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Abstract

Connexins are widely distributed proteins in the body that are crucially important for heart and 

brain function. Six connexin subunits form a connexon or hemichannel in the plasma membrane. 

Interactions between two hemichannels in a head-to-head arrangement result in the formation of a 

gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical 

current flow between heart and nerve cells or by allowing exchange of chemical signals and 

energy substrates. Apart from its localisation at the sarcolemma of cardiomyocytes and brain cells, 

connexins are also found in mitochondria where they are involved in the regulation of 

mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and 

gender as well as several pathophysiological alterations such as hypertension, hypertrophy, 

diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodelling or heart failure, 

and post-translationally connexins are modified by phosphorylation/de-phosphorylation and 

nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well 

as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to 

be important for cardiac and brain ischemia/reperfusion injury as well as protection from it. 

Therefore, the current review will focus on the importance of connexin 43 for irreversible injury 
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of heart and brain tissue following ischemia/reperfusion and will highlight the importance of 

connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.

1. General introduction to connexins

Connexins (Cx) are widely distributed proteins in the body that are crucially important for 

heart and brain function. Connexins are integral membrane proteins which span the plasma 

membrane four times with N- and C-terminal ends facing the cytosol (Figure 1). Six Cx 

monomers form a connexon or hemichannel in the plasma membrane. Interactions between 

the extracellular loops (EL) of two hemichannels in a head-to-head arrangement result in the 

formation of a gap junction channel (reviewed in Desplantez et al., 2007; Saez et al., 2003). 

In this process, the two closed hemichannels open, thereby forming a channel that directly 

connects the cytoplasm of the two adjacent cells allowing the exchange of ions and small 

molecular weight substances up to ~2 kDa. Gap junctions are assemblies of closely packed 

gap junction channels that often appear as gap junction plaques containing thousands of gap 

junction channels. Gap junction plaques are typically observed in the heart at the 

intercalated disks of adjacent cardiomyocytes (Revel & Karnovsky, 1967; Severs, 1990) 

where they facilitate electrical current flow that coordinates cardiomyocyte contraction to 

sustain its pump function (Severs et al., 2004). In the brain, gap junctions communicate 

electrical signals between neurons (Pereda, 2014) and pass chemical signals and metabolites 

(glucose, lactate) between glial cells to support the function of the neuronal, glial and 

vascular cell ensemble in the neurovascular unit (Giaume et al., 2010).

Hemichannels are precursors of gap junctions but they also exist as free, non-junctional 

channels in the plasma membrane. They are normally closed but may open in response to 

various triggers including cell depolarization, decreased extracellular calcium ion (Ca2+) 

concentration, increased intracellular Ca2+ concentration and alterations in the 

phosphorylation or redox status (D'Hondt et al., 2014; Giaume et al., 2013; Orellana et al., 

2013; Saez & Leybaert, 2014). In the brain, glial plasma membrane hemichannels may 

function as gliotransmitter release pores (Cheung et al., 2014; Montero & Orellana, 2015; 

Orellana & Stehberg, 2014). Most of the evidence currently available, however, implicates 

plasma membrane hemichannels as pathological rather than physiological entities, 

contributing to cell swelling and cell death. In heart and brain cells, excessive hemichannel 

opening allows the entry of sodium (Na+) and Ca2+ and the escape of potassium (K+), 

adenosine triphosphate (ATP) and other small metabolites, leading to osmotic shifts, energy 

depletion, Ca2+ overload and cell death promotion (John et al., 1999; Kondo et al., 2000; 

Bargiotas Monyer, & Schwaninger, 2009; Contreras, et al., 2004; Davidson et al., 2013; 

Davidson et al., 2014; Decrock et al., 2009; Li et al., 2001; Orellana et al., 2014; Wang et 

al., 2013).

