week math tutoring program. Tutoring sessions
occurred three times per week and were each approximately 40–50 min in dura-
tion. A second MRI scan session using the same protocols took place after the 8
weeks of tutoring.

Neuropsychological assessments. Each child participated in a neuropsycholo-
gical assessment session in which they were tested on the Wechsler Abbreviated
Scale of Intelligence (WASI)57, the Wechsler Individual Achievement Test (WIAT-
II)58 and the Working Memory Test Battery for Children (WMTB-C)59. Full-scale
IQ was determined using the WASI; academic achievement in reading and
mathematics was assessed using the WIAT-II; working memory was assessed using
the WMTB-C. These standardized measures were acquired before tutoring and
were not readministered because of their limited validity when repeated within a
year. The Scale for Early Mathematics Anxiety was also administered before and
after tutoring in both groups60,61. Parametric tests were used for all analyses (two-
sided t-tests), as data were normally distributed in both samples (all K–S tests for
normality P values were 40.155 for the MLD group and P40.625 for the TD
group).

Tutoring sessions. All children took part in an 8-week math tutoring program
adapted from MathWise17,19,40. The tutoring combined conceptual instruction
with speeded retrieval of arithmetical facts. The focus of the tutoring included
strengthening of number knowledge (for example, cardinality) and relations within
and between operations (for example, commutativity and inverse relation between
addition and subtraction) that facilitate the use of sophisticated counting
procedures and retrieval-based processes. The tutoring also incorporated a strategic
practice component, that is important for building automaticity40, and decreasing
load on cognitive resources (for example, working memory and non-verbal
reasoning)62. This practice was designed to promote quick responding and use of
efficient counting procedures to generate as many correct responses as possible,
which in turn supports the formation and strengthening of representations in long-
term memory63,64. Similarly to MathWise40, the tutoring involved a total of 15–
20 h of tutoring. Differently from MathWise, for which tutoring occurred over the
course of 15–16 weeks, the present tutoring was condensed to 8–9 weeks. Thus, the
current tutoring had longer sessions—from 40 min to 50 min—to equate overall
time on tutoring. Specifically, the present tutoring consisted of 22 lessons of
increasing difficulty (details of each lesson and the tutoring material are described
in the Supplementary Methods).

Outside-the-scanner arithmetic production task. On the day of the MRI session,
before entering the scanner, children also performed an arithmetic production task
(for example, 4þ 3¼ ?). A total of 24 problems, involving random pairs of integers
from 2 to 19, with sums ranging from 6 to 25 were presented to the child on a
computer screen. The larger operand was equally likely to appear in the first or
second position, as in the arithmetic verification task performed inside the scanner.
The child was required to accurately solve each problem without the use of paper
and pencil and to verbally state the answer out loud. For each problem, the
experimenter recorded the child’s response verbatim on paper. Proportion of
correctly solved problems was computed as the outcome measure of interest. Three
children (one in the MLD group, and two in the TD group) did not complete this
task due to time constraints. Parametric tests were used for this analysis (two-sided
t-tests), as data were normally distributed in both samples (all K–S tests for nor-
mality P values were 40.628 for the MLD group and 40.320 for the TD group for
both pre- and post-tutoring session).
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Brain imaging. Functional MRI data acquisition. fMRI data were acquired using
whole-brain imaging with a T2*-sensitive gradient echo spiral in/out pulse
sequence at a Signa LX (GE Medical Systems) 3T scanner with the following
parameters: echo time (TE)¼ 30 ms, repetition time (TR)¼ 2 s, flip angle¼ 80�,
field-of-view¼ 200 mm, 29 axial-oblique slices parallel to the AC–PC, dimensions
3.125� 3.125� 4 mm with 0.5-mm skip. To reduce blurring and signal loss from
field inhomogeneity, an automated high order shimming method based on a spiral
acquisition was used prior to the acquisition of functional MRI scans65. Cushions
were placed around participants’ heads to minimize head movement.

