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Abstract

Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin
cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much
efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK)
signaling pathway—the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor
trametinib—have increased survival in patients with metastatic melanoma. Further, the
combination of dabrafenib and trametinib has been shown to be superior to single agent therapy
for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly.
Studies of additional agents and combinations targeting the MAPK, PISK/AKT/mTOR (PI13K), c-
kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals
have yielded promising results against proliferation, survival, invasion, and metastasis by targeting
signaling pathways with established roles in melanomagenesis. The relatively low toxicities of
phytochemicals make their adjuvant use an attractive treatment option. The need for improved
efficacy of current melanoma treatments calls for further investigation of each of these strategies.
In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current
progress in the development of phytochemical therapies.
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Introduction

Melanoma is a malignant tumor of melanocytes, cells responsible for producing the skin
pigment melanin. Of all skin cancers, melanoma is the least common, but because of its
metastatic potential, it is responsible for approximately 80% of deaths related to skin
cancer.! The American Cancer Society estimates that the lifetime probability of Caucasian
men being diagnosed with melanoma is 1/35, while for Caucasian women it is 1/54.2
Furthermore, it is projected that there will be ~76,710 new cases of melanoma in the United
States in 2014, and ~9,710 of those cases will result in death.? Established risk factors for
the development of melanoma include fair features (light skin, hair and eye color) and
ultraviolet exposure. In particular, blistering sunburns early in life have been shown to play
a causal role.3 For cutaneous melanomas of low thickness (Breslow depths of up to 1.0 mm)
surgery is curative for the majority patients.* Rates of survival drop precipitously with
increased tumor thickness due to the increased risk of metastasis.# This transition from a
mostly benign disease to one with a more serious prognosis occurs as melanoma progresses
through the radial and vertical growth phases. The prognosis for metastatic melanoma is
grim: 5-year survival ranges from 12 to 28%, depending on the location of the metastasis.*

Traditional cytotoxic therapy and immunomodulatory agents have failed to demonstrate
significant efficacy, with fewer than 5% of patients having complete responses at 5 years.>
Fortunately, the last decade has been an exciting time for melanoma research, with advances
in oncogene related therapies as well as immunotherapies. Immunotherapies that block
inhibitory checkpoint molecules, CTLA-4 and PD-1, have been shown to improve survival
for patients with metastatic melanoma and have gained FDA approval.6.78 Likewise, pivotal
advances in oncogene directed therapies have led to improvements in patient survival,
resulting in FDA approval of agents that target the RAS/RAF/MEK/ERK (MAPK) pathway,
such as vemurafenib, dabrafenib and trametinib. Yet, in spite of these advancements, the
extension of life offered by these agents is only a matter of months due to the rapid
development of resistance. Also, they only target a fraction of the oncogenic signaling that
leads to melanoma. Current research in this area is focused on the discovery of additional
inhibitors of the MAPK pathway and inhibitors of other pathways that play key roles in
melanomagenesis and resistance, such as PI3K/AKT/mTOR (PI3K) and c-kit signaling. The
study of combination therapy with existing agents and the further elucidation of mechanisms
of resistance are also underway. Furthermore, preclinical studies of phytochemicals, both
alone and in combination with traditional cytotoxic and targeted therapies, have recently
yielded promising results. The relatively low toxicities of these substances make the
adjuvant use of natural agents an attractive treatment option for metastatic melanoma. In
summary, the need for improved efficacy of current melanoma treatments calls for
innovative strategies, such as the elucidation of combination therapies, continued discovery
of novel therapeutic targets, and preclinical investigation of natural agents as adjuvant
therapy. In this review, we will discuss progress in targeting MAPK, PI3K, and c-kit
signaling pathways, preclinical studies of phytochemicals, and combined oncogene directed
therapies (Tables 1, 2, 3; Figures 1, 2, 3).
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RAS/RAF/MEK/ERK (MAPK) Signaling in Melanoma

RAS

Activation of the MAPK has been described in roughly 90% of melanomas.? Activation of
the MAPK pathway occurs when RAS-GTP causes RAF kinase dimerization.® An important
target of activated RAF kinases is MEK1/2, which catalyzes the phosphorylation of
ERK1/2.1011 ERKs can translocate into the nucleus and regulate numerous cellular
processes, including proliferation, differentiation, survival, motility, and angiogenesis.12

Some of the first oncogenes described in humans were RAS proteins. Through cellular
stimuli, such as receptor tyrosine kinases (RTKs), RAS transmits extracellular signals to
intracellular effector pathways, which include the RAS/RAF/MEK/ERK (MAPK) and the
PI3K/AKT/mTOR (PI3K) signaling pathways.1? RAS signaling regulates a multitude of
functions, including cell cycle progression, apoptosis, and differentiation.141> The
conversion between inactive RAS-GDP and active RAS-GTP is regulated by guanine
nucleotide exchange factors (GEFs) and by GTPase-activating proteins (GAPS). GEFs
promote the exchange of GDP for GTP leading to RAS activation. GAPs accelerate RAS-
mediated GTP hydrolysis and lead to inactivation of RAS.16 There are three main RAS
isotypes: HRAS, KRAS, and NRAS.16 The most common RAS gene mutation in melanoma
is NRAS, which is mutated in 15-20% of all melanomas.1” In accordance with the
importance of NRAS mutations in maintaining melanoma cell growth, inactivation of NRAS
in melanoma cell lines by RNA interference leads to induction of apoptosis.18 The most
common NRAS mutation is at codon 61; this prevents RAS GTP hydrolysis, causing the
NRAS protein to be constitutively active.1920 |ess common mutations at codon 12 and 13
prevent the association of GAP proteins with the NRAS complex.2!