Mutations of the Cx protein may lead to congenital diseases; the most frequent one is 

hearing loss linking to Cx26, Cx30 and other Cxs (Kelly et al., 2014). In the heart atrial 

fibrillation may result from mutations in Cx40 (Molica et al., 2014). Cxs also play 

prominent roles in acquired diseases. Under pathological conditions, gap junctions may 

expand cell injury/cell death to surrounding healthy cells causing bystander (Lin et al., 1998) 

or “spreading of injury” (Garcia-Dorado et al., 2004) effects. Conversely, gap junctions may 
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also act in a protective manner by supplying essential nutrients and metabolites, thereby 

preventing injury or death of healthy neighboring cells (Decrock et al., 2009). In cardiac 

infarction, ischemia triggers a decrease in gap junctional communication as a result of 

acidosis, increased intracellular Ca2+ concentration ([Ca2+]i) and altered phosphorylation 

and nitrosylation levels (Fig. 2). This along with alterations in other ion channels, leads to 

slowed electrical impulse conduction and increased risk for arrhythmias (Cascio et al., 2005; 

Dhein, 2006; Dhein et al., 2014). In brain ischemia, astrocytic gap junctional coupling 

decreases, and like in heart, closure is incomplete (Cotrina et al., 1998; Eugenin et al., 

2012). Decreased coupling hampers the spatial buffering of potassium and glutamate, and 

limits sharing of energy substrates from the astrocytic syncytium to neurons (Contreras et 

al., 2004; Rossi et al., 2007). Unfortunately, the remaining coupling may be sufficient to 

propagate bystander injury and cell death between astrocytes and between gap junction-

coupled neurons (Belousov & Fontes, 2013).

In physiology as well as in pathology, Cx functions are not always linked to their roles as 

channels (reviewed in Giepmans, 2004; Vinken et al., 2012)). Many Cxs can be anchored to 

scaffolding proteins via CT interaction. For example, the CT of connexin 43 (Cx43) can 

interact with the PDZ-domain of zona occludens protein-1 (ZO-1), linking it to the 

cytoskeleton. CT-ZO-1 interaction may compete with the binding of transcription factors to 

ZO-1 (for example, ZO-1-associated nucleic acid binding proteins (ZONAB), a transcription 

repressor) and in this way influence gene expression (Balda & Matter, 2000). Interaction of 

the CT with β-catenin may influence Wnt signaling while interactions between CT and c-Src 

(Herrero-Gonzalez et al., 2010) inhibits c-Src-related oncogenic activity and key steps of 

cell cycle regulation (Zhang et al., 2003). Finally, the Cx43 CT can potentially localize to 

the nucleus and thereby inhibit cell growth (Dang et al., 2003; Vinken et al., 2012).

The most abundant Cx in brain and heart is Cx43. In the brain, Cx43 is most prominently 

expressed in astrocytes but is also present in microglial cells (Giaume & Theis, 2010). 

Astrocytes additionally express Cx30 and microglial cells express Cx32 and Cx36. 

Oligodendrocytes express Cx32, Cx47 and Cx29, and neurons mainly Cx36. Brain capillary 

endothelial cells that form the blood-brain barrier mainly express Cx37 and Cx40, with 

some low Cx43 signal that is increased with inflammation (Cronin et al., 2008; Danesh-

Meyer et al., 2012). Neurons do not express Cx43 but they do express Cx36 and Cx45.

In the heart, Cx43 is most prominently expressed in cardiomyocytes of the ventricles, with 

some signals obtained also in the atria and endothelial cells (Severs et al., 2008). The atria 

mainly contain Cx40, which is also expressed together with Cx37 in coronary endothelial 

cells. Apart from Cx43, the special conduction system in the ventricles contains Cx45. In the 

atrioventricular and sinoatrial node of mice, Cx30.2 is expressed while its orthologous 

protein Cx31.9 is not detectable in the human cardiac conduction system (Kreuzberg et al., 

2008).

Using knockout/knockin and pharmacological approaches Cx43 has been shown to play 

important roles during cardiac and brain ischemia/reperfusion injury as well as protection 

from it. Therefore, the current review will summarize the existing evidence for the role of 
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Cx43 in irreversible injury of heart and brain tissue following ischemia/reperfusion 

highlights Cx43 as an emerging drug target for cardio- and neuroprotection.

