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Abstract

Diabetic neuropathy (DN), the most common complication of diabetes, frequently leads to foot 

ulcers and may progress to limb amputations. Despite continuous increase in incidence, there is no 

clinical therapy to effectively treat DN. Pathogenetically, DN is characterized by reduced 

vascularity in peripheral nerves and deficiency in angiogenic and neurotrophic factors. We will 

briefly review the pathogenetic mechanism of DN and address the effects and the mechanisms of 

cell therapies for DN. To reverse the changes of DN, studies have attempted to deliver 

neurotrophic or angiogenic factors for treatment in the form of protein or gene therapy; however, 

the effects turned out to be very modest if not ineffective. Recent studies have demonstrated that 

bone marrow (BM)-derived cells such as mononuclear cells or endothelial progenitor cells (EPCs) 

can effectively treat various cardiovascular diseases through their paracrine effects. As BM-

derived cells include multiple angiogenic and neurotrophic cytokines, these cells were used for 

treating experimental DN and found to reverse manifestations of DN. Particularly, EPCs were 

shown to exert favorable therapeutic effects through enhanced neural neovascularization and 

neuro-protective effects. These findings clearly indicate that DN is a complex disorder with 

pathogenetic involvement of both vascular and neural components. Studies have shown that cell 

therapies targeting both vascular and neural elements are shown to be advantageous in treating 

DN.
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Introduction

Diabetic neuropathy (DN) is a peripheral nervous system disorder and the most common 

complication of diabetes mellitus. There are 23.6 million children and adults in the United 
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States (around 8% of the population) who have diabetes. DN affects up to 60% of long-

standing diabetic patients [1]. Patients afflicted with DN experience decreased quality of life 

due to chronic pain, loss of sensation in the feet and other areas of the body, and chronic 

wounds partly caused by impaired pain response [2]. Autonomic nerve dysfunction also 

contributes to deterioration of the quality of life in diabetic patients [3].

DN can affect sensory, motor and autonomic nerve fibers in any part of the body. The 

nerves of the lower extremities usually become symptomatic first because they have the 

longest nerve fibers. There are several distinct syndromes based on the organ systems and 

types of nerves affected. A patient may have exclusively sensorimotor or autonomic 

neuropathy or a combination of both. Symptoms develop gradually over time and correlate 

with the degree of hyperglycemia.

Currently, there are no clinically validated, curative treatments for DN. Optimization of 

glucose control and foot care may halt disease progression but they cannot reverse nerve 

damages which often lead to debilitating secondary complications over time. Symptomatic 

treatment with pain medications is only partially effective and wounds are difficult to treat. 

Moreover, deficiency of neurotrophic factors has been regarded as one of the likely 

mechanisms underlying DN [1, 4]. In a clinical trial, a single treatment of injected 

neurotrophic cytokines was ineffective for treating DN [5]. Since DN lack both angiogenic 

and neurotrophic factors, cell therapy has recently emerged as an attractive therapeutic 

strategy in DN.

Pathogenetic Mechanisms Underlying DN

Although DN has been widely explored over the past 20 years [6] and its pathology has been 

well established, the pathogenesis remains unclear [7]. Pathological findings reported in 

diabetic patients include axonal atrophy, demyelination, nerve fiber loss, and blunted 

regeneration of nerves [1, 6]. The pathogenesis of DN is multi-factorial, involving both 

metabolic and vascular components [8, 9]. On a molecular level, the primary risk factor is 

hyperglycemia, which is associated with five pathways: the polyol pathway [10]; the 

advanced glycation end-product pathway [11, 12]; the protein kinase C pathway [13]; the 

poly ADP-ribose polymerase (PARP) pathway [14, 15]; and the hexosamine pathway [16]. 

The five pathways contribute to the production of oxidative stress. Accumulation of reactive 

oxygen species (ROS) increases lipid, DNA, and protein peroxidation, induces cellular 

apoptosis and, and reduces nerve blood flow [17, 18]. Increased oxidative stress leads to 

activation of the PARP pathway [19], which regulates the gene expressions involved in 

inflammatory reactions and neuronal dysfunction. Several studies suggest that oxidative 

stress and these five pathways are interdependent and central to the pathogenesis of 

neurovascular dysfunction [20-22].