Association with the inner face of the plasma membrane is necessary for RAS function.
Inhibition of post-translational farnesylation blocks RAS activation by impeding
translocation of RAS to the plasma membrane. In mouse models, farnesyltransferase
inhibitors (FTIs) were shown to have powerful anti-tumor activity and caused minimal
toxicity to normal tissue in various cancer cell lines.2223 Despite this evidence of the
efficacy of RAS inhibition by FTls, results from clinical trials were disappointing. A phase
Il clinical trial examining tipifarnib (a FTI) as a single agent in advanced melanoma was
curtailed due to a lack of initial response to treatment, thus halting further clinical
investigations.24 It is now believed that the RAS proteins can escape FTI through
prenylation by a geranylgeranyl transferase that results in the transfer of an alternate
isoprenoid group to RAS and allows continued activity.2%26 Despite unfavorable results as a
monotherapy, there is still hope for the utility of FTIs when combined with other agents. It
has been shown that combination treatment with cisplatin and lonafarnib (SCH66336),
another FTI, amplified cisplatin-induced apoptosis in human and mouse melanoma cell
lines.2”28 |n melanoma cells, lonafarnib has also been shown to block mammalian targets of
rapamycin (mTOR) signaling and enhance sorafenib-induced apoptosis.2® A phase | clinical
trial combining tipfarnib and sorafenib (a BRAF inhibitor) showed stable disease in patients
with various cancers, including one with metastatic melanoma.3° Further, an in vitro study
showed that the combination of lonafarnib and sorafenib led to significant enhancement of
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sorafenib-induced apoptosis and complete suppression of melanoma cell invasion in raft
culture.?® Blockade of NRAS signaling through inhibition of BRAF with vemurafenib has
also been attempted, but was unsuccessful due to paradoxical hyperactivation of MEK-ERK
signaling, causing activation of CRAF and induction of growth in cells with mutated
RAS.31:32 |n contrast to the results obtained with BRAF inhibitors, a recent study using
NRAS mutant, patient-derived melanoma cell cultures showed that MEK inhibition reduced
ERK1/2 phosphorylation and induced apoptosis.33 Promisingly, results of a phase 11 clinical
trial of the MEK inhibitor, MEK162, exhibited objective responses in patients with NRAS
mutations, providing support for the clinical use of MEK inhibitors for NRAS mutant
metastatic melanoma treatment.3* There is a phase 111 study currently underway to compare
the efficacy of MEK162 to dacarbazine in patients with NRAS mutations, along with a
phase Il trial of another MEK inhibitor, pimasertib, in patients with NRAS mutant
melanoma (NCT01763164, NCT01693068).

RAS-driven melanomas represent a high percentage of metastatic melanomas.1’ Despite the
well-established role of NRAS in melanomagenesis, the development of effective therapies
for patients with NRAS-driven melanoma remains elusive. Direct inhibition of RAS, thus
far, has not been effective and RAS inhibition through blockade of BRAF has been shown to
be ineffective.24:35:36 However, despite the failure of FTls in monotherapy, these agents
may support modulation of RAS signaling when used in combination with other treatment
regimens. Moreover, MEK inhibition has shown promise as a therapy for NRAS mutant
melanoma.33:34 These treatment strategies and other means of RAS inhibition are actively
being pursued.

The RAF isoforms include ARAF, BRAF, and CRAF/RAF-1.37 BRAF mutations are found
in approximately 60% of all melanomas, and the oncogenic contribution of BRAF in
melanoma has been validated in numerous cell and animal models.38:39:40 The BRAFV600E
mutation accounts for nearly 90% of all such mutations found in melanoma.38 A substitution
of valine for glutamic acid at position 600 results in the BRAFVY600E mytation, causing the
protein to remain in the active conformation permanently. Less common mutations (V600D,
V600K, V600R) contribute another 5-6%, and are due to alternative point mutations at the
same position.38 Of note, BRAF mutations are also found in many benign nevi.#! In fact,
BRAF expression in human melanocytes has been shown to cause cell cycle arrest.*2 Based
on this evidence, BRAF is believed to induce the cancer sequence and with additional
mutations, namely in tumor suppressor genes, transformation to melanoma ensues.*!