2. Regulation of Cx43 in heart and CNS

2.1. Posttranslational modification

With an increasing number of new phosphorylation specific antibodies and constructs, 

research related to Cx43 regulation has gone past a simple correlation of unspecified 

phosphorylation-related migration shifts on Western blots to an approach whereby Cx43 

phosphorylation can be mechanistically linked to changes in Cx43-interacting protein 

binding, gap junctional communication, hemichannel function, kinase activity and the 

underlying signalling pathways affecting cell biological function (Chen et al. 2013; Cooper 

& Lampe, 2002; Dunn et al., 2012; Dyce et al., 2012; Ek-Vitorin et al., 2006; Johnstone et 

al., 2009; Johnstone et al., 2012; Lampe et al., 1998b; Lampe et al., 2006; Marquez-Rosado 

et al., 2012; Solan & Lampe, 2008; Solan et al., 2007; TenBroek et al., 2001).

Cx43, like Cx31, 32, 37, 40, 43, 45, 46, and 50 is a phosphoprotein with clear evidence for 

phosphorylation at more than 12 serine (S) and tyrosine (Y) sites in the CT region of the 

protein via at least 6 kinases (Axelsen et al., 2006; Dunn et al., 2012; Ek-Vitorin et al., 2006; 

Johnstone et al., 2009; Johnstone et al., 2012; Lampe, 1994; Lampe et al., 1998a; Lampe et 

al., 2006; Marquez-Rosado et al., 2012; Richards et al., 2004; Saez et al., 1998; Solan & 

Lampe, 2008; Solan et al., 2007; Stagg & Fletcher, 1990; TenBroek et al., 2001). Also like 

most other Cx, Cx43 has a short half-life reported to be ~2 hours in cell lines and cardiac 

tissue (Beardslee et al., 1998; Crow et al., 1990; Darrow et al., 1995; Hertlein et al., 1998; 

Laird et al., 1991; Lampe, 1994; Musil et al., 1990; Musil & Goodenough, 1991), and 

phosphorylation status has been linked to differences in Cx43 localization and half-life 

(Axelsen et al., 2006; Dunn & Lampe, 2014; Lampe, 1994; Lampe et al., 1998a; Marquez-

Rosado et al., 2012; Richards et al., 2004; Solan et al., 2007). Truncated Cx43 that lacks the 

CT portion (Cx43K258 stop) can form gap junctions but their channels have different 

permeability/electrophysiological properties (Dunham et al., 1992; Fishman et al., 1991; 

Moreno et al., 2002). Furthermore, truncated Cx43 has a prolonged half-life and a knockin 

mouse expressing truncated Cx43 (Cx43K258stop) died shortly after birth (Maass et al., 

2004).

Cx43 phosphorylation at S364 (TenBroek et al., 2001) and S365 (Solan et al., 2007) 

increases in response to stimuli that enhance gap junction assembly, and phosphorylation at 

S325/328/330 via casein kinase 1 (CK1) regulates assembly into gap junction channels 

(Cooper & Lampe, 2002; Lampe et al., 2006).

Cx43 localization and phosphorylation are dramatically modulated during ischemia and 

injury (Axelsen et al., 2006) most likely depending on the cellular ATP content (Turner et 

al., 2004).

In isolated rat (Matsushita et al., 2006) and rabbit (Tansey et al., 2006) hearts, prolonged 

ischemia/hypoxia (>15 minutes) induces sarcolemmal redistribution of Cx43 with a 

reduction of gap junctional Cx43 [and N-cadherin (Tansey et al., 2006)] and increased 

Schulz et al. Page 4

Pharmacol Ther. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression at the lateral surface of cardiomyocytes (Beardslee et al., 2000). These changes 

are concomitant with changes in Cx43 phosphorylation: ischemia results in a 8-fold loss of 

pS365 (Solan et al., 2007) and S325/328/330 (Lampe et al., 2006), and a 5-fold and 3.5-fold 

increase at S368 (Ek-Vitorin et al., 2006) and S373, respectively (Dunn & Lampe, 2014). 

The dephosphorylation of S365 in response to ischemia occurs rapidly (5 min) (Sosinsky et 

al., 2007) followed by increases in S368 phosphorylation, consistent with a “gatekeeper” 

concept where S365 phosphorylation prevents S368 phosphorylation leading to an inverse 

relationship in vivo (Solan et al., 2007). Thus, the role of Cx43 phosphorylation in 

regulating cardiac injury in response to hypoxia appears to be multifold. Proteasomal 

inhibition increases and stabilizes phosphorylated Cx43 present in gap junctions via 

increased Akt activity (Dunn et al., 2012), and Akt phosphorylation of Cx43 at S373 

(pS373) eliminates ZO-1 interaction and causes a dramatic increase in gap junction size that 

can be mimicked by expression of Cx43 with a S373D mutation (Dunn & Lampe, 2014). 