On a cellular level, hyperglycemia affects sensory, motor, and autonomic neurons by 

activating the five pathways [1, 23]. Moreover, the induction of microvascular ischemia by 

reducing blood flow results in nerve dysfunction. ROS and reactive nitrogen species are 

associated with microvascular complications of diabetes [24-28]. ROS also contributes to 

impaired vasodilation of epineural blood vessels, resulting in ischemia to the neural tissue 

[29-31]. Oxidative stress leads to deterioration of Schwann cells, which play a key role as a 
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provider of insulation for neurons, immunologic perineurial blood-nerve-barrier, and 

effector of nerve regeneration. Such dysfunction via oxidative stress contributes to the 

phenotype of DN. Thus, antioxidants have become the therapeutic targets in DN studies. 

However, only a few studies have suggested that antioxidants can prevent or reverse 

hyperglycemia-induced nerve dysfunction in experimental DN models [32, 33].

Deficiency of Neurotrophic Factors and Vascular Supply as a Cause of DN

In addition to the classical pathogenesis mentioned above, studies have elucidated the major 

pathophysiologic role of neurotrophic factors and vascular supply in DN. The loss of 

neurotrophic support and ischemic hypoxia are widely considered to represent the two 

downstream consequences of the cellular mechanisms described above.

Changes in Growth Factors as a Cause for DN—Many representative growth factors 

have dual effects of being both neurotrophic and angiogenic [34]. Some examples are 

vascular endothelial growth factor (VEGF) [35], insulin-like growth factor (IGF) [36-38], 

nerve growth factor (NGF) [39-41], brain-derived neurotrophic factor (BDNF) [42, 43], and 

fibroblast growth factor-2 (FGF2) [44, 45]. Recently, the term angioneurin was coined to 

refer to a growth factor which have both angiogenic and direct neurotrophic effects [46]. 

The levels of these angioneurins were decreased in diabetic animals and were associated 

with neural function [47, 48].

VEGF, a major angiogenic factor, is a potent selective mitogenic cytokine for endothelial 

cells and its expression can be induced by hypoxia through hypoxia-inducible factor-1 [49]. 

In ischemic tissues, VEGF induces angiogenesis by stimulating the proliferation and 

migration of endothelial cells [50], leading to the improvement of tissue ischemia. VEGF 

also enhances Schwann cell migration [51] and proliferation, promotes axonal outgrowth 

and survival of both the neurons and Schwann cells of superior cervical ganglia and dorsal 

root ganglia [52]. IGFs induce vessel remodeling [38] and also have neurotrophic effect. 

IGFs have been shown to promote neurite outgrowth of neuroblastoma cells [53, 54] and 

accelerate regeneration of sensory [55] and motor nerves [56]. IGF1 is widely expressed in 

craniofacial sensory ganglia, sciatic nerve, spinal cord, sensory dorsal root ganglia and 

brain. IGF2 is expressed in the brain, vascular structures of the nervous system, and motor 

neurons. In neuronal cell bodies, axons and nerve terminals, IGF receptors (IGF1R and 

IGF2R) are present and IGF-1 expression is reduced in streptozotocin-induced diabetic rats 

compared to non-diabetic controls. mRNA and protein expression of both IGF1 and IGF2 is 

decreased in the nerves of streptozotocin-induced diabetic rats and there is also decrease in 

the mRNA and protein expression level of IGF1R in the superior cervical ganglia of 

streptozotocin-diabetic rats [57]. Also, Schwann cell mitogenesis and myelination are 

stimulated by IGF1 [58]. These effects may be important for inter-neuronal signaling and 

peripheral nervous system function. Sonic hedgehog (SHh) modulates patterning and 

development of embryonic nervous system. In diabetic animal, SHh mRNA levels are 

significantly decreased in peripheral nerves. In addition, overexpression of SHh improves 

blood flow to ischemic nerve and ameliorates nerve function [59]. NGF, a well-known 

neurotrophic factor, was initially identified as a molecule that promoted survival and 

differentiation of sensory and sympathetic neurons. Now, NGF has been shown to subserve 
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neuroprotective and repair functions [60]. NGF is synthesized by Schwann cells and target 

cells of sensory and sympathetic neurons such as epithelial cells, smooth muscle cells, and 

fibroblasts [61]. NGF homozygous knockout mice do not develop proper sympathetic 

neurons or small neural crest-derived sensory neurons [62]. In addition to these neurotrophic 

effects, NGF directly induces angiogenesis [40].

