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Introduction. Given that influenza A(H9N2) is recognized as a pandemic threat, we evaluated the overall burden
of influenza A(H9N2) infections among avian-exposed human populations.

Methods. We performed a systematic search of PubMed, AGRICOLA, and CAB Abstracts databases for litera-
ture published during 1997–2013. Studies reporting serological evidence of human influenza A(H9N2) infection
among avian-exposed populations were included. We used a World Health Organization (WHO)–recommended
case definition for serological evidence of infection based on results of hemagglutination inhibition (HI) and micro-
neutralization (MN) assays. We calculated overall seroprevalence through a random effects meta-analysis model.

Results. Seroprevalence data reported by the studies ranged from 1% to 43% (median, 9%) by HI, which was not
significantly different from the seroprevalence estimated through the WHO-recommended case definition (median,
1.3%; range, 0.5%–42.6%). Reported seroprevalence by MN ranged from 0.6% to 9% (median, 2.7%), which was greater
than the seroprevalence estimated through the WHO-recommended case definition (median, 0.3%; range, 0.1%–1.4%).

Conclusions. A small proportion of avian-exposed humans had evidence of influenza A(H9N2) infection. As the
virus has a near global distribution in poultry, it seems likely that present surveillance efforts are missing mild or asymp-
tomatic infections among avian-exposed persons. It seems prudent to closely monitor avian-exposed populations for
influenza A(H9N2) infection to provide prepandemic warnings.

Keywords. influenza Avirus; H9N2 subtype; seroprevalence; systematic review; meta-analysis; hemagglutination
inhibition test; microneutralization test.

The first known infection by influenza A(H9N2) oc-
curred in 1966 among turkeys in Wisconsin. Since the
1990s, the virus has readily circulated among domestic
poultry populations in several Asian countries and is
now considered to have a near global, albeit sporadic
distribution among poultry. Influenza A(H9N2) has
also been identified in wild birds, domestic mammals,

and, occasionally, in humans [1, 2]. Zoonotic trans-
mission of influenza A(H9N2) was not considered a
concern until 1998–1999, when the virus was first iso-
lated from pig samples [2]; seropositive human cases
were detected in Guangdong Province, China [3]; and
the virus was isolated from hospitalized patients in
Hong Kong [1]. Although human influenza A(H9N2)
cases have only been reported in Hong Kong and main-
land China, and more recently in Bangladesh [1, 4, 5],
serological evidence of human infection has been re-
ported in Asia, the Middle East, Africa, and parts of
North America (Figure 1).

Human infection with influenza A(H9N2) generally
results in mild or asymptomatic illness and often goes
unnoticed [6]. However, influenza A(H9N2) is a poten-
tial pandemic threat because of its rapid evolution, ability
to acquire and transfer genetic materials from other pa-
thogenic subtypes, and efficiency in poultry-to-human
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transmission [7, 8]. Currently, influenza A(H9N2) infections in
poultry have led to multiple reassortments, resulting in many
novel genotypes of influenza A(H9N2) with gene segments
from various lineages and serving as a constant reminder of its
ability to acquire and transfer pandemic potential among the cir-
culating influenza strains [9, 10].Molecular analyses of the recent-
ly emerged influenza A(H7N9) and influenza A(H10N8) suggest
that they have acquired gene segments from influenza A(H9N2)
[11, 12], which probably enabled them to survive and be repeat-
edly transmitted among poultry before adapting to humans.
Unlike other avian influenza viruses (eg, influenza A[H5N1])
that chiefly bind to human receptors in the lower respiratory
tract, influenza A(H9N2) binds to α-2,6 sialic acid receptors
that are abundant in the human upper respiratory tract [13], al-
lowing for much greater infection efficiency.

Given the pandemic potential of influenza A(H9N2), it is im-
portant to know the burden of human infections. However, the
variation attributed to serological assays makes it difficult to accu-
rately estimate the overall burden of influenza A(H9N2) infections.
Hence, for this systematic review we sought to evaluate the overall
burden of influenza A(H9N2) infection among avian-exposed hu-
man populations by summarizing serological data identified in the
published literature. In addition, we compared the disease burden
revealed by the 2 assays with that yielded by a standardized case
definition for serological evidence of influenza A(H9N2) infection.