Cx43 is sequentially phosphorylated (Figure 1) by Akt (Dunn & Lampe, 2014), c-Src (Solan 

& Lampe, 2008), mitogen activated protein kinases (MAPK) (Johnstone et al., 2012) and 

protein kinase (PKC) (Lampe, 1994; Richards et al., 2004; Solan et al., 2003) in response to 

growth factors, hypoxia and other stimuli which induce acute gap junction turnover. Gap 

junction size is negatively regulated by Cx43 interaction with ZO-1 in experiments where 

the endogenous ZO-1:Cx43 interaction was outcompeted with a Cx43 CT peptide mimetic 

resulting in a dramatic increase in gap junction size (Hunter et al., 2005). During ischemia, 

S373 phosphorylation is coincident with an increase in gap junction size and precedes 

internalization (Dunn & Lampe, 2014). Internalized Cx43 in isolated mice hearts following 

30 min global ischemia shows increased phosphorylation at Ser373 and Ser368 which 

enables the binding of the 14-3-3 protein leading to ubiquitination of Cx43 (Smyth et al., 

2014), a process which can be attenuated by protein kinase C inhibition (Liao et al., 2013).

A gap junction can be internalized in its entirety via formation of a double membrane 

structure termed an annular junction (Archard & Denys, 1979; Fong et al., 2012; Johnson et 

al., 2013; Jordan et al., 2001; Laird, 2006; Leithe et al., 2006; Nickel et al., 2013; Piehl et 

al., 2007; Severs et al., 1989) or via loss of extracellular Cx interactions followed by 

endocytosis of the remaining connexon from a single membrane. During internalization, 

Cx43 can be phosphorylated by c-Src and inhibition of c-Src activity via protein 

phosphatase 2 blocks growth factor-induced gap junction turnover (Gilleron et al., 2008; 

Spinella et al., 2003). Glycyrrhetinic acid-related gap junction inhibitors remodel gap 

junctions into a looser packing arrangement (Goldberg et al., 1996) in a process that 

involves c-Src binding (Chung et al., 2007) and leads to disruption of Cx43-ZO-1 interaction 

(Gilleron et al., 2008). C-Src can directly interact with ZO-1 and compete for binding to the 

CT region of Cx43 (Gilleron et al., 2008; Kieken et al., 2009; Sorgen et al., 2004). Clearly, 

c-Src plays a role in gap junction turnover, but whether c-Src phosphorylation of Cx43 plays 

a direct role is not known. C-Src phosphorylation of the N-methyl-d-aspartate (NMDA) 

receptor, GluN3A (Chowdhury et al., 2013), triggers its endocytosis. Whether c-Src 

phosphorylation can direct the endocytic route of internalization through annular junction 

formation or by “unzippering” gap junctions via loss of extracellular interactions followed 

by endocytosis is unknown. The formation of double membrane endocytic vesicles (i.e., 

annular junctions) appears to be fairly specific to gap junctions though there are a few 
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reports of “trans-endocytosis” occurring in dendritic cells (Spacek & Harris, 2004) and in 

response to receptor ligand complex formation during neural (Marston et al., 2003) and 

Drosophila development (Klueg et al., 1998). Cx43-containing annular junctions have been 

well-documented (Archard & Denys, 1979; Fong et al., 2012; Johnson et al., 2013; Jordan et 

al., 2001; Laird, 2006; Leithe et al., 2006; Nickel et al., 2013; Piehl et al., 2007; Severs et 

al., 1989) but the role Cx43 phosphorylation plays is still unclear.