The development of agents targeted at BRAF mutations, specifically the BRAFY600E
mutation, is responsible for much-needed advancement in the treatment of metastatic
melanoma. The first targeted agent to be tested in clinical trials for BRAF mutant melanoma
was sorafenib.#3 Sorafenib is a nonspecific kinase inhibitor, and has been shown to inhibit
BRAF, CRAF, and the vascular endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), and various other RTK.43 However, a phase Il clinical trial of sorafenib
monotherapy showed a lack of response in patients with metastatic melanoma.?# Further
trials evaluated the effectiveness of sorafenib in combination with cytotoxic agents.
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Unfortunately, a phase 111 clinical trials of sorafenib with carboplatin and paclitaxel
similarly failed to shown a significant survival benefit.#>46 It is believed that due to
sorafenib’s BRAF-independent cellular effects, therapeutic doses could not be achieved
because of significant toxicity.*” The development and use of second-generation BRAF
inhibitors with greater selectivity has been met with great success. Vemurafenib binds
selectively to the ATP-binding site of the BRAFY600E mutation, resulting in reduced
proliferation and downstream inhibition of ERK phosphorylation.#® Preclinical studies
showed vemurafenib-induced RAF inhibition reduced the proliferation of BRAF mutant
melanoma cell lines, but did not inhibit melanoma cell lines without BRAF mutations.*?
Phase I and Il clinical trials showed tumor shrinkage and vemurafenib-induced clinical
responses in more than half the patients treated and showed improvement in rates of overall
survival (OS) and progression-free survival (PFS) in patients with BRAFY600E mytant
metastatic melanoma.®951 A pivotal phase 111 study (BRIM-3) validated vemurafenib’s
superiority to cytotoxic therapy in patients with the BRAFY890E mutation and also in
patients with the BRAF V800K mytation. In patients with the BRAFVY600E mutation, the
estimated median PFS in the vemurafenib group was 6.9 months compared to 1.6 months for
the dacarbazine group. For the patients with the BRAFY890K mytation, median PFS in the
vemurafenib and dacarbazine group was 5.9 months and 1.7 months, respectively.52 These
landmark results led to the FDA approval of vemurafenib for treatment of patients with
BRAFV600E metastatic melanoma in 2011 along with a BRAFV600 mutation test. Another
agent targeting BRAF mutant melanoma, dabrafenib, has recently received FDA approval.
Phase I and Il clinical trials of dabrafenib showed PFS ranging from 5.5-6.3 months for
BRAFV600E melanoma and 4.5-5.6 months for BRAFY600K melanoma.53:54 A phase 111 trial
comparing dabrafenib to dacarbazine showed a median PFS of 5.1 months for dabrafenib
and 2.7 months for dacarbazine.>®

Despite this exciting progress, 10% of patients with BRAF inhibitor-responsive melanoma
show tumor progression early in the course of therapy and a majority of patients relapse in
less than a year.20:56 The aberrations that result in resistance are numerous, but most
reactivate the MAPK pathway by bypassing BRAF inhibition and restoring ERK activation.
Resistance mechanisms that restore ERK activation include, but are not limited to, elevated
expression of RAF kinases,®’:58 activating mutations in NRAS or MEK1,%9:60 stimulation of
receptor tyrosine kinases®®:61 and a splice variant of BRAFY600E.62 Moreover, the use of
BRAF inhibitors comes with many troubling side effects, including development of
keratoaconthomas and invasive squamous cell carcinoma.>2:55 These proliferations occur in
BRAF wild-type cells with mutated RAS and are due to up-regulation of BRAF-CRAF
leading to ERK1/2 hyperactivation.83:32 This paradoxical ERK1/2 hyperactivation has been
shown to lead to the development of RAS-driven squamous cell carcinomas and
keratoaconthomas while patients are on vemurafenib and other BRAF inhibitors and, as
mentioned above, is thought to be responsible for the inefficacy of BRAF inhibitors in
NRAS mutant melanoma.%4

Other BRAF inhibitors are currently in development or in clinical trials for metastatic
melanoma (NCT01436656, NCT00304525).55 RAF265 is a dual inhibitor of mutant
BRAFV600E and VVEGFR2; a phase 11 clinical trial in patients with metastatic melanoma has
been recently completed with pending results (NCT00304525). Preclinical studies with
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BRAF inhibitors lacking paradoxical ERK1/2 hyperactivation in cell lines with wild-type
BRAF are also currently underway. For example, a non-paradox inducing BRAF inhibitor,
PLX7904, was shown recently to reduce ERK1/2 phosphorylation and growth of NRAS
mutant, vemurafenib-resistant melanoma cell lines.%°

BRAF inhibitors have produced exciting and much-needed progress in the treatment of
metastatic melanoma, but unfortunately, they have only been shown to inhibit the
RAF/MEK/ERK pathway in cell lines that harbor BRAFV600E or BRAFV600K mutations. Of
note, a clinical report on patients with the BRAFY800R mytation who were treated with
vemurafenib or dabrafenib has shown promise; however, the activity of BRAF inhibitors in
other, more rare, BRAF mutations remains unknown.®8 It is clear that progress has been
made for patients with certain BRAF mutations, but unfortunately, this only represents about
half of the patients with metastatic melanoma. Responsive melanomas also develop
resistance to BRAF inhibition quickly, and the mechanisms of resistance to dabrafenib and
vemurafenib have been shown to be similar.8” The numerous mechanisms of resistance to
BRAF inhibitors support the need for combined therapies of BRAF inhibitors with agents
that target other locations in the RAF/MEK/ERK or alternative pathways. Most recently, the
combination of MEK and BRAF inhibitors has shown great promise.58

