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Fully automatic and robust 3D 
registration of serial-section 
microscopic images
Ching-Wei Wang1,2, Eric Budiman Gosno1 & Yen-Sheng Li1

Robust and fully automatic 3D registration of serial-section microscopic images is critical for 
detailed anatomical reconstruction of large biological specimens, such as reconstructions of dense 
neuronal tissues or 3D histology reconstruction to gain new structural insights. However, robust and 
fully automatic 3D image registration for biological data is difficult due to complex deformations, 
unbalanced staining and variations on data appearance. This study presents a fully automatic and 
robust 3D registration technique for microscopic image reconstruction, and we demonstrate our 
method on two ssTEM datasets of drosophila brain neural tissues, serial confocal laser scanning 
microscopic images of a drosophila brain, serial histopathological images of renal cortical tissues 
and a synthetic test case. The results show that the presented fully automatic method is promising 
to reassemble continuous volumes and minimize artificial deformations for all data and outperforms 
four state-of-the-art 3D registration techniques to consistently produce solid 3D reconstructed 
anatomies with less discontinuities and deformations.

Robust and fully automatic three-dimensional (3D) image registration of serial-section microscopic 
images is critical for detailed 3D anatomical reconstruction of large biological specimens such as serial 
section Transmission Electron Microscopy (ssTEM) of neural tissues1, serial confocal laser scanning 
microscopic images of a brain2,3 or serial histopathological microscopic images4,5. In biomedical applica-
tions, a large specimen is generally embedded in the medium block and cut into a series of microscopy 
image slices, called as sections, which are collected, stained and digitally imaged. The digital micro-
scopic slices are then used to reconstruct detailed the 3D anatomy for further biological and medical 
investigation. Serial slides can be manually aligned by setting up a number of pairs of corresponding 
control points to the same (x, y) location for consecutive images zi and zi+1, and the pairs of images 
and paired-sets of control points are then given to semi-automatic software6 for image alignment. Fully 
automatic registration of biological images is possible as demonstrated by the software - TrakEM21,7–9 
and in various studies3,10–13.

However, robust and fully automatic 3D registration of serial-section microscopic images is chal-
lenging as the disadvantage of serial-section microscopy is that cutting a block of specimen into several 
sections tends to create the discontinuity between every section and leads to deformation in individ-
ual sections1. Therefore, sections need to be aligned in order to remove deformation and discontinuity. 
Cardona et al.8 also pointed out that "TrakEM2 acknowledges that any automatic procedure (such as 
image registration and image segmentation) will eventually fail partially or fully and will require manual 
correction by a human operator". Moreover, in comparison to laser scanning confocal images as used 
in the studies2,3 where the serial image data maintains the property of geometrical continuity in 3D 
space, there are complex deformation problems for serial histopathological slides, including physical 
destructions caused by cutting and fixation, staining artifacts and uneven stain variations due to poten-
tial discrepancy in thickness of individual tissue sections. These complex distortion effects makes image 
registration of histopathological data an even harder task.
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The main contribution of this study is to present a fully automatic and robust 3D image registration 
method for reconstruction of detailed 3D anatomy and able to deal with complex deformation problems 
for different types of microscopic images, such as serial ssTEM images, laser scanning confocal images 
and histopathological images. The proposed 3D image registration system contains a new 3D alignment 
and validation model utilizing the B-Spline Deformation Field and our recent efforts on robust 2D image 
registration4,5. Details are described in the methodology section. The experimental results show that the 
proposed fully automatic method is promising to perform 3D registration well for all data and consist-
ently produces solid 3D reconstructed objects with less discontinuities and deformations in comparison 
to the benchmark methods.