Knockin of Cx43 phosphoserine-site mutants (S to A, resulting in a non-phosphorylation 

mutant version of Cx43 at that site) into mice are of particular interest to determine the 

functional necessity for Cx43 phosphorylation in vivo. Three knockin mice lines with Cx43 

mutations at sites phosphorylated by MAPK, CK1 and PKC have been generated, all 

knocked-in under the endogenous Cx43 promoter (referred to as Cx43PKC, Cx43CK1 and 

Cx43MAPK knockin mouse lines) (Huang et al., 2011). All 3 knockin mice lines show 

different changes in Cx43 phosphorylation, different migration in SDS-PAGE, and varying 

gap junction stability (e.g., two distinctly derived lines of the Cx43PKC KI mouse show 60% 

reduced Cx43 levels in heart). The Cx43CK1 mice where the S325/328/330 serines are 

converted to glutamates were resistant to pathological remodeling and to the induction of 

ventricular arrhythmias while the line with conversion to alanine were prone to it (Remo et 

al., 2011). The Cx43MAPK mice show dramatically reduced vascular smooth muscle cell 

proliferation and neointima formation during arteriole injury (Johnstone et al., 2012).

These results prove that Cx43 phosphorylation plays a key role in modulation of the 

response to injury in heart and brain in vivo and that these findings might translate into 

putative therapeutic applications in the future.

2.2. Expression of Cx43

Estrogen (Yu et al., 1994) and triiodothyronine (Stock and Sies, 2000) directly bind to the 

promoter region of the Cx43 gene thereby increasing its expression. Other transcription 

factors involved in the regulation of Cx43 expression in cardiomyocytes are TBX18 (family 

member of T-box transcription factor suppressing Cx43, Kapoor et al., 2011), MSX1/2 (Msh 

homebox suppressing Cx43, (Boogerd et al., 2008)), AP1 and CREB (cAMP responsive 

element binding protein stimulating Cx43, (Salameh et al., 2009)) or NKx2.5 (suppressing 

Cx43, (Kasahara et al., 2003)). AP1 and CREB are translocated to the nucleus secondary to 

the activation or PKA or MAPK, such as p38 or extracellular regulated kinase (Erk) 1/2 

(Salameh et al., 2009).

Cyclic stretch increases N-cadherin expression at the longitudinal sites of cardiomyocytes, a 

process requiring rho/rac (Matsuda et al., 2006). Loss of N-cadherin reduces Cx43 

expression at gap junctions (Li et al., 2008;Li et al., 2005;Palatinus et al., 2011;Zhu et al., 

2010). As cyclic stretch increases N-cadherin in cardiomyocytes, it also increases total Cx43 

expression and polarization of Cx43 to the longitudinal sites (Salameh et al., 2012). The 

increases in Cx43 expression and localisation to gap junctions in stretched cardiomyocytes 

involve angiotensin II, Akt, Erk1/2 and glycogen synthase kinase (GSK) 3ß (Salameh et al., 

2012;Salameh et al., 2010a;Salameh et al., 2010b;Shyu et al., 2001). Angiotensin II also 

increases Cx43 expression (Dodge et al., 1998;Polontchouk et al., 2002) and N-cadherin 

expression in cardiomyocytes (Adam et al., 2010).
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In addition to angiotensin II, other stimuli can also increase Cx43 expression in 

cardiomyocytes including norepinephrine (Salameh et al., 2006;Salameh et al., 2008), 

endothelin 1 (Polontchouk et al., 2002), low concentration of aldosterone (Suzuki et al., 

2009) and tumor necrosis factor alpha (Salameh et al., 2004). However, long-term treatment 

with stimuli inducing cardiomyocyte hypertrophy might also activate signaling cascades 

which suppress Cx43 expression; indeed, norepinephrine caused by activation of c-Jun N-

terminal kinase (JNK)1/2 attenuates Cx43 expression over time, an effect that also involves 

the sodium-proton and sodium-calcium exchanger (Stanbouly et al., 2008). Over-expression 

of active JNK decreases Cx43 expression at gap junctions (Petrich et al., 2002) and may 

activate Cx43 degradation through ubiquitination and proteosomal degradation (Mollerup et 

al., 2011). Similar to norepinephrine, endothelin-1 increases cardiomyocyte size more than 

Cx43 expression, leading to a relative reduction in sarcolemmal Cx43 expression and 

cardiomyocyte coupling (McSpadden et al., 2009). Cx43 in cardiomyocytes is not only 

involved in cellular coupling via gap junctions but through formation of hemichannels that 

play a role in basal calcium signaling (Li et al., 2012). While signaling in cardiomyocytes is 

important, the interaction of cardiomyocytes with other cell types may modify these 

responses. Prolonged stimulation of cardiomyocytes with isoprenaline increases Cx43 

expression through activation of Erk1/2 (Salameh et al., 2013;Salameh et al., 2009); 

however, in co-cultures of cardiomyocytes and fibroblasts, paracrine factors released by 

fibroblasts suppress the isoprenaline-induced increase in Cx43 expression in cardiomyocytes 

(Pedrotty et al., 2009;Salameh et al., 2013). Such suppression can partially be reversed by 

blocking angiotensin II or PKC (Pedrotty et al., 2009), and in cardiac tissue from mice, 

inhibition of the renin angiotensin system increases Cx43 expression (Iravanian et al., 2011).