Vascular Deficiency as a Cause for DN—Maintaining adequate blood supply to 

nerves is crucial in maintaining nerve structure and function. Deficiencies in the blood 

supply to neural tissues through vasa nervorum, blood vessel within peripheral nerves 

largely contribute to pathogenetic mechanism of DN [63]. Several mechanisms on vascular 

structural changes in ischemia on diabetic nerve have been proposed. The most common 

abnormality in the structure of diabetic vasa nervora is the thickening of basement 

membrane [64-69], which is highly correlated with neuropathic severity [64, 70, 71]. In 

addition, decrease in nerve conduction velocity (NCV) in diabetic rats is preceded by 

impaired vasodilation in epineurial arterioles, which is partly mediated by ROS production 

[29-31]. In contrast to constricted epineurial arteriole, endoneurial capillaries appear to have 

a variable patency. Luminal areas of endoneurial capillaries were increased in rodent [72-74] 

and feline [75] models of DN, whereas those in human showed mixed results of being 

increased [64, 66, 76], unchanged [65, 69, 77], or decreased [67, 68, 70, 78, 79].

Also, mixed reports on blood vessel number or density in the nerves of diabetic subjects are 

apparently conflicting. In animal models of diabetes, endoneurial capillary density was 

reported to be increased [74, 80], unaltered [81], or decreased [47, 48, 82]. In human, the 

endoneurial capillary density was reported to be higher in early diabetic patients than 

healthy subjects [77]. Conversely, the endoneurial capillary density in diabetic patients with 

established neuropathy, showed no significant difference to that of healthy subjects [64, 65, 

70]. However, recent studies have showed decreased functional capillary density using lectin 

perfusion as a method for measuring capillary density [47, 48, 82]. This discrepancy in the 

number of endoneurial capillaries appears to result from what methods or markers were used 

to examine capillaries. Studies altogether suggest that the number of capillary increases as 

compensatory response to ischemia in early diabetic condition and decreases, particularly 

the functional capillaries, due to impaired neovascularization under prolonged diabetic 

condition [72, 83, 84].

Despite some controversy on the structural aspects, it appears clear that DN is accompanied 

by ischemia and hypoxia of microcirculatory nutrient vessels in nerves [22, 63]. Because 

microcirculation is regulated by humoral, endothelial and neural factors, a vicious 

pathogenic cycle may develop: microcirculatory dysfunction results in peripheral nerve 

dysfunction which in turn results in abnormal regulation of the microcirculation leading to 

further nerve dysfunction. The reduction in endoneurial blood flow has been shown to be 

ameliorated by treatment with various vasodilatory agents, such as prostaglandin E1 

analogues, alpha-adrenergic receptor blockers, angiotensin-converting enzyme inhibitors, 

angiotensin II receptor antagonists and endothelin receptor antagonists [73, 85-89] in animal 

models of diabetes.

Kim et al. Page 4

Endocr Metab Immune Disord Drug Targets. Author manuscript; available in PMC 2015 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further evidence for the impaired vascularization and ischemia in DN are provided by the 

finding that there is a decrease in factors that promote or maintain blood vessel formation in 

DN (such as VEGFs, angiopoietins, IGFs, NGF). These observations led to studies of local 

delivery of the angiogenic factors VEGF-A and VEGF-C into diabetic rats which showed 

increased vasa nervora density and NCVs [63]. Additionally, VEGFs have direct 

neurotrophic effects which may underlie improvement of NCVs. For instance, angiogenic 

medications such as statins have also been shown to improve nerve function in DN [90].

Potential Therapies for DN

Several possible therapies exist for the treatment of DN based on neurovascular 

pathogenesis. Among them are gene, protein, and cell therapies.

Gene and Protein Transfer—Growth factors are attractive therapeutic option for DN 

because they can promote neuron survival and functional integrity, as well as repair of 

damaged nerves. Some growth factors are angiogenic, and their therapeutic effects are 

mediated by blood vessel growth that supply nutrients and oxygen to nerves [91]. Other 

growth factors, such as neutrophin 3, are neurotrophic, and their therapeutic effects are via 

promoting neural regeneration and survival [92]. Growth factors, known as angioneurins 

(VEGF, FGF2, NGF, BDNF, IGF1), have both angiogenic and neurotrophic properties [46]. 