BRAF mutated cells have been shown to possess enhanced sensitivity to MEK inhibition.®®
MEK inhibitors are believed to function by inducing apoptosis through suppression of
Mcl-1, a member of the anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) family.”® There are
two major classes of MEK inhibitors, ATP non-competitive and ATP competitive
inhibitors.”t Currently, most MEK inhibitors are noncompetitive, indicating that they do not
compete for the ATP-binding site and instead bind to an adjacent allosteric site, which
explains their high specificity.”! Selumetinib, a selective, noncompetitive inhibitor of
MEKZ1/2, has been shown to reduce the growth of melanoma cells by inducing G1-phase cell
cycle arrest.”2.73.74 Fyrthermore, cell growth inhibition was demonstrated in melanoma lines
possessing the BRAFY600E mytation.”76 A phase I clinical trial of selumetinib resulted in
disease stabilization and tumor biopsies demonstrated reduced ERK phosphorylation in
patients with metastatic melanoma.”2 In a phase Il clinical trial, patients with metastatic
melanoma and an unknown NRAS/BRAF status received therapy with selumetinib or
temozolomide.”” Results showed no significant difference in PFS. However, it was later
found that five of the six patients who showed a partial response to selumetinib had BRAF
mutant tumors.’” Therefore, more recent studies with MEK inhibitors have selected patients
with BRAF mutant melanoma. Of note, a randomized phase Il trial combining selumetinib
and dacarbazine showed an improved median PFS of 5.6 months compared to 3.0 months
with dacarbazine monotherapy; however, no significant change was seen in 0S.78

The second generation ATP noncompetitive MEK1/2 inhibitors have shown improved
effectiveness and the MEK1/2 inhibitor, trametinib (GSK1120212) has recently gained FDA
approval for the treatment of metastatic melanoma. Preclinical trials with BRAFV600E
melanoma cell lines and xenografts showed trametinib to be a reversible allosteric inhibitor
of both MEK1/2 activation and kinase activity.”® A phase | trial of trametinib showed a
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response rate of 33% in patients with BRAF mutant melanoma and 10% in patients with
wild-type BRAF, confirming the importance of selecting for mutational status.8? A phase I
clinical trial of trametinib showed a median PFS of 4.0 months in BRAF mutant melanoma
that had not been treated previously with a BRAF inhibitor, however no efficacy was seen in
patients who had been treated previously with a BRAF inhibitor.81 The pivotal phase 11
trial, METRIC, enrolled patients with metastatic melanoma and BRAFV600E or BRAF V600K
mutations that had not been previously treated with a BRAF or MEK inhibitor. Results
showed significant improvements in OS and PFS, with a median PFS of 4.8 months in the
trametinib group and 1.5 months in the chemotherapy group.82 Because of these results, the
FDA approved trametinib in May 2013 for the treatment of patients with metastatic
melanoma and BRAFV00E or BRAFY600K mytations who had not formerly received BRAF
inhibitor treatment.

As discussed above, the MEK1/2 inhibitor, MEK162, has also recently shown promise for
treatment of patients with NRAS-mutated melanoma in both preclinical and clinical
trials.33:34 Of interest, it has been shown that variances in the activation state of MEK exist
in KRAS versus BRAF mutant tumors.82 Specifically, inhibition of the RAF/MEK/ERK
pathway in BRAF mutated melanoma occurs through inhibition of active, phosphorylated
MEK, whereas inhibitors that block feedback phosphorylation by wild-type BRAF may be
more effective for KRAS inhibition.83:84 Inhibitors that target the unique activation states of
MEK are in clinical trials (NCT01689519, NCT01271803).82 Other MEK1/2 inhibitors
(PD-0325901, TAK733, pimasertib, and RO4987655) are also currently in clinical
development.85:86.12.87 Clinjcal Trials of targeted therapies in the treatment of metastatic
melanoma are summarized in Table 1.

MEK and BRAF combined therapy

Numerous preclinical and clinical studies have demonstrated that BRAF and MEK co-
inhibition is a successful treatment strategy for metastatic melanoma. Preclinical studies
have shown that the combination of a BRAF and MEK inhibitor reduces tumor growth and
delays onset of resistance when compared to monotherapy.88:68 In a phase II trial
dabrafenib, either as a monotherapy or in combination with trametinib showed a significant
improvement in PFS.89 The median PFS was 9.4 months in the combination group and 5.8
months in the monotherapy group.89 Moreover, the addition of trametinib was shown to
reduce the appearance of cutaneous squamous cell carcinomas.54.89 These results led to the
accelerated approval of the combination of dabrafenib and trametinib for the treatment of
patients with metastatic melanomas that carry the BRAFV600E or BRAFV600K mytation in
January 2014. Recent results of a phase 11 trial comparing the combination of dabrafenib
and trametinib to dabrafenib monotherapy in patients with BRAF-mutant melanoma
likewise showed improvements in PFS, with a median PFS of 9.3 months in the dabrafenib
and trametinib group and 8.8 months in the dabrafenib monotherapy group.?° The rate of
cutaneous SCC was also lower in the dabrafenib trametinib combination group compared to
the dabrafenib-only group.9% A phase 111 clinical trial comparing dabrafenib and trametinib
to vemurafenib monotherapy (COMBI-v) is also in progress (NCT01597908). Other BRAF
and MEK inhibitor combinations have also shown promise and are in phase Il1 trials
(NCT01909453, NCT01689519).91.89 Unfortunately, it has been shown that resistance to
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MEK inhibition may cross over from BRAF inhibitor resistance.59 However, the
combination of BRAF and MEK inhibition seems to delay this resistance,5%.92 and a recent
study has shown benefit for patients treated with a BRAF inhibitor after MEK inhibitor
failure, suggesting that the mechanisms of resistance for MEK inhibition may be different.%3
Moreover, a dual BRAF/MEK inhibitor, RO5126766, has recently shown activity in patients
with metastatic melanoma, suggesting tandem inhibition of BRAF and MEK may one day
be a possibility.%4 Clinical Trials of synthetic small molecule inhibitor combinations in
metastatic melanoma are summarized in Table 2.