METHODS

Search Strategy
We performed a systematic, Internet-based search using PubMed,
AGRICOLA, and CAB Abstracts databases. The following

keywords were used: “influenza H9N2” AND “serological
surveys” OR “seroprevalence” OR “sero-prevalence” OR “seroe-
pidemiology” OR “sero-epidemiology”. To minimize publica-
tion bias, we retrieved the reference lists and manually
searched for relevant studies that met our inclusion criteria.
Since the initial serological and virological evidences of first
human influenza A(H9N2) infections were reported between
1997 and 1999 [1, 3, 14], our temporal limit for the search
was set from January 1997 to December 2013. If data were
missing, we contacted the corresponding authors of the studies.
We followed PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) guidelines for this systematic
review and used meta-analysis to aggregate the data [15]. Our
protocol for the systematic review will be made available upon
request.

Inclusion and Exclusion Criteria
After receiving training, 2 individuals (each with a Masters in
Public Health degree) independently reviewed the abstracts
and identified articles for detailed assessment. We considered
studies regardless of their language, and abstracts that were
not written in English were translated. Articles were selected
only if an abstract contained data on serological assessment of
human samples for evidence of influenza A(H9N2) infection
and if the study involved a poultry and wild bird–exposed pop-
ulation. We included surveillance reports, cross-sectional stud-
ies, and prospective studies in our data extractions. Studies that
were not done in avian-exposed populations, diagnostic evalu-
ations, pathogenesis models, animal models, reviews, comments
to editors, perspectives, and personal opinions were excluded
because they did not provide primary data for a population-

Figure 1. Reported global distribution for influenza A(H9N2) in humans and animals from 1997 to 2013. Countries that detected influenza A(H9N2) in
poultry have an orange background. Species-specific symbols were assigned to each country. When a human or animal was found to be seropositive for
influenza A(H9N2), the species was colored green; if a virological sample from humans or animals tested positive, the species was colored red.
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based estimate of influenza A(H9N2) seroprevalence in popula-
tions occupationally exposed to poultry and wild birds.

Data Abstraction and Study Outcome
We used a standardized method for extraction of data from the
articles. For each of the studies, we first determined the type of
serological test they used and the total population tested. Later,
we extracted the number of end point–titer positives for each of
the dilution cutoffs (1:10 to 1:640). For our analysis, we aggre-
gated hemagglutination inhibition (HI) assay and microneutral-
ization (MN) test positivity data at different dilution cutoffs, as
well as data regarding seroconversion (Supplementary Table 1
and 2). For cohort studies, we counted the number of individ-
uals followed up for a specific year and the number of individ-
uals who tested positive by means of the assays or seroconverted
during the follow-up period. Results from the cohort studies
were broken down by the number of years studied.

Study Quality and Risk-of-Bias Assessment
We assigned 2 reviewers to critically review and assess the qual-
ity of the studies and reduced the risk of bias through a struc-
tured approach described elsewhere [15, 16]. We assessed each
study for 11 assessment criterion: whether it was a population-
based study; whether the sample size was ≥100; whether HI was
performed; whether MN was performed; whether it used horse
red blood cells (RBCs) for the HI assay; whether the World
Health Organization (WHO) standard cutoffs for HI assays
(an HI titer of ≥1:160 titer or a 4-fold rise in titer over time)
were used to define seropositivity [17]; whether the WHO
standard cutoffs for MN tests (an MN of ≥1:80 or a 4-fold
rise in titer over time) were used to define seropositivity [17];
whether the study population had avian exposures; whether
study participants’ age distribution was mentioned; whether
end point titers of the HI assay were provided in the results;
and whether end point titers of the MN assay were provided
in the results.

Statistical Analysis
We calculated nonadjusted seroprevalence rates for the range of
end point titers used for each diagnostic test. The rates were
modeled by applying a random effects meta-analysis model
that assumed heterogeneity across the aggregated study popula-
tion. For each of the titer cutoffs for a test (either HI or MN), we
generated a forest plot that showed individual prevalence esti-
mates for each study, by study size.