Functional MRI tasks. The arithmetic verification task—Addition task—took
place inside the scanner during task-based fMRI acquisition. This task consisted of
two runs of arithmetic problem solving during which the child had to verify
addition equations (for example, 3þ 4¼ 7). Problems were presented in a fast
event-related fMRI design with 12 single-digit problems per run. In each run,
problems were presented horizontally in green lettering on a black background. In
half of the problems, the answers presented were correct (for example, 2þ 4¼ 6);
in the remaining half, the answers presented deviated from the correct solution by
±1 or ±2 (for example, 3þ 5¼ 7). Arithmetic problems with 1 or 0 as operands
were excluded. The larger operand was equally likely to appear in the first or
second position. Each trial started with a fixation asterisk that lasted for 0.5 s. Then,
the problem was presented for a maximum of 9.5 s, during which time the child
could make the response. The participant used a response box to indicate if the
answer was correct or not. After the response, the problem disappeared from the
screen and a black screen appeared until the time window was filled to 9.5 s. A set
of 12 non-arithmetic problems was also presented during each run and they
constituted the Control task. These problems consisted of number identity
verifications (for example, 7¼ 7) and were randomly interspersed with the
arithmetic trials. Invalid trials were counterbalanced as in the arithmetic
verification task (that is, answers deviated from the correct solution by ±1 or ±2).
This condition served as the control task for fMRI data analyses to better isolate
brain activity solely related to arithmetic problem solving, rather than sensory or
number processing, decision making and response selection. The task design also
included a total of six rest periods—10 s each —, which occurred at jittered
intervals during each run to achieve an optimal event-related fMRI design66. The
rest periods were not explicitly modelled. Accuracy and mean of median reaction
times of correctly solved problems were computed separately for each participant
for each task-based condition (that is, arithmetic verification and number identity
verification). Parametric tests were used for these analyses (two-sided t-tests), as
data were normally distributed in both samples (all K–S tests for normality P values
were 40.620 for the MLD group and 40.657 for the TD group).

Structural MRI data acquisition. High-resolution T1-weighted images were
acquired in each child at both scan sessions (that is, pre- and post-tutoring), to
facilitate anatomical co-registration of fMRI maps. A spoiled-gradient-recalled
inversion recovery three-dimensional (3D) MRI sequence with the following
parameters was used: I¼ 300 ms, TR¼ 8.4 ms; TE¼ 1.8 ms; flip angle¼ 15�; 22-cm
field of view; 132 slices in coronal plane; 256� 192 matrix; 2 NEX, acquired
resolution¼ 1.5� 0.9� 1.1 mm.

Functional MRI data analysis. Functional MRI preprocessing. Data were analysed
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The first five volumes were not
analysed to allow for signal equilibration. A linear shim correction was applied
separately for each slice during reconstruction using a magnetic field map acquired
automatically by the pulse sequence at the beginning of the scan67. Images were
realigned to correct for motion, corrected for errors in slice-timing, co-registered to
each individual’s structural T1 images, spatially transformed to standard stereotaxic
space (based on the Montreal Neurologic Institute coordinate system), resampled
every 2 mm using sinc interpolation, and smoothed with a 6 mm full-width half-
maximum Gaussian kernel to decrease spatial noise prior to statistical analysis. For
co-registration, the individual’s highest quality-rated (that is, either pre- or post-
tutoring) structural MRI sequence was used.

Translational movement in millimeters (x,y,z), and rotational motion in degrees
(pitch, roll, yaw) were calculated based on the SPM8 parameters for motion
correction of the functional images of each subject. Mean scan-to-scan
displacement of movement did not exceed 1 mm for all participants in either
session (that is, pre- or post-tutoring). To correct for deviant volumes resulting
from spikes in movement, we used de-spiking procedures similar to those
implemented in AFNI68. Volumes with movement exceeding 0.5 voxels
(1.562 mm) or spikes in global signal exceeding 5% were interpolated using
adjacent scans. No 412% of total volumes per run were repaired in either group.
Critically, no differences between the groups on the total percent of volumes
repaired were evident either pre- or post-tutoring: pre-tutoring (P¼ 0.52), post-
tutoring (P¼ 0.09), or between sessions in either group: MLD (P¼ 0.62), TD
(P¼ 0.8). Translational movement parameters (x,y,z), and rotational movement
parameters (roll, pitch and yaw) did not differ between the groups at either pre- or
post-tutoring sessions (all P40.06). Within each group, movement parameters did
not differ between the pre- and post-tutoring sessions (all P40.09). Finally, mean
scan-to-scan displacement also did not differ between the groups, or sessions
(all P40.12).