PIBK/AKT/mTOR (PI3K) Signaling in Melanoma

The PIBK/AKT/mTOR (PI3K) pathway promotes cell survival and proliferation, and is
hyperactivated in most malignancies, including melanoma.>% Stimulation of the PI3K
pathway arises via GTP binding of RAS proteins and stimulation of RTK.% Activation of
the pathway generates phosphoinositide 3-kinase regulating subunit, allowing the catalytic
subunit to phosphorylate membrane phospholipid phosphatidylinositol 4,5-bisphosphate
(PIP2) converting it to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which is a key
propagator of intracellular signaling. The tumor suppressor phosphatase and tensin homolog
(PTEN) is a key regulator of the PI3K pathway. Lack of PTEN antagonism leads to
association of phosphoinositide-dependent protein kinase 1 to the cell membrane and
phosphorylation of AKT, a widely known oncogene.%7:98 The numerous substrates of AKT
include cellular regulators of insulin signaling, proliferation, and survival.99-100

AKT induces protein synthesis and cell proliferation by causing abrogation of TSC1/2,
which leads to activation of the mTORC1 complex.101.102 Both PI3K and AKT participate
in activation of mTOR,103.104 and the full activation of AKT requires phosphorylation of
another of its kinase domains via mTOR complex 2 (MTORC2).105 These two distinct
complexes of mMTOR, mTORC1 and mTORC?2, are believed to have differing functions, but
their regulation overlaps in important ways. A primary role of mTORC2 is regulation of the
actin cytoskeleton.1%6 However, as stated above, activation of mTORC2 leads directly to
phosphorylation of AKT, linking this complex to the activation of the mMTORC1
pathway.107:98 Enhanced protein translation is the result of mTORC1 activation and occurs
through targeting of eukaryotic translation initiation factor (elF4E) and p70S6 kinase.108

Elevated AKT phosphorylation and/or activated mTOR functioning arises in 70% of
malignant melanomas.109110 Elevated phospho-AKT levels are linked with reduced survival
in melanoma patients!!! and promote motility, invasion, and angiogenesis.}12 The major
mechanisms of PI3K pathway activation in melanoma are loss of PTEN and NRAS
mutations, as discussed above. Loss of PTEN is seen in 10-30% of melanoma cell lines,
with most exhibiting concurrent BRAFV800E mutations.113.114 |n a mouse melanoma model,
the BRAFY600E muytation alone led to benign melanocytic hyperplasias, and metastasis was
induced with the concurrent loss of PTEN, suggesting a model for melanomagenesis.11

Agents that inhibit mTOR have demonstrated anti-proliferative effects against many human
cancers.115 Most studies of PI3K signaling blockade in melanoma have used the first-
generation agent rapamycin and the second-generation agents, everolimus (RADO001) and
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temsirolimus (CCI-779), which allosterically inhibit the mTORC1 complex.116:117 These
agents have long been used as immunosuppressants in patients with organ transplants and
are tolerated reasonably well. However, clinical trials in melanoma have shown a lack of
objective responses to mTORCL1 inhibitors as single agents or in combination with BRAF
inhibitors.118.119.120 The reason for this seems to be interruption of negative feedback loops
mediated by mTORC1, causing activation of PI3K, AKT and ERK.121.122 gpecifically,
compensatory PI3K pathway activation occurs due to interruption of baseline mMTORC1
mediated inhibition of insulin receptor substrate 1, a second messenger of the insulin-like
growth factor 1 RTK.123.122

The efficacy of mMTORCL1 inhibitors is limited by dysregulation of negative feedback loops
and a lack of MTORC?2 inhibition.117:124 Promisingly, a preclinical study evaluating the
efficacy of dual mTORC1/2 inhibition showed blockade of compensatory AKT
hyperactivation in sensitive cell lines.12> Dual PI3K-mTOR inhibitors are also being
examined as a means to block compensatory activation of PI3K signaling.126 In melanoma,
dual PI3K-mTOR inhibitors have shown impressive antiproliferative activity and durable
suppression of AKT phosphorylation in both in vitro and in vivo studies.127:128 Fyrthermore,
previous trials of mMTOR inhibitors have not been performed in patients with mTOR
mutations.118 There is currently a phase 1l clinical trial underway in patients selected for
mTOR mutations (NCT01960829).