Results
Regarding the experimental materials, four serial-section microscopic image data sets are tested, includ-
ing two sets of ssTEM images of the neural tissues of the droshophila brain14,15, containing 20 and 30 
gray images respectively, a set of 18 serial histopathological color images of renal cortical tissues4, and 
a set of 108 serial laser scanning microscope images of the drosophila brain2. In addition to the real 
world serial-section microscopic image sets, a synthetic test case is built for quantitative evaluation. 
Regarding the benchmark approaches, four state-of-the-art 3D registration methods are compared with 
the proposed method using TrakEM21,7–9, including a method using least squares (linear feature corre-
spondence)16, an elastic b-spline model for biological images (UnwarpJ)17, an improved bi-directional 
b-spline model for histopathological section alignment (bUnwarpJ)18 and an elastic volume reconstruc-
tion method1, and the four benchmark registration methods are tested with four different transformation 
parameters, including translation, rigid, similarity and affine. Hence, there are 16 benchmark approaches 
tested in total.

In evaluation, for every data and method applied, registration results are reconstructed as a 3D ana-
tomical object. In order to assess the continuity of the reconstructed 3D objects and evaluate the perfor-
mance of the registration method, a randomly selected plane is defined for each dataset to extract side 
views of the 3D objects by individual methods. For example, in Fig. 1, (a) the inputs for 3D registration 
are original serial histopathological images. Without registration, (b) serial images are sequentially placed 
into a 3D space, and a randomly selected plane can be defined to cut the 3D object into two parts. Then, 
the side view of the upper part object can be used to assess the continuity of the reconstructed 3D object; 
without registration, the continuity of the reconstructed object is poor here. After registration by the pro-
posed method, (c) registered images are sequentially placed in a 3D space to produce (d) a reconstructed 
3D object. Next, the 3D object will be cut into two parts using the randomly selected plane defined 
previously, and the side view of the upper cut object is used to assess the continuity of the reconstructed 
anatomical object and evaluate the performance of the registration approach.

Serial section Transmission Electron Microscopy (ssTEM) of Droshophila brain.  Two ssTEM 
image sets of the droshophila brain14,15 are tested in the experiments. The first one is released by Gerhard 
et al.14, containing 20 sections from serial section Transmission Electron Microscopy (ssTEM) of the 
Drosophila melanogaster third instar larva ventral nerve cord (VNC), which were freshly dissected and 
collected from instar fly brain. Every image is in the dimension of 1024 by 1024 pixel, with a resolution of 
4.6 ×  4.6 nm/pixel. The cube measures 4.7 ×  4.7 ×  1 microns approx, with section thickness of 45–50 nm. 
For this dataset, two planes are randomly chosen as shown in the Fig.  1 to extract the side views of 
the 3D reconstructed objects generated by individual methods, and the side views of the reconstructed 
objects by individual methods are presented in the Figs 2 and 3 respectively, showing that the proposed 

Figure 1.  Extraction of side views for the ssTEM data14. Two planes are randomly chosen for the ssTEM 
data of the drosophila melanogaster third instar larva ventral nerve cord to extract the side views of the 3D 
reconstructed objects generated by individual methods.



www.nature.com/scientificreports/

3Scientific Reports | 5:15051 | DOI: 10.1038/srep15051

method produces solid 3D reconstructed objects with less discontinuity and deformation problems in 
comparison to the benchmark methods. For illustration purposes, red circles are marked to show that 
the proposed method yields a good continuity while some benchmark methods generate discontinued 
contours.

The second data set released by Cardona et al.9 contains 30 serial TEM sections of the drosophila first 
instar larval brain neuropile and one ventral nerve cord segment. Every image is in the dimension of 
512 by 512 pixel, with resolution 4 nm/pixels and section thickness 50 nm. One plane as shown in Fig. 4 
is randomly selected to extract the side views of reconstructed anatomical objects, and the side views 
of all objects are presented in Fig.  5, showing that the proposed method outperforms the benchmark 
approaches and yields a solid object with good continuity; a red circle highlights that the presented 
method align images well while the benchmark methods output more discontinuities. In addition, the 
fourth benchmark approach1 fails to find corresponding features among sections and is not able to 
generate registration outputs.

Figure 2.  1st side views of the reconstructed anatomical objects for the ssTEM data14. Using the first 
plane chosen in Fig. 2, side views of the reconstructed anatomical objects by individual methods for the 
ssTEM data of the drosophila melanogaster third instar larva ventral nerve cord are displayed.