The power of these growth factors in the treatment of DN was shown by Schratzberger et 

al., [51, 63]. They were the first to inject VEGF encoding plasmids into rat and rabbit 

models of diabetes. The VEGF-treated animals showed normalization in NCV, increase in 

angiogenesis of vasa nervora, and increase in nerve fiber density. When the plasmid VEGF 

was applied to human patients, mild, but statistically significant symptomatic improvement 

was observed in a randomized, double-blinded trial [93]. However, the authors also reported 

that VEGF therapy was associated with adverse side effects that did not reach statistical 

significance. As this study has a relatively small sample size, further study is required to 

conclusively determine the effects of plasmid VEGF therapy. Other growth factors, such as 

IGF1 and IGF2 have also been studied in animal models of DN and have shown protective 

effects against development of neuropathy independent of changes in blood glucose [37]. 

The neurotrophic factor, FGF2 promotes angiogenesis and neurogenesis [94]. Diabetic rats 

treated with recombinant FGF2 showed improved nerve blood flow, motor NCV and 

response to mechanical stimuli 30 day post-injection. These results suggest that FGF2 

supplementation is a potential therapeutic target of DN [95].

However, most of human clinical trials employing growth factors for DN have not shown 

beneficial effects [96] except for VEGF [93]. This may reflect the complexities of DN 

extending to treatment in humans in addition to variables such as period, mode, and delivery 

dosage of treatment.

Cell Therapy—As mentioned, emerging evidence have indicated that angiogenic factors 

such as VEGF-A, VEGF-C, SHh, and statin restore microcirculation in the affected nerves 

accompanied by functional improvement [63, 82, 90]. On the other hand, lack of 

neurotrophic factors has been regarded as an important pathogenic mechanism of DN [1, 4]. 

Administration of neurotrophic factors such as NGF [97], IGF1 and IGF2 [36, 37], ciliary 
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neurotrophic factor (CNTF) [98], or glial cell line-derived neurotrophic factor (GDNF) [99] 

was shown to ameliorate DN in animal models.

These findings suggest that a therapeutic modality which can target both angiogenic and 

neurotrophic processes may have more value in treatment of DN. In this sense, cell therapy 

using stem or progenitor cells has advantages over single gene or protein therapy. Cell 

therapy can increase multiple angiogenic and neurotrophic factors and potentially 

supplement specific type of cells required for vascular or neuronal regeneration (Fig. 1). 

Currently, various bone marrow (BM) cells were shown to have favorable effects for 

treating DN. An advantage of using circulating or BM-derived cells is that they can be 

harvested from a patient's own peripheral blood or bone marrow, and re-introduced back to 

the patient [100, 101].

Therapeutic Potential of Bone Marrow Mononuclear Cells: BM-MNCs are derived from 

BM and isolated using density gradient centrifugation. BM-MNCs are heterogeneous cell 

population including lymphocytes, hematopoietic stem/progenitor cells, EPCs and MSCs. 

BM-MNCs have been shown to augment neovascularization by increasing a broad range of 

angiogenic factors, including FGF2, VEGF, and angiopoietin-1 in the tissue [102, 103]. In 

animal models, transplantation of BM-MNCs into ischemic limbs [103] and myocardium 

[102] increased neovascularization and collateral blood vessel formation. These effects of 

BM-MNCs have also been documented in patients with limb ischemia in randomized 

controlled trials [104]. BM-MNCs are easily isolated and do not have to be expanded by ex 

vivo culture. This ease of isolation makes BM-MNCs an attractive source of cells for 

therapeutic neovascularization.

Recent studies have shown favorable therapeutic effects of BM-MNCs on experimental DN. 

Hasegawa and colleagues showed that implantation of either peripheral blood (PB)-MNCs 

or BM-MNCs in a rat model of DN improved motor NCV and blood flow around the sciatic 

nerve, which is possibly mediated by VEGF secreted from MNCs. This study suggests that 

BM-MNCs are more effective than PB-MNCs as BM-MNCs include significantly more 

EPCs than PB-MNCs [81]. Recently Kim et al., reported that intramuscularly transplanted 

BM-MNCs preferentially localize to the nerves in diabetic rats, especially around vasa 

nervorum, and increase expression of various angiogenic and neurotrophic factors in the 

nerves [48]. The vascularity of these nerves improved (Fig. 2) and NCV levels were almost 

normalized [48]. These studies suggest that the vasa nervorum may play a pathogenic role in 

both the development and reversal of DN. This study further suggested that angiogenesis is 

the central mechanism of BM-MNC-induced neovascularization in experimental DN 

because, from their observation, BM-MNCs do not differentiate into, nor fuse with, 

endothelial cells in the nerves at a detectable level.