We assessed heterogeneity by the Pearson χ2 test, which used
the I2 index statistic to estimate the proportion of total variation
due to heterogeneity [18]. An I2 score of <25% indicated low
heterogeneity, and a score of ≥75% suggested a very high degree
of heterogeneity.

We considered an HI titer of ≥1:160, an MN titer of ≥1:80, or
seroconversion (ie, a 4-fold rise in HI or MN titer over time) as a

standardized case definition for influenza A(H9N2) seropositivity,
because it is generally recognized as such by the WHO and oth-
ers [17]. We performed the meta-analysis of the seropositive re-
sults through this standard case definition and compared results
with the reported influenza A(H9N2)–seropositive results from
the selected studies. Because the mean values were markedly af-
fected by outliers, we used median estimates and performed the
Wilcoxon rank sum test to assess whether there was a significant
difference in the influenza A(H9N2) seroprevalences calculated
through the WHO standard case definition and the studies’ in-
dividual case definitions.

Mapping Influenza A(H9N2) in Humans and Animals
We performed a database search on PubMed and CAB Ab-
stracts to identify reports of human and animal cases of influ-
enza A(H9N2) infection. We also reviewed reports from
the WHO (available at: http://www.who.int), the World Organi-
zation for Animal Health (available at: http://www.oie.int),
and the Food and Agriculture Organization of the United
Nations (EMPRES-i data sets; available at: http://empres-i.fao.
org/eipws3g/#h=1) to identify reported animal and human
influenza A(H9N2) cases and mapped them to show their
global distribution based on the serological and virological
assessments.

RESULTS

Search Results and Study Selection
Our literature search identified 193 studies. Sixteen were dupli-
cates and were removed. With the previously stated inclusion
and exclusion criteria, we screened the remaining study ab-
stracts and identified 31 articles for full review. We received re-
plies from 5 of 6 authors of the selected articles. Details of the
article-screening procedure and reasons for exclusion are sum-
marized in Figure 2.

Study Characteristics
Through screening, we identified data from 25 articles that were
suitable for meta-analysis [3, 19–43]. The articles were pub-
lished between 1999 and 2013 from 10 countries of Asia, Africa,
the Middle East, and North America. In the majority (78%) of
the studies reporting participants’ age, all participants were aged
≥18 years, and all of the reports included participants who had
varying degrees of avian exposure (Supplementary Table 3).
Avian exposure ranged from being in daily contact with poultry
in the live bird markets to having occasional contact with poul-
try in farms and rural villages and with wild birds. The charac-
teristics of the individual studies are detailed in Supplementary
Table 4. Of the 25 articles, 14 (56%) reported results of HI as-
says, with influenza A(H9N2) seroprevalences ranging from 1%
to 43%. MN assay data were available from 14 studies (56%),
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reported influenza A(H9N2) seroprevalences ranged from 0.0%
to 9.1% (Supplementary Table 1 and 2).

Quality and Heterogeneity of Selected Studies
We detailed the quality assessments of the individual studies in
Supplementary Table 3. Of the 25 studies included for final
analysis, 20 were cross-sectional surveys, 4 were prospective co-
hort studies, and 1 involved surveillance. Of the 14 articles that
reported performing HI assays, 8 (57%) considered a titer cutoff
of ≥1:20 for influenza A(H9N2) seropositivity, 4 (29%) had a
titer cutoff of ≥1:40, and 2 (14%) had a titer cutoff of ≥1:160
(Supplementary Table 1). Of the 14 studies that reported per-
forming MN assays, 9 (64%) considered a ≥1:10 titer cutoff
for influenza A(H9N2) seropositivity, 2 (14%) had a titer cutoff
of ≥1:20, and 2 (14%) had a titer cutoff of ≥1:40 (Supplemen-
tary Table 2).

We identified a high degree of heterogeneity of the selected
studies that performed HI assays (I2 = 0.98; P < .001) and MN
assays (I2 = 0.88; P < .001) with their individually defined cut-
offs for influenza A(H9N2) seropositivity (Figure 3).