Figure 3.  2nd side views of the reconstructed anatomical objects for the ssTEM data14. Using the second 
plane chosen in Fig. 2, side views of the reconstructed anatomical objects by individual methods for the 
ssTEM data of the drosophila melanogaster third instar larva ventral nerve cord are displayed.

Figure 4.  Extraction of side views for the ssTEM data9. One plane is randomly selected for the ssTEM 
data of the drosophila first instar larva brain neuropile and one ventral nerve cord segment to extract the 
side views of the 3D reconstructed objects generated by individual methods.
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Serial histopathological images of renal cortical tissues.  18 serial histopathological images of 
renal cortical tissues4 are used as the third test data. This data is comparably more challenging due to 
large variations on the data appearances, image orientation and size among sections, complex defor-
mations and artifacts introduced during the data preparation process, causing existing methods fail 
to reconstruct a solid 3D object and perform poorly as shown in the Fig.  6. In addition, the fourth 
benchmark approach1 fails to find corresponding features among sections and is not able to generate 
registration outputs. In comparison, the proposed method well aligns images in 3D and is still able to 
reconstruct a solid object with good continuity; the 3D reconstruction result is presented in the Fig. 7.

Laser scanning microscopic images of the drosophila brain.  108 serial-section images of laser 
scanning microscopy of the drosophila brain is adopted as the fourth test set. This dataset is originally 
used to evaluate a 4D registration technology - BrainAligner by Peng et al.2, which aligns pairs of 3D 
brain volumes. As shown in Fig.  8, a plane is randomly defined to extract side views of reconstructed 
anatomical objected by individual methods, and 3D reconstruction results with associated side views are 
presented in Fig. 9. Some of the benchmark approaches fail to produce solid 3D objects, and the fourth 
benchmark approach1 fails to find corresponding features among sections and is not able to generate 
registration outputs. In comparison, the presented approach aligns images well in 3D and produces a 
solid object.

Figure 5.  Side views of the reconstructed anatomical objects for the ssTEM data9. Side views of the 
reconstructed anatomical objects by individual methods for the ssTEM data of the drosophila first instar 
larval brain neuropile and one ventral nerve cord segment are displayed.

Figure 6.  Side views of the reconstructed anatomical objects for the histopathological data4. Side views 
of the reconstructed anatomical objects by individual methods for the histopathological data are displayed.
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Quantitative evaluation on a synthetic image sequence.  For quantitative evaluation, a synthetic 
serial section test case is built by firstly creating a serial of ten identical images and secondly adding 
random deformation effects to individual images as shown in the Fig. 10. For the synthetic test case, a 
general registration performance measurement method, i.e. the percentage of pixels with similar intensity 
levels, is adopted to measure the registration accuracy, and an automatic evaluation tool is built to con-
duct quantitative evaluation automatically. Given a serial of images, ...I I N1 , the overall registration accu-
racy, R, is formulated as the mean of the registration accuracies, ri, of individual pairs, < , >+I Ii i 1 .
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Figure 7.  3D reconstruction using serial histopathological microscopic images. (a) the inputs for 
3D registration are original serial histopathological images. Without registration, (b) serial images are 
sequentially placed into a 3D space, and a randomly selected plane can be defined to cut the 3D object 
into two parts. Then, the side view of the upper part object can be used to assess the continuity of the 
reconstructed 3D object. After registration by the proposed method, (c) registered images are sequentially 
placed in a 3D space to produce (d) a reconstructed 3D object.

Figure 8.  Extraction of side views for the laser scanning microscopic images of the drosophila brain2. 
One plane is randomly selected for the laser scanning microscopic images of the drosophila brain to extract 
the side views of the 3D reconstructed objects generated by individual methods.
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Ii; t =  200 in our experiments.
Table  1 presents the quantitative evaluation results, and the box plot of the quantitative evaluation 

results is provided in Fig. 11. Figure 12 presents the registration outputs of individual approaches. The 
experimental results shows that the proposed method achieves higher registration accuracy score and 
performs better than the benchmark approaches.