Therapeutic Potential of Endothelial Progenitor Cells and Postnatal Vasculogenesis: 
The development of vascular system consists of two processes: vasculogenesis and 

angiogenesis. Vasculogenesis refers to the de novo formation of blood vessels from EPCs or 

angioblasts that differentiate into endothelial cells [105], whereas angiogenesis is growth of 

pre-existing vasculature by sprouting of new capillaries through proliferation and migration 

of endothelial cells [106]. Until recently, vasculogenesis was thought to be restricted to 
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embryonic development, while angiogenesis was considered to be responsible for 

neovascularization in embryos and adults. This view was challenged with the discovery of 

BM-derived EPCs, which circulate in adult peripheral blood [107], home to ischemic tissue 

and incorporate into foci of neovascularization [108], leading to de novo blood vessel 

formation.

The identity of EPCs is complicated by the complexity of the definition and various methods 

to define the cells. It is now apparent that different subsets of peripheral or BM derived 

cells, including hematopoietic stem cells, monocytes and circulating endothelial cells, can 

differentiate into endothelial-like cells. BM-derived EPCs in the adult peripheral blood 

express a subset of hematopoietic stem cell markers [109, 110]. Specifically, CD34, CD133 

and VEGF receptor-2 have been proposed as candidate markers for human EPCs [110-112]. 

However, there are no known specific markers to identify EPCs without cultivation. Ex vivo 

expanded human EPCs express various endothelial cells markers such as CD31, CD34, 

KDR, VE-cadherin, bind lectins, and incorporate Dil-acetylated low-density lipoprotein. The 

origin of EPCs is further obscured by the two distinctive types of EPCs arising from 

different culture methods [113]. “Early EPCs”, are mainly derived from mononuclear cells 

or monocytes and do not proliferate after a few weeks [114-116]. On the other hand, “Late 

EPCs” form colonies after more than two weeks in culture, have cobblestone morphology, 

and rapidly proliferate [114, 117]. The distinctive characteristics of these two types of EPCs 

are reinforced by the different expression of cell surface markers. Early EPCs express pan-

leukocyte and monocytic/macrophage markers such as CD45, CD11b and CD14 while late 

EPCs do not. Early EPCs are also therapeutically effective in vivo while evidence for 

therapeutic efficacy of late EPCs are limited to date [114, 117].

Endothelial differentiation of EPCs and whether this differentiation plays a main role in the 

therapeutic benefit of EPCs in recovering damaged tissue function is controversial. Several 

recent studies have demonstrated differentiation of EPCs into endothelial lineage cells with 

incorporation into blood vessels [118, 119]. However, other investigators claim that BM-

derived cells including EPCs do not undergo endothelial differentiation nor incorporate into 

vessel walls [120, 121]. These discrepancies may be due to the difference in cell types, the 

use of different animal models or the rigor criteria to define endothelial differentiation.

One study showed that cord-blood derived EPCs were effective for treating DN [122]. This 

study claimed that mechanistically, the therapeutic effects are due to the increased 

differentiation of EPCs into endothelial cells in hindlimb muscles, which then led to an 

increase in sciatic nerve blood flow. However, this study did not demonstrate the fate of the 

EPCs in tissues, nor did it address the mechanisms by which transplanted EPCs increase 

neovas-cularization in muscles or nerve. Given that most recent studies have argued against 

the endothelial differentiation of EPCs as a major mechanism for neovascularization, 

endothelial differentiation does not appear to underlie such magnitude of therapeutic effects 

toward DN [115, 123].