2.3. Ischemia/hypoxia-induced alterations of Cx43 expression

Hypoxia of cardiomyocytes changes the Cx43 expression and phosphorylation time-

dependently. During short periods of hypoxia (up to 15 minutes) Cx43 content remains 

unchanged (Matsumura et al., 2006;Zeevi-Levin et al., 2005). With prolonged hypoxia 

(several hours), downregulation of Cx43 at gap junctions occurs (Danon et al., 2010), Cx43 

is internalized (Sato et al., 2009) and subsequently the total cellular Cx43 content decreases 

(Zeevi-Levin et al., 2005).

Metabolic inhibition activates c-Src kinase, an effect inhibited by 17ß-estradiol (Chung et 

al., 2009). Furthermore, 17ß-estradiol treatment preserves Cx43 phosphorylation at PKC 

epitopes during metabolic inhibition (Chung et al., 2004) thereby contributing to maintained 

localization of Cx43 to gap junctions.

In cardiomyocytes, the muscarinic M3 receptor is associated with Cx43 (Yue et al., 2006) 

and the hypoxia-induced decrease in total Cx43 expression is attenuated by acetylcholine 

(Zhang et al., 2006). Similarly, proteasome inhibitors attenuate the hypoxia-induced decline 

in Cx43 expression (Laing and Beyer, 1995;Zhang et al., 2006).

In summary, stimulation of Cx43 expression in Cx43 deficient pathologies may be a 

therapeutic option to reverse loss of Cx43.
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3. Pharmacological modulation of Cx43-formed channels

The available arsenal of pharmacological agents modulating (mostly inhibiting) gap 

junctions and hemichannels is extensive and contains chemically diverse compounds. A 

large group is formed by small molecule inhibitor substances; most of these have targets 

other than Cx and are therefore non-selective. This group (reviewed in (Bodendiek & 

Raman, 2010)) includes glycyrrhetinic acid and its derivative carbenoxolone (steroid-like 

structures from Glycyrrhiza also exhibit anti-inflammatory and mineralocorticoid effects), 

long-chain alcohols like heptanol and octanol (having general biophysical effects at the level 

of the plasma membrane), halothane (an inhalational general anesthetic), fatty acids like 

arachidonic acid (a poly-unsaturated fatty acid present in plasma membrane phospholipids 

and involved in phospholipase C (PLC) and inflammatory signaling) and oleic acid (a mono-

unsaturated fatty acid with various biological effects, abundantly present in olive oil), fatty 

acid amides like oleamide and anandamide (targeting cannabinoid receptors), fenamates like 

flufenamic acid, niflumic acid and meclofenamic acid (non-steroid anti-inflammatory 

molecules), and quinine, its stereo-isomer quinidine and its derivative mefloquine 

(antimalarial drugs). Several other compounds that inhibit gap junctions are best known for 

their other actions, like 2-aminoethoxydiphenyl borate (2-APB, a blocker of inositol 

trisphosphate (IP3) receptors and store-operated Ca2+ entry (Bootman et al., 2002)), 

polyamines like spermine and spermidine (acting on NMDA channels and several other 

targets), 5-Nitro-2-(3-phenyl-propylamino)benzoic acid (NPPB, a chloride channel blocker), 

disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS, an anion transport blocker), 

and certain triphenylmethanes, triphenylethanes, triarylmethanes and cyclodextrins. 