Discussion
We have presented a robust and fully automatic 3D image registration technique for detailed anatomical 
reconstruction of serial-section microscopic images. The method is promising to reassemble continuous 
volumes and able to deal with complex distortions, staining variations and artifacts. We have demon-
strated our method in application to four different microscopic image sets, including two serial ssTEM 
images, one laser scanning confocal image sequences and one serial histopathological images. The reg-
istration and reconstruction results show that the proposed 3D image registration method is robust 
and performs consistently well, even for data sets with large morphological distortion problems. The 
presented 3D image registration technique is not limited to tissue images but can also be applied to other 
anatomically or histologically defined medical data and will prove to be a substantial advantage for any 
application that requires 3D image registration. The software implementation of the presented method 

Figure 9.  3D reconstruction results with associated side views for the laser scanning microscopic 
images2. 3D reconstruction results with associated side views of the 3D reconstructed objects generated by 
individual methods are presented for the laser scanning microscopic images of the drosophila brain2.
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and the test data used in this study are made publicly available for scientific communities to use (http://
www-o.ntust.edu.tw/~cweiwang/3DRegistration/).

Methods
The proposed 3D image registration system combines and extends our recent efforts on robust 2D image 
registration4,5 and is devised with a new 3D alignment validation model utilizing the B-Spline deforma-
tion fields. The flowchart of the proposed method is shown in Fig.  13. Given the referenced layer Ir 
specified ( = /⌈ ⌉r n 2  in this study), the proposed 3D registration conducts forward and backward image 
registration sequentially and bidirectionally for every two neighboring image pairs. The paired image 
registration consists of four steps: data normalization and feature enhancement, color deconvolution, 
feature matching and extraction, and image registration by using improved bi-directional elastic b-spline 
model. After the paired image registration is conducted to obtain an registered image with the associated 
deformation field, a validation model is applied by evaluating the deformation field. If accepted, the 
paired image registration output is as the final 3D registration result. Otherwise, the original image is 
used as the registration output. More details about each method can be found in the following 
subsections.

Data Normalization and Feature Extraction.  The data normalization process is applied to reduce 
variations on image features and enhance tissue patterns. This greatly benefits global feature matching 

Figure 10.  Synthetic image sequence for quantitative evaluation. The synthetic image sequence is build 
by duplicating multiple biological tissue images as multiple sections and then applying random deformation 
effects to individual layers. (a) The tissue image to be duplicated. (b) The synthetic image sequence 
containing ten randomly deformed tissue images.

Method
Registration 
Accuracy (R)

Proposed Method 0.8268

Least Square16

Affine 0.6075

Rigid 0.546

Translation 0.347

Similarity 0.5249

BunwarpJ18

Affine 0.756

Rigid 0.7438

Translation 0.7735

Similarity 0.7978

UnwarpJ17

Affine 0.7299

Rigid 0.7199

Translation 0.7511

Similarity 0.8026

Table 1.   Quantitative evaluation on the synthetic test case.*Elastic method1 fails in producing registration 
outputs.

http://www-o.ntust.edu.tw/~cweiwang/3DRegistration/
http://www-o.ntust.edu.tw/~cweiwang/3DRegistration/
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and local area-based directing matching processes as it automatically adjust the brightness and contrast 
of image color channels based on the image histogram distribution.

In color images, the value of each pixel is represented by a vector −X with elements the pixel values of 
each color component. Assuming ( , ) = − = , ,I i j X x x x[ ]c c c1 2 3  a random vector, which models the pixel 
value for each color component , ,c c c1 2 3 in a color image. To exclude extreme pixel values, which may 
not be representative of the main image content, we saturate a fixed percentage γ κ( , ) at the upper and 

Figure 11.  A box plot of the quantitative evaluation results on the synthetic image sequence. The 
presented methods works constantly well overall and outperforms the benchmark approaches. Outliers 
greater than 1.5×  interquartile range (IQR) are marked with a dot, and outliers greater than 3 ×  IQR are 
marked with a asterisk.