More recently, a study by the author's group reported that local transplantation of BM-

derived EPCs improved various manifestations of experimental DN through dual angiogenic 

and neurotrophic effects on peripheral nerves (Fig. 1) [47]. This study uncovered some 
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important mechanistic insight into the role of EPCs on DN [47]. First, intramuscularly 

injected EPCs exert therapeutic effects through direct modulation of nerves, not through 

muscular neovascularization. Second, the therapeutic effects of EPCs are mainly mediated 

by humoral or paracrine factors released by EPCs, rather than the direct endothelial 

differentiation of EPCs. Third, the functional capillary (vasa nervora) density in the nerves 

was significantly increased by the EPC treatment. Fourth, Intramuscularly injected EPCs 

preferentially homed to sciatic nerves, characteristically localized in close proximity to vasa 

nervora, and differentiated into endothelial cells albeit infrequently [47]. A large number of 

engrafted EPCs survived in peripheral nerves for more than 12 weeks and induced 

prolonged expression of angiogenic and neurotrophic factors. Fifth, EPC transplantation 

increased proliferation and decreased apoptosis of endothelial and Schwann cells (Fig. 1).

The most notable finding was the direct effect of EPCs on peripheral nerves. The study was 

the first to demonstrate that EPC transplantation increases capillary density and blood flow 

in nerves, suggesting that EPCs induce neovascularization in nerves [47]. The differentiation 

of EPCs into endothelial cells, histologically confirmed as the colocalization of DiI-labeled 

transplanted cells with BS-1 lectin positive endothelial cells was infrequent, suggesting that 

angiogenesis could have played a more important role than vasculogenesis. This neural 

angiogenesis occurred through upregulation of various angiogenic factors in nerves after 

EPC transplantation. Various paracrine factors including VEGF-A [51, 63], FGF2 [124], 

BDNF [42], SHh [59, 82], and stromal cell derived factor (SDF)-1α [125, 126] were 

expressed in the peripheral nerves (Fig. 1). These factors have been shown to have 

synergistic effects on angiogenesis as well as neuro-protecting effects [63, 95, 127]. In fact, 

this study was the first to show clear dual angiogenic and neurotrophic effects of EPCs. This 

upregulation of various classes of biologically important factors may be one of the greatest 

benefits of stem cell therapy over any single protein or gene therapy, enabling the concerted 

efforts of multiple neuro-angiogenic cytokines necessary for neurovascular recovery.

Histologically, the author's study also uncovered novel engraftment and retention 

characteristics of BM-derived cells in tissues [47]. Following a series of reports on the short-

term engraftment of any BM cells in a myocardial infarction model [128, 129], the 

prevailing notion was that adult stem/progenitor cells could not sustain their engraftment 

more than a few weeks. However, the study by Jeong et al., clearly rebutted this notion that 

BM-EPCs could survive more than 12 weeks in nerves [47]. The EPCs which were directly 

injected into the hindlimb muscles disappeared mostly in the muscles within 8 weeks; 

however the EPCs robustly survived for more than 12 weeks in the sciatic nerves. 

Interestingly, the study by Naruse et al., showed that capillary density, which had decreased 

in hindlimb muscles of diabetic rats at 12 weeks of diabetes, was significantly increased 

after cord-blood EPC treatment [122]. However, this study suggested that blood flow and 

capillary density in hindlimb were not significantly changed after EPC treatment. This long-

lasting cell retention is compatible with the observation that EPCs homed to peripheral 

nerves far more preferentially than to muscles. This scale of close interaction between any 

BM cells and steady-state tissues was not previously reported with or without diabetes. The 

long-term retention of EPCs into the nerves in diabetic mice was not expected when we 

started this project. Together, our studies with EPCs or BM-MNCs strongly argue that the 
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engraftment characteristics of BM cells depends more on the recipient environment than on 

the transplanted cells themselves [47, 48]. Another intriguing finding was that the engrafted 

EPCs were localized in close proximity to the vasa nervora. Such a large magnitude of 

tropism of BM-derived cells to blood vessels has not been reported in any other tissues. This 

also clearly supports that despite the controversy of EPCs on blood vessel forming capability 

in certain models like myocardial infarction [123, 128, 130], it is evident that EPCs can play 

an important role in vessel homeostasis [123, 131-134]. The distinct properties of BM-

derived EPCs such as peripheral neurotropism, sustained engraftment, and vascular 

localization of EPCs induced robust and prolonged paracrine or humoral effects and reversal 

of various functional and pathologic features of DN [47, 48, 81, 122].

Perspective

DN is a progressive disease and its manifestations can take many years to develop. Cell 

therapy may not be a standard treatment option for all stages of DN because different stages 

of DN are marked by different structural or functional changes. At present, cell therapy may 

be applied to those patients who suffer from intractable symptoms, acute exacerbation, or 

combined diseases such as diabetic foot ulcers or critical limb ischemia.