Combined therapy with PI3K inhibitors

Resistance to BRAF inhibitors and MEK inhibitors underscores the need to target alternative
pathways.129.130 |n particular, acquired resistance after BRAF therapy has been shown to
occur through activation of PI3K signaling and can be overcome by MEK inhibitor
therapy.131.61 Crosstalk between the MAPK and PI3K pathway is known to be a major
cause of resistance, and inhibition of the PI3K pathway is being examined as a means of
combating BRAF and MEK inhibitor resistance.6:129 |n vivo models showing that
activation of PI3K signaling with mutant BRAF enhances melanomagenesis more than
either mutation alone supports the use of PI3K and MEK inhibitor combinations in
vemurafenib-resistant, BRAF-mutant melanoma.114.132 Moreover, vemurafenib and
selumetinib co-resistant BRAF-mutant melanoma cell lines have shown dependence on
AKT induction for survival.139.133 |n one study, the addition of an AKT inhibitor overcame
acquired resistance to both vemurafenib and selumetinib, with the only exception being
vemurafenib-resistant cell lines that secondarily acquired a NRAS mutation.230 In another
study, BRAFY600E mytant melanoma cell lines harboring MEK or NRAS mutations also
showed resistance to dabrafenib and trametinib monotherapy. However, when these cell
lines were treated with a combination of a BRAF inhibitor and the PI3K inhibitor
GSK2126458, they showed improved cell growth inhibition.129 Furthermore, in a RAS-
driven, Ink4a/Arf-deficient mouse model of melanoma, the combination of BEZ235, a dual
PI3K-mTOR inhibitor, with the MEK inhibitor AZD6244, produced significant tumor
regression and improved survival.134 A recent preclinical study has shown superior growth
inhibition and a delay in resistance in a melanoma cell line with homozygous PTEN loss
when treated with the triple therapy of dabrafenib, trametinib and the AKT inhibitor
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GSK2141795B.135 Currently, a phase | study is examining the efficacy of selumetinib alone
and in combination with the AKT inhibitor MK2206 (NCT01021748).

c-kit Signaling in Melanoma

The receptor tyrosine kinase c-kit is universally expressed in mature melanocytes and
promotes proliferation and survival. Binding of c-kit to its ligand, stem cell factor, results in
receptor dimerization, autophosphorylation, and stimulation of several signaling pathways,
which include MAPK, PI3K, and janus kinase-signal transducer and activator of
transcription (JAK-STAT) pathways. A recent preclinical study demonstrated that c-kit-
driven PI3K activation led to MAPK pathway activation and increased melanocyte
proliferation and melanoma survival.13¢ In addition, common variants at the c-kit locus have
been shown to affect nevus number and increase the risk of melanoma.37 In melanomas
that harbor c-kit mutations, point mutations resulting in substitutions at L576P and K642E
have been shown to account for 55% of c-kit mutated melanomas.138 Recently, it has been
shown that tumors retaining c-kit overexpression number fewer than 3% in unselected
melanomas.39 In contrast to the overall scarcity of c-kit mutations, melanomas that occur in
mucosal, acral, or chronically sun-damaged skin have been reported to have high rates of c-
kit-activating mutations or amplifications (~28-39%).139.140

Imatinib mesylate is an ATP-competitive inhibitor of several tyrosine kinases, including c-
kit. Interest in imatinib as a treatment for melanoma began with two separate case reports
that showed striking responses to imatinib in metastatic melanomas with c-kit
mutations.141:142 More recently, another case report has shown similar results.143 Preclinical
evidence has also shown that, when treated with the tyrosine kinase inhibitor imatinib,
melanoma cell lines with c-kit mutations exhibit reduced rates of melanoma cell
proliferation and increased apoptosis, along with suppression of the MAPK, PI3K, JAK-
STAT, and anti-apoptotic pathways.144 As imatinib is known to exhibit activity at several
targets and to have efficacy in other tumor types, initial phase Il studies in metastatic
melanoma did not select for specific c-kit aberrations. As a probable result of this lack of
clinical selectivity, these early trials did not show statistically significant results.145:146 A
third phase 11 trial also failed to demonstrate clinical efficacy; however, it showed a dramatic
response in one patient with a known c-kit mutation.14” Therefore, most recent trials of
imatinib have selected for patients with c-kit-mutated metastatic melanoma.148:149 Wwith this
selected patient population, two recent phase Il trials have shown clinically significant
results. In the first study, 23.4% of the cases demonstrated c-kit mutations and/or
amplifications, with a median PFS of 12.0 weeks and an OS of 46.3 weeks.1*8 This study
also found that certain c-kit variants achieved greater responses; specifically, either K642E
or L576P substitutions were present in all responses observed.148 In the second phase Il trial
of imatinib, all patients harbored c-kit aberrations, which resulted in a median PFS of 3.5
months and an OS of 14 months. Conversely, correlations between response and kit
mutations were not seen in this study.14® Another phase Il trial of imatinib in patients with
c-kit aberrations and mucosal or acral metastatic melanoma is in progress (NCT00470470).

Other RTK inhibitors are currently being tested in clinical trials (NCT00700882,
NCT01099514). In one study, two metastatic melanoma patients with the c-kit-576P
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mutation demonstrated responses to another RTK inhibitor, dasatinib.1%0 Like imatinib,
further trials with dasatinib have shown a lack of efficacy in unselected melanoma
patients.2®1 Preliminary results of a phase 11 clinical trial of another c-kit inhibitor, nilotinib,
resulted in durable responses of 8.4 months and 10.0+ months, respectively, in two patients
with c-kit mutations (NCT01099514).152 A randomized phase Il trial (NCT01028222)
comparing the efficacy of nilotinib vs. dacarbazine in patients with c-kit mutations and
mucosal or acral metastatic melanoma is currently in progress.

Phytochemicals

Metastatic melanoma treatment has made great strides in recent years; however, these new
signal transduction inhibitors have notable adverse side effects and the development of
resistance progresses rapidly. It is apparent that new strategies and novel agents are needed
to complement current therapies. Naturally occurring chemical compounds are referred to
collectively as phytochemicals. Phytochemicals have gained attention as promising
therapeutics due to studies demonstrating their ability to prevent the development of
cutaneous malignancies.153.154 There are several classes of phytochemicals that have been
studied, including polyphenals, flavonoids, isoflavonoids, phytoalexins, phenols and
carotenoids. Here, we discuss and summarize recent research on classes of phytochemicals
in the treatment of melanoma (Table 3, Figure 3).