Figure 12.  Image Inputs and Registration outputs for the synthetic image sequence. This figure shows 
the registration inputs and outputs by all methods for the synthetic test case.
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lower ends of the target intensity range where γ = %10  and κ = . %99 8  are used in this work. The lower 
and the upper bound intensity levels of the histogram of each channel, xlow and xhigh, are computed by 
the equations below. Given a histogram distribution H, where H(x) is the number of pixels with intensity 
level x, the lower and the upper bound values for transformation are formulated as follows.
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The data normalization is proven to reduce stain variation and enhance tissue patterns, furthermore 
improving the following feature extraction model accuracy to identify valid corresponding control 
points4.

Our goal is to extract the eosinophilic structures, which are generally composed of intracellular or 
extracellular protein, as image features for image registration, and the color decomposition technique is 
utilized to extract independent haematoxylin and eosin stain contributions from individual histopatho-
logical images using orthonormal transformation of RGB.

Figure 13.  System framework of the proposed method. Given the referenced layer Ir specified ( = /⌈ ⌉r n 2  
in this study), (a) the proposed 3D registration conducts forward and backward image registration 
sequentially and bidirectionally for every two neighboring image pairs. (b) The paired image registration 
consists of four steps: data normalization and feature enhancement, color deconvolution, feature matching 
and extraction, and image registration by using improved bi-directional elastic b-spline model. After the 
paired image registration is conducted to obtain an registered image with the associated deformation field, 
(c) a validation model is applied by evaluating the deformation field. If accepted, the paired image 
registration output is as the final 3D registration result. Otherwise, the original image is used as the 
registration output.
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In the RGB color-space, every color is defined as ≡ ( , , ) ≡ ( , , )c c c c r g b1 2 3  where r, g, b represent 
the red, green and blue components, and we can see additive color mixing as the vector addition of RGB 
components. To model the colors in an image as the vector addition of a desired (D) and undesired (U) 
components to a background color (P), new unit vectors can be defined as follows.

≡ ( )� � ��
u PU 6

≡ ( )
� � ��
d PD 7

≡ × ( )



n u d 8

where n is perpendicular to 
u and 



d; n, 
u, 


d span the 3D space; 
→
PU  and 

→
PD  are alternative unit vectors 

based on the undesired and desired colors.
Then, color 

c  can be transformed to the new unit vectors.

= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ( )
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c r r g g b b u u d d n n p 9

where ≡
→��

p OP ; O is the origin in the RGB 3D space; 
→
OP  is a vector.

By setting u =  0, we remove the undesired component and obtain the new color ′ = ⋅ + ⋅ +
� ��� ��

c d d n n p. 
In the case of three channels, the color system can be described as a matrix of the form with every row 
representing a specific stain and every column representing the optical density (OD) as detected by the 
red, green and blue channel for each stain.
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sity (OD) matrix, M, to describe the color system for orthonormal transformation is defined as 
follows:
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when C is the 3 ×  1 vector for amounts of the stains at a particular pixel, the vector of OD levels detected 
at that pixel is equal to = L CM. Therefore, multiplication of the OD image with the inverse of OD 
matrix results in orthogonal representation of the stains forming the image ( = )

−
C M L

1 . Then, the image 
features of the red channel are extracted as eosinophilic structures for both high level feature-based 
coarse registration and local area-based direct matching registration.