Influenza A(H9N2) Seroprevalence
The meta-analysis demonstrated that the overall median HI se-
roprevalence calculated using the antibody cutoffs reported by
the studies was 4.9% (range, 0.6%–42.6%; I2 = 0.99), which was
not significantly different from the standardized case definition
(≥1:160) for seropositivity (median seroprevalence, 1.3%;
range, 0.5%–42.6%; I2 = 0.99; Figure 3A and 3B). For the MN
meta-analysis, the overall reported median seroprevalence was
2.7% (range, 0.5%–9%; I2 = 0.88), which was significantly great-
er (P < .05) than that yielded by the standardized case definition
(≥1:80) for seropositivity (median seroprevalence, 0.3%; range,
0.1%–1.4%; I2 = 0.29; Figure 3C and 3D).

The HI and MN assay titers at individual cutoffs were ana-
lyzed for meta-seroprevalence and plotted with their 95% con-
fidence intervals in Supplementary Figure 1. Data presented in
Supplementary Figure 1A demonstrated that the seroprevalence
at an HI dilution of ≥1:10 was about 9%, which gradually
decreased to 4% at a dilution of ≥1:160 and peaked to 8% at
a dilution of ≥1:320 before diminishing at a ≥1:640 dilution.
Supplementary Figure 1B demonstrated a gradual decrease in

Figure 2. Flow chart of the literature search, screening, assessing influenza A(H9N2) serological data for eligibility, and selecting articles for the meta-
analysis.
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MN titer positivity, from 1.7% to 0.05%, from dilution 1:10 to
dilution 1:320.

Global Distribution of Influenza A(H9N2) in Humans and
Animals
Figure 1 shows the global distribution of reported influenza
A(H9N2) infections in humans, poultry, pet birds, and other
domestic animals. Influenza A(H9N2) was detected in humans
chiefly in China, Hong Kong, and Bangladesh. However, sero-
logical evidence of human influenza A(H9N2) infection has
been found in Asia, the Middle East, Africa, and North Amer-
ica. Thus far, influenza A(H9N2) has been detected in wild wa-
terfowl, pigs, dogs, horses, and a companion bird in China,
Hong Kong, and Japan. However, the virus had a near global
distribution in domestic poultry populations.

DISCUSSION

We performed a systematic review and meta-analysis with the
goal of estimating the global prevalence of influenza A(H9N2)
infection among avian-exposed populations. Studies reporting
seroconversion on the basis of HI andMN assay results identified
that a relatively small proportion of the at-risk population had
evidence of previous infection with influenza A(H9N2). Com-
pared with the seroprevalence of influenza A(H9N2) reported
by the studies, theWHO-recommended standard cutoffs resulted
in an even lower seroprevalence through MN assays.

Although the prevalence of human infection is low, it may
still pose a global pandemic threat because of the following fac-
tors. First, the virus has a near global distribution. Should these
viruses become highly transmissible and virulent, they may

Figure 3. Forest plots of the overall seroprevalence calculated from hemagglutination inhibition (HI) and microneutralization (MN) assay results, using
reported cutoff corresponded with the standard cutoffs recommended by the World Health Organization (WHO) (ie, HI assay titers of ≥1:160, MN assay
titers of ≥1:80, or seroconversion, defined as a 4-fold rise in HI or MN titers over time). A, Forest plot of seroprevalence calculated from HI assay results,
using the WHO-recommended cutoff (≥1:160). B, Forest plot of seroprevalence calculated from HI assay results, using study cutoffs. C, Forest plot of
seroprevalence calculated from MN assay results, using the WHO recommended cutoff (≥1:80). D, Forest plot of seroprevalence calculated from MN
assay results, using the study cutoff.
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cause marked worldwide morbidity. Although reports on influ-
enza A(H9N2) antibody kinetics are scarce, kinetic data from
influenza A(H5N1) infections suggest that individuals who
had mild influenza A(H5N1) infection experienced reduced an-
tibody titers, dropping from 4-fold to 32-fold 11 months after
infection [44]. Second, there is considerable probability of the
immune system failing to produce an anti-H9 neutralizing an-
tibody response [44, 45].Humans in general have poor immune
responses to infections with avian viruses. For instance, studies
have shown that individuals with mild or asymptomatic influ-
enza A(H5N1) infection had a lower initial antibody titer than
individuals who developed severe illness [44].Third, because in-
fluenza A(H9N2) commonly causes mild or asymptomatic
human infections, it seems reasonable to assume that the infec-
tion will trigger a weaker immune response and lower detectable
antibody titers than other highly pathogenic influenza viruses.
However, there is currently no universally agreed upon antibody
titer cutoff for these assays, which explains why different anti-
body titer cutoffs were used in the included studies. Selecting
a low titer cutoff can often lead to overestimation of the sero-
prevalence of influenza A virus infections, particularly due to
cross-reactivity with commonly circulating seasonal influenza
viruses, resulting in a low sensitivity for assays such as the HI
assay [45–47]. To overcome such limitations of traditional
MN and HI assays, newer diagnostic tests, such as the virus-
specific T-cell response assay and the subtype-specific pseudo-
type particle-based MN assay, have been developed [44, 45].
However, one of the major limitations of these new assays is
their time dependence. The assay results vary depending on
when a case was sampled after the hosts’ infection. This is par-
ticularly striking for the virus-specific T-cell response assay be-
cause T-cell responses are only detectable within a limited
interval after an infection [48]. Overcoming these limitations
may require the development of standardized sampling proto-
cols specific to the assays or the development of a modified
assay that minimizes these constraints.