Flavonoids are polyphenolic compounds that are ubiquitous in plants. Flavonoids have been
shown to modulate various cancer signaling pathways, including proliferation, progression
and metastasis.1%® Several preclinical studies have shown that the flavonoid fisetin is active
against melanoma. Specifically, fisetin is a flavone sub-class found in the Rhus family,
which includes strawberries, mangoes and other plants.2®® Studies have demonstrated that
fisetin reduces melanoma cell proliferation, invasion and tumor growth by inhibiting p-
catenin/Microphthalmia-associated transcription factor (MITF),17 MAPK, 158 NF«B,158 and
P13K signaling®®. In one study, inhibition of AKT and mTOR was linked with a significant
reduction in the transition from the radial to the vertical growth phase in cell and xenograft
models.159 It has similarly been shown that fisetin suppresses melanoma cell invasion by
promoting mesenchymal to epithelial transition, which occurred through inhibition of the
MAPK and NF«B signaling pathways.1%8 Fisetin has also been shown to cause G1 cell cycle
arrest and to decrease p-catenin/MITF signaling, leading to inhibition of melanoma cell
proliferation and progression.1®’

The stilbenoid resveratrol is a polyphenol that is found in peanuts, red wine, grape skins, and
mulberries.180 In plants, resveratrol is synthesized in response to stess.161 Resveratrol has
been shown to induce apoptosis in both A375 and SK-MEL-28 melanoma cell lines.162
Ceramide accumulation and AKT/mTOR pathway inhibition has been shown to be another
possible mechanism of apoptosis induction.163 Furthermore, resveratrol has been shown to
reduce proliferation and induce apoptosis of melanoma cells by causing down regulation of
cyclin D1/cdk4 and increased p53 expression.164.165 |n one study, a reduction in invasion
was associated with a significant reduction in activator protein-1 (AP-1)/JunD, MMP-1,
Bcl-2, and iNOS protein levels.166 Resveratrol treatment has also been shown to suppress
invasion and expression of alpha-melanocyte-stimulation hormone (a-MSH) signaling-
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related molecules, including p-catenin, c-kit, and MITF.167 A syngeneic mouse model of
melanoma showed that treatment with resveratrol reduced tumor volume and metastasis,
which was thought to occur through reduced AKT expression.168 Evidence also suggests
that resveratrol reduces melanoma-induced angiogenesis. In this study, the growth inhibition
of vascular endothelial cells in co-culture with melanoma cells was associated with
amplified melanoma cell expression of p53, matrix protein TSP1, and inhibition of VEGF
production.169 Resveratrol has also shown promise as an adjuvant chemotherapeutic agent.
Resveratrol treatment enhanced cisplatin cytotoxicity in a mouse melanoma model, which
was believed to occur through increased Connexin 43, a ubiquitous gap junction protein.170
In another study, exposure of melanoma cells to resveratrol inhibited Ref-1-activated AP-1
DNA-binding and endonuclease activities, rendering melanoma cells more sensitive to
dacarbazine treatment.171

The polyphenolic flavonoid silymarin is found in milk thistle.172 Silymarin has been shown
to inhibit melanoma cell proliferation through suppression of MEK- and RSK-mediated
signaling pathways that results in decreased activation of NFxB, AP-1, and STAT3.173 In
another study, human melanoma cell lines treated with silymarin showed decreased
melanoma cell migration via -catenin inactivation and reduced MMP-2 and MMP-9
levels.174 Silymarin was also shown to amplify the pro-apoptotic actions of anti-Fas
agonistic antibody CH11 in A375-S2 melanoma cells.17®

Catechins, which are extracted from green tea leaves, have well-established anti-
carcinogenic activity.17 Epigallocatechin gallate (EGCG) is a polyphenol flavonoid that is
the most abundant green tea catechin.1”® EGCG has been shown to cause significant
reduction in melanoma cell growth and increased apoptosis through alterations in the cki-
cyclin-cdk network and Bcl-2 family proteins.1’7 In one study, EGCG resulted in NFxB
inhibition, which was associated with reduced melanoma cell interleukin-1beta (IL-10)
secretion, downregulation of the inflammasome component, nuclear localization leucine-
rich-repeat protein 1 (NLRP1), and decreased caspase-1 activation.1”8 Further, both in vitro
and in vivo evidence supports the anti-invasive and anti-metastatic actions of EGCG;
specifically, it has been shown to reduce cell adhesion!7® and decrease cell motility.180
EGCG has also been shown to suppress melanoma cell invasion/migration by targeting
epithelial to mesenchymal transition via inhibition of endogenous expression of COX-2 and
PGE(2) receptors.181 In an in vivo study, EGCG treatment showed reduced cell spreading,
cell-extracellular matrix, and cell-cell interactions, along with inhibition of MMP-9 and
focal adhesion kinase (FAK) activities.182 In this same study, the combination of EGCG and
dacarbazine inhibited melanoma growth and metastasis significantly when compared to
monotherapy.