2D image registration.  Our proposed 3D image registration framework is based on our previous 
work,2D robust image registration4,5. In order to improve robustness, Our 2D image registration method 
incorporate two approaches: area-based and feature-based. Initially, sparse approximation for fast and 
coarse global registration is applied. Given I1 and I2 as two images for alignment, T as a set of all possible 
transformation between I1 and I2 and Ut(I) as the function that maps an image I to its transferred images 
using the transformation t, the goal is to find optimal transformation ′t 5:

′ = ( ) − ( )∈
t U I Iarg min 12t T

t 1 2 2

The transformation invariant distance ( , ) = ( ) −′d I I U I It1 2 1 2 2
 corresponds to the regular 

Euclidean distance when the images are aligned optimally in L2 where images are considered as contin-
uous functions in   ∫= → ( ) < ∞

−∞

∞{ }L f f x dx: :2 2 2 , but finding the optimal transformation ′t  
and the smallest distance d(I1, I2) is not easy as the objective function is non convex and local minima 
trap solution might occur. Feature based approaches represent a more efficient class of methods. 
Considered images can be well approximated by the sparse expansion in a series of geometric functions, 
we define ψ α= ∈ ⊂αD T L{ : }d

2 as a set of geometric features constructed by transforming a generat-
ing function ψ ∈ L2 where ⊂T Td  represents a finite discretization of the transformations T and 
ψ ψ= ( )α αU  denotes the transformation of the generating function ψ by α. Given p and q as the respec-
tive K-sparse approximation of I1 and I2 in D,
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where ai, bi are non-negative coefficients.
Then, the coarse global image registration problem can be formulated as finding the optimal relative 

transformation ″t  between the K-sparse approximations with the smallest approximate transformation 
invariant distance ( , )d p q :

″ = ( ) − ( )∈
t U p qarg min 15t

t
T 2

( , ) = ( ) − ( )″d Up q p q 16t 2

By utilizing the K-sparse approximations p and q are obtained by the previous procedures, and nor-
malized image features F1, F2 from data normalization and feature extraction method, interested points 
S1, S2 can be detected by using the difference of Gaussian detector19 and then the corresponding feature 
points p, q are selected as geometric consensus between S1 and S2 using random sample consensus 
(RANSAC)20. The selected paired feature points p, q are then used for coarse global registration.

After alignment outputs are obtained from the coarse global registration process, they will be refined 
by area-based direct-matching method which is adapted from the improved bi-directional elastic b-spline 
model18. The registration methodology is based on the minimization of an energy function that incor-
porates four energy terms:

= + + + ( )E w E w E w E w E 17i img d div r rot c cons

where Eimg is the energy of the similarity error between I1 and ( ( ))I d x2 , Ediv, Erot are the regularization 
energy based on the divergence and curl of the deformation, Econs expresses the geometrical consistency 
between the elastic deformation in both direction ( →I I1 2, → )I I2 1 , and wk are the weights for 
sub-energy terms).

3D Image Registration.  In the proposed 3D image registration framework, 2D image registration is 
sequentially and bidirectionally conducted for every image with the neighboring sections. Given ...I n1  as 
a set of images to be aligned, ′...I n1  as the set of registered images after 3D registration, Ir as the referenced 
image ( = /⌈ ⌉r n 2  in this study), and Reg (S, T) as the 2D image registration function with S as the source 
image and T as the target image, a 3D image registration framework can be formulated as follow:
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The aforementioned simple 3D framework however suffers from accumulated transformation errors 
or boosted over-deformation problems. When there are limited number of corresponding features 
detected or incorrect feature matching occurs, minor transformation error may be generated, and the 
transformation errors can be accumulated during the sequential registration process, causing 
over-deformed transformation results. Hence, in order to avoid over-deformation and accumulated 
transformation errors, we develop a validation model for the 3D registration framework. For every reg-
istration Reg (S, T), the validation model will automatically check if the transformation is valid or 
over-deformed. If valid, the 3D registration system will accept the transformation result ′Ix as the 3D 
registration output ⁎Ix.

A validation model using deformation fields for 3D registration.  During image registration, 
deformation fields are produced to represent the geometrical distances generated by the transformation 
function. Mathematically, a forward deformation function can be defined as follows.