Univariate analyses. General linear model. Task-related brain activation was
identified using the GLM implemented in SPM8. At an individual level, brain
activity related to task conditions was modeled using a boxcar function of 9.5 s
(that is, the whole length of any given trial) with a canonical hemodynamic
response function and a temporal derivative to account for voxel-wise latency
differences in hemodynamic response. Voxel-wise contrast and t-statistic images
were generated for each participant by contrasting arithmetic verification (Addi-
tion) versus number identity verification (Control) conditions and were averaged
across the two runs. Both correct and incorrect trials were modeled in the GLM
(four sub-conditions: Addition correct, Control correct, Addition incorrect, Con-
trol incorrect). The final voxel-wise contrast and t-statistic maps were generated on
the first two sub-conditions only: Addition correct and Control correct.

At a group level, differences in brain activation between the MLD and TD
groups were compared at both sessions (pre- and post-tutoring separately) using a
t-test on contrast images of the Addition versus Control conditions. Differences in
brain activation between pre- and post- tutoring sessions were compared within
each group using a t-test on the same contrast images. In both analyses effects were
measured at the whole-brain level and significant clusters of activation were
identified using a height threshold of Po0.01, with family-wise error (FWE)
correction for multiple spatial comparisons at the cluster level (Po0.01, spatial
extent 128 voxels) based on Monte Carlo simulations.

Multivariate analyses. Multivariate classification analysis. We used multivariate
classification analysis to assess whether functional brain activity patterns could be
used to discriminate children with MLD from their TD peers either before or after
tutoring (Fig. 4a). Brain activity patterns (t-maps) elicited during arithmetic pro-
blem solving were used as the input (features) to a pattern-based classifier. The
maps were masked with brain areas in which the MLD and TD groups differed in
activation at pre-tutoring (Fig. 2a, Supplementary Table 3). These maps were first
z-transformed (demeaned and scaled by variance), thus ensuring that group
differences were independent of differences in task-related activity levels. The
z-transformed activity maps were used as input features to a pattern-based SVM
classifier46 and LOOCV procedures were used to assess discriminability of
task-related activation patterns between the MLD and TD groups. The classifier
distinguishes MLD from TD children by making a classification decision based on
values of the linear combination of these features. We employed a widely used
linear-classifier (SVM Classification)46 that was best suited for our purpose of
classification-based models that are based on large number of features (brain
based), but a small number of training samples (n¼ 30 in our case), which is
typically the case of human brain neuroimaging studies. We used the Matlab
package libSVM (http://www.csie.ntu.edu.tw/Bcjlin/libsvm) to fit the classifier.
LOOCV was used to measure the performance of the classifier in distinguishing
MLD from TD children, based on patterns of brain activity. In LOOCV, data are
divided into N folds (here, n¼ 30). A classifier is built using n� 1 folds, leaving out
one sample. The left out sample is then classified using this classifier, and the
Classification Accuracy (CA) is noted. The above procedure is repeated N times by
leaving out one sample each time, and finally an average CA is computed.
Permutation tests (10,000 permutations of class labels) were conducted to arrive at
P values associated with CA.

Multivariate distance analysis. We used a multivariate distance analysis to assess
the behavioral significance of tutoring-induced functional brain plasticity (Fig. 4c).
Specifically, we computed a brain-based distance metric defined as the BPI. BPI
was calculated for each individual with MLD by computing a multivariate spatial
correlation between pre-tutoring patterns of brain activity and post-tutoring
patterns of brain activity. As in the previous section, these maps were masked with
brain areas in which the MLD and TD groups differed in activation at pre-tutoring
(Fig. 2a, Supplementary Table 3), and were z-transformed (demeaned and scaled by
variance), thus ensuring that effects were independent of differences in task-related
activity levels. These values were then subtracted from 1, to facilitate easier
conceptualization of the measure: the more plastic the brain, the higher the BPI.
Parametric correlation analyses were then performed between the computed BPI
values and performance gains (that is, calculated by subtracting pre-tutoring
accuracy values from post-tutoring accuracy values) to investigate whether BPI was
related to individual differences in performance improvement in children with
MLD.
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