Curcumin is a polyphenol found in turmeric, a widely used spice. In melanoma, curcumin
has been shown to activate apoptosis through p53-independent pathways.183.184 |n one
study, curcumin treatment resulted in growth inhibition of B16BL6 melanoma cells and p53
independent down regulation of phosphatase of regenerating liver-3.183 Similarly, curcumin
was shown not to induce p53, but to suppress the NFkB cell survival pathway and the
apoptotic inhibitor, X-linked inhibitor of apoptosis protein (XIAP).184 Other mechanisms
that have been shown to induce apoptosis in melanoma cell lines after curcumin treatment
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include down regulation of anti-apoptotic signaling molecules, including Bcl-2,185.186
proliferating cell nuclear antigen (PCNA),186 and induced myeloid leukemia cell
differentiation protein (Mcl-1) protein.187 Suppression of NF«B signaling has also been
demonstrated in several cell lines.188:189.190,184 Njacrophage stimulating 1/hepatocyte
growth factor-like (MST1) activation is also believed to play a role.1%1 The antiproliferative
effects of curcumin have been shown to occur through blockade of cyclic nucleotide
phosphodiesterases.192 One preclinical study showed that the combination of tamoxifen and
curcumin increased phosphatidyl serine flipping, mitochondria depolarization, and reactive
oxygen species generation in A375 and G361 melanoma cell lines.193

Lupeol is a phytosterol and triterpene that is found in white cabbages, green peppers,
strawberries, olives, mangoes and grapes.1%* Tumor growth inhibition after lupeol treatment
has also been associated with suppression of Wnt target genes (c-myc and cyclin D1,
proliferation markers proliferating cell nuclear antigen and Ki-67) and the invasion marker
osteopontin.19 In mouse melanoma models, lupeol was shown to decrease melanoma tumor
growth and promote cell cycle arrest.196:197 |_upeol has been shown to induce melanoma
cell differentiation in B162F2 melanoma cells.198:199.200 This induction of differentiation
has been suggested to occur via activation of the MAPK pathway.2%1 Lupeol has also been
shown to suppress the migration of human melanoma cells by promoting disassembly of the
actin cytoskeleton.202

Honokiol is a biphenolic compound from a species of magnolia native to China. It has long
been used in traditional Chinese and Japanese medicine.29% Honokiol has been shown to
inhibit proliferation in melanoma.294205 This has been suggested to occur through
attenuation of AKT/mTOR and Notch signaling.2%° Further, honokiol has been shown to
induce apoptosis through interaction with glucose-regulated protein 78, a sensor of
endoplasmic reticulum stress.2%6

Phytochemicals have demonstrated their potential utility in the treatment of metastatic
melanoma, and several studies have already shown their potential as adjuvant
therapies.170-193 Moreover, phytochemicals are remarkably nontoxic. The proposed
mechanisms of these phytochemicals are yet to be fully elucidated, however, it has been
proposed that due to their ubiquity in nature, through evolution, phytochemicals inherently
possess diverse mechanisms of action.297 Furthermore, development of phytochemical
analogs with more specific spectra of activity is also underway. For some of these agents,
the ability to achieve physiologically relevant concentrations has also been a challenge.
Therefore, further studies are needed to delineate their target molecules, create novel
vehicles to improve bioavailability, and/or develop effective analogs.

Conclusions and future directions

The elucidation of melanoma cell signaling pathways and development of cell signaling
inhibitors represent a momentous accomplishment in the treatment of metastatic melanoma,
and have led to much-needed new treatments. The combination of dabrafenib and trametinib
is now the current treatment of choice for metastatic melanoma with BRAF mutations and
offers improved survival for these patients. Despite these accomplishments, however, a cure
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for patients with metastatic melanoma remains a distant goal. Current research is focused on
discovering even more effective combined regimens that will lead to inhibition of coexistent
melanoma signaling pathways in the hope of stalling or preventing resistance. The discovery
of agents, or agent combinations, with superior toxicity profiles is also a major concern.
Development of therapies for patients with other mutational aberrations, such as NRAS and
c-kit, is also underway. Moreover, phytochemical therapies are on the horizon and have
shown promise in preclinical studies; they also show low toxicity to non-neoplastic cells.
The clinical utility of these agents will be determined by efforts to characterize their
mechanisms, improve bioavailability, and/or develop effective analogs.
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GAPs
FTIs
mTOR
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PDGF
PFS
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elFAE
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mitogen-activated protein kinase
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mammalian targets of rapamycin

vascular endothelial growth factor

platelet-derived growth factor

progression-free survival

phospholipid phosphatidylinositol 4,5-bisphosphate
phosphatidylinositol 3,4,5-trisphosphate
phosphatase and tensin homolog

eukaryotic translation initiation factor

janus kinase-signal transducer and activator of transcription
B-catenin/Microphthalmia-associated transcription factor
nuclear factor kappa B

matrix metalloproteinase

activator protein-1

alpha-melanocyte-stimulation hormone

Epigallocatechin gallate
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IL-18 interleukin-1beta
NLRP1 nuclear localization leucine-rich-repeat protein 1
FAK focal adhesion kinase
XIAP X-linked inhibitor of apoptosis protein
Bcl-2 B-cell CLL/lymphoma 2
PCNA proliferating cell nuclear antigen
Mcl-1 induced myeloid leukemia cell differentiation protein
MST1 Macrophage stimulating 1/hepatocyte growth factor-like
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Figure 1.

Signaling pathways activated in melanoma
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