Low rates of influenza A(H9N2) infection in poultry-exposed
individuals may cause an epidemic with a longer duration or a
greater magnitude than if the virus was introduced to a completely
unexposed population [49].The virus also demonstrates its poten-
tial to efficiently transmit itself from avian hosts and share genetic
materials with other highly pathogenic influenza A virus subtypes
of public health significance (eg, H5N1, H7N9, and H10N8) [11,
12, 50]. These phenomena raise the possibility that influenza
A(H9N2) may acquire genes from highly pathogenic influenza
virus subtypes and cause large epidemics. It also seemspossible that
influenza A(H9N2) may transfer genes to other low-pathogenic
influenza viruses to cause sporadic human infections, as has oc-
curred with influenza A(H7N9) and influenza A(H10N8).

Our study has multiple limitations. First, we had to calculate
the nonadjusted seroprevalence of influenza A(H9N2) infection
in avian-exposed populations, because not all studies reported

demographic characteristics (eg, age distribution) for their sam-
pled populations (Supplementary Table 3). Second, only a
handful of the studies included in our analysis used horse
RBCs for their HI assay; not doing so is thought to reduce
the sensitivity of the outcome. Third, we generally expected to
identify fewer individuals to have higher antibody titers, because
titers wane over time. Our analysis identified a nonlinear de-
crease in seroprevalence over increasing titer cutoffs through
HI assays (Supplementary Figure 1A). This is not surprising,
because many of the studies included for meta-analysis were
cross-sectional in nature, and the individuals were expected to
have elevated titers of antibodies against influenza A(H9N2).
This may also be the result of lower sensitivity and specificity
of the HI assay, which is supported by Supplementary Figure 1B,
which shows a linear decreasing trend of influenza A(H9N2)
antibody titers measured by the MN assay. Finally, a few of
the studies used noncirculating influenza A(H9N2) strains in
performing the MN assay, which might have reduced the sensi-
tivity for detecting cases. However, because the virus has a near
global distribution in poultry and efficient surveillance tools are
not always in place, the studies might have identified evidence of
infections that were missed by routine surveillance efforts.

Findings from the meta-analysis suggest that few avian-
exposed humans are infected with influenza A(H9N2). Because
many of the influenza virus subtypes, including influenza
A(H9N2), produces mild or asymptomatic infections in humans,
the current serological assays have a limited sensitivity and specif-
icity to identify evidence of infections. Developing standardized
sampling protocols specific to the assays or development of a
modified assay that could detect serological evidence of mild or
asymptomatic infections could minimize the current constraints.
However, should influenza A(H9N2) further adapt to human
hosts and develop more-virulent characteristics, they may spread
quite rapidly among humans, causing significant morbidity and
mortality. Efforts should be increased to conduct more-aggressive
surveillance for influenza A(H9N2) strains, such that genetic chan-
ges might be identified in time to provide prepandemic warnings.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org). Supplementary materials consist of
data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary
data are the sole responsibility of the authors. Questions or messages regard-
ing errors should be addressed to the author.
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