Practically, as the safety of autologous BM-derived cells has been documented by a number 

of clinical trials [135], it is highly recommended to advance this strategy into a pilot clinical 

trial for those who are severely affected by DN. Particularly, EPCs will be effective in 

treating DN when combined with diabetic wounds or peripheral vascular obstruction as the 

therapeutic effects were already shown in these conditions. However, there are a few 

remaining concerns in cell therapy strategy. First, the effectiveness of the patient's own cells 

needs to be evaluated considering the possibility that BM cells derived from diabetic 

subjects may be impaired in therapeutic potential. Experiments using the autologous cells 

derived from diabetic subjects are necessary to address these concerns. However, although 

the efficacy of autologous diabetic cells is less potent, there may be still ways to overcome 

these defects to a certain extent. One strategy is to enhance their angiogenic and 

neurotrophic effects by culturing cells and activating necessary pathways with small 

molecules or growth factors. Second, the long-term effects of cell therapy need to be tested. 

Given that DN is a disease progressing over a long time, a single injection of cells may not 

be enough to maintain the nerve function over a long period of time. There are a few 

approaches to take in this context. One approach is to implant cells repeatedly to maintain 

their effects. At present, the duration of the beneficial effects of cell therapy in DN is 

unknown and a critical issue that requires further investigation. In many cases, the first 

manifestation of DN is a diabetic foot or ulcer which sometimes requires an amputation and 

a long-term care, which significantly reduces patients' quality of life. Cell therapy in this 

case can be very critical to rescue further tissue loss.

Cardiovascular autonomic neuropathy (CAN) is associated with increased risk of 

cardiovascular morbidity and mortality in diabetic patients [136, 137]. Although CAN is one 

of the most frequently studied complications of diabetes [138] and cell therapy has been 

reported to be effective in improving ischemic cardiovascular disease [132] and peripheral 
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neuropathy, cell therapy has yet been evaluated in either animal models or human patients 

with CAN. Future studies are required to determine the effects of cell therapy in CAN.

Future directions of cell therapy for DN will take steps toward enhancing the potency of 

candidate cells, using both gene and cell therapy, and working with combination of various 

cell types such as those derived from induced pluripotent stem (iPS) cells Once generated, 

iPS cells can offer a plentiful and renewal source of cells that can be induced to differentiate 

into cells of interest [139]. Conclusively, cell therapy may become an innovative alternative 

therapeutic option for treating advanced DN. However, further research is necessary to 

overcome some limitations and possible adverse effects of cell therapy.
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Abbreviations

BDNF Brain-derived neurotrophic factor

BM Bone marrow

DN Diabetic neuropathy

EPC Endothelial progenitor cell

FGF Fibroblast growth factor

IGF Insulin-like growth factor

MNC Mononuclear cell

MSC Mesenchymal stem cell

NCV Nerve conduction velocity

NGF Nerve growth factor NGF

PARP Poly DP-ribose polymerase

PB Peripheral blood

ROS Reactive oxygen species

SHh Sonic hedgehog

VEGF Vascular endothelial growth factor
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Fig. 1. Mechanism of action of various bone marrow-derived cells
Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) can be cultured 

from mononuclear cells (MNCs). EPCs can differentiate into ECs and MSCs can give rise to 

Schwann cells, astrocytes, and oligodendrocytes. When transplanted into diabetic 

neuropathy animals with injured or ischemic blood vessels, the EPCs and MSCs secret 

angiogenic and neurotrophic factors including VEGF, FGF2, and IGF1, leading to increase 

in Schwann cell proliferation and myelination and decrease in Schwann cell apoptosis.
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Fig. 2. Localization of transplanted EPCs along the vasa nervorum and transdifferentiation of 
EPCs into endothelial cells in nerves
EPCs were isolated from mouse bone marrow and labeled with a red fluorescent dye, CM-

DiI. Streptozotocin-induced diabetic mice were injected with the CM-DiI-labeled EPCs into 

the muscles along the course of the sciatic nerve. Eight weeks after the EPC transplantation, 

the mice hindlimbs were perfused with BM-1 lectin conjugated with FITC to visualize the 

blood vessels and the sciatic nerves were harvested. Whole mounted images of a sciatic 

nerve (A-C) demonstrated that engrafted EPCs (red) preferentially localized along the 

course of the vasa nervorum (green). Bars, 50 μm in B and C.
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