 ( ) → ( )+g x : 192 2

which means that this function transforms a two dimensional source image Is, into an image as similar as 
possible to the two dimensional target image It. Here, the deformation fields are represented as a linear 
combination of B-splines, which can be formulated as follows.



www.nature.com/scientificreports/

1 2Scientific Reports | 5:15051 | DOI: 10.1038/srep15051



( )

∑ β β

( ) = ( , )

= ( , ), ( , )

=
















−









−




 ( )

+ +

+ +

,

, ,
+

, ,
+

g x g x y

g x y g x y

C

C
x
s

k
y
s

l
20k l

k l

k l x y

1 2

1

2

3 3

2

where β3 is the B-Spline to the third degree, Ck,l are the B-Spline coefficients, and sx and sy are scalars 
that control the degree of detail of the representation of the deformation field.

A validation model is designed to automatically compute the average of geometrical distances using 
deformation fields. The system will reject the registration output, ′Ix, when the average of geometrical 
distances is too large, which indicates that the transformation is over-deformed.
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where α is a user-defined parameter that specifies the maximum of the mean deformation value to be 
allowed. Higher α value allows larger transformation but also allow higher accumulated transformation 
error, and hence over-deformations may occur with high α value. On the other hand, low α value may 
cause the validation model to reject a well-transformed registration output. Therefore, the α value should 
be low enough to reject over-deformed registration result and high enough to accept well-deformed 
registration. Table 2 shows the valid value range of the α value for individual datasets.

An illustration is given in Fig.  14 using the serial-section laser scanning microscope images of the 
drosophila brain data. (a) 3D reconstruction results with a side view of the raw input data are displayed; 

Dataset α value range

ssTEM Drosophila melanogaster third instar larva VNC14 20–200

ssTEM Drosophila melanogaster first instar larva VNC9 30–95

Serial histopathological images of renal cortical tissues4 200–350

Laser scanning microscopic images of the drosophila brain2 10–30

Table 2.   α value range for each dataset.

Figure 14.  3D image registration with the presented validation model. Using the serial-section laser 
scanning microscope images of the drosophila brain data as example, (a) 3D reconstruction results with a 
side view of the raw input data are displayed; (b) an example of the backward registration from the image 
layer I25 to the image layer I23 is presented with associated deformation fields and validation processes. As 
the validation model accepts the deformation fields, ′ , ′D D25 24, the outputs of the registration will be ′ , ′I I25 24. 
On the other hand, ′D23 is rejected by the validation model, and the registration output will be I23.  
(c) Similarly, an example of the forward registration from Layer I84 to the image layer I86 is shown with 
associated deformation fields and validation processes. (d) 3D reconstruction results with a side view of the 
registered outputs are presented.
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(b) an example of the backward registration from the image layer I25 to the image layer I23 is presented 
with associated deformation fields and validation processes. As the validation model accepts the defor-
mation fields, ′ , ′D D25 24, the outputs of the registration will be ′ , ′I I25 24. On the other hand, ′D23 is rejected 
by the validation model, and the registration output will be I23. (c) Similarly, an example of the forward 
registration from Layer I84 to the image layer I86 is shown with associated deformation fields and valida-
tion processes. (d) 3D reconstruction results with a side view of the registered outputs are presented.

The validation model ensures that the accumulated over-deformation error does not proceed and 
affect the rest of the registration process. Figure  15 compares the registration results with associated 

Figure 15.  Compare the registration outputs with and without the validation model. This figure 
compares the registration outputs (a) without the validation model and (b) with the validation model 
applied, showing that the registration results without the presented validation model suffers from over-
deformation problems and accumulates transformation errors. Over-transformed registration outputs 
accumulate the transformation errors, causing higher transformation error in the registration process of the 
next layer.
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deformation fields with and without the proposed validation model, showing that the registration results 
without the presented validation model suffers from over-deformation problems and accumulates trans-
formation errors. Over-transformed registration outputs accumulate the transformation errors, causing 
higher transformation error in the registration process of the next layer.

Data and Software.  The software implementation of the presented method is developed in JAVA 
(with jdk 1.7.0.51 installed) and based on Fiji framework16 and TrakEM2 image registration framework9. 
The software and the data are both made publicly available for scientific communities to use (http://
www-o.ntust.edu.tw/~cweiwang/3Dregistration/).
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