Importantly, most of these substances have been characterized for their gap junction-

inhibiting effects but they invariably also inhibit hemichannels. The mode of action of 

arachidonic acid is different because it inhibits gap junctions but promotes hemichannel 

opening (Contreras et al., 2002; De Vuyst et al., 2007; De Vuyst et al., 2009). Furthermore, 

quinine has been reported to activate hemichannels as well (based on ATP release 

measurements (Stout et al., 2002)). Many of the above listed compounds additionally block 

channels composed of pannexins, including carbenoxolone, flufenamic acid (Bruzzone et 

al., 2005), NPPB and DIDS. Of note, low concentrations of carbenoxolone (5 μM) 

preferentially inhibit pannexin channels while higher concentrations (50 μM) are needed to 

also inhibit connexin channels (Schalper et al., 2008).

Because of the lack of specificity of small molecule inhibitors of Cx channels, substantial 

interest has been directed to peptides as agents with better selectivity potential. AAP10 

peptide is one of the first peptides reported to have connexin modulating properties, and it 

increased gap junctional coupling. Later, peptides identical to certain Cx domains called Cx 

mimetic peptides, were introduced as agents with better specificity towards Cx channels.

AAP10 is a 6 amino acid peptide that was found to promote gap junctional coupling (Grover 

& Dhein, 1998, 2001; reviewed in Dhein et al., 2010; De Vuyst et al., 2011). It binds with 

nanomolar affinity to a yet unindentified membrane G-protein coupled receptor (typical 

active AAP10 concentrations are 10-50 nM), thereby resulting in the activation of certain 

protein kinases. The junctional coupling-promotive effect has been demonstrated to be 

mediated by activation of PKCα. There is some selectivity in the effect on gap junctions, 
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with Cx43 and Cx45 junctional coupling being promoted and Cx40 not affected. Rotigaptide 

(ZP123) is a more stable version of AAP10 composed of D-amino acids concatenated in 

reverse order, resulting in higher stability after administration to animals. These peptides 

have been shown to be effective against ischemia-induced ventricular fibrillation and 

possibly also atrial fibrillation (see Dhein et al, 2010). Gap-134 is a small molecule version 

designed based on insights obtained from the pharmacophore of AAP10. This substance has 

been tested in phase I clinical trials on healthy volunteers and was demonstrated to be safe 

(NCT00783341, 2009). Conclusive information on phase II clinical trials is lacking. Of note, 

AAP10 promotes hemichannel opening as judged from ATP release studies performed in 

cardiomyocytes exposed to ischemia-mimicking conditions (Clarke et al., 2009). 

Uncontrolled opening of Cx43 hemichannels can mediate Na+ or Ca2+ entry and loss of 

intracellular K+, so any potential side effects of these compounds will have to be carefully 

followed.

Cx mimetic peptides were introduced over 20 years ago with the aim of finding sequences 

that had specific physiological effects (mainly channel block) on Cx channels. The first Cx 

mimetic peptides described were identical to sequences on extracellular loop (EL) 1 or 2. 

Peptide B/1 (VCYDHFFPISHVR) on EL1 and peptide5 (SRPTEKTVFTV) on EL2 of Cx32 

were most effective in delaying synchrony in spontaneously beating chick cardiomyocytes 

in a myoball assay (Warner et al., 1995). These two peptides contain the VCYD and SHVR 

sequences on EL1, and the SRPTEK sequence on EL2 that are conserved between Cx32, 

Cx42, Cx43 and Cx45. For Cx43, the corresponding sequences are VCYDKSFPISHVR, 

called Gap26, and SRPTEKTIFII, called Gap27 (Figure 1). Because these sequences are 

very well conserved between different Cx, it comes to no surprise that Cx43-based mimetic 

peptides also inhibit gap junctions composed of other Cx. For example, the Cx43 sequence 

of Gap27 (sometimes denoted as 43Gap27) also inhibits gap junctions composed of Cx37 

(Chaytor et al., 2001). However, it has not been systematically investigated whether Cx 

other than Cx37 and Cx43 are also targeted by 43Gap27. The Gap26/Gap27 sequences are 

not found in other proteins, which may be key for their specificity for the Cx family rather 

than non-Cx targets. However, 20 years after the discovery that Gap-peptides can block gap 

junctions, it still remains unknown which domains on the extracellular loops they interact 

with so the actual mechanism of how Gap26/27 peptides inhibit gap junctions is still elusive. 

They do not disrupt existing gap junctions but rather act by preventing the formation of new 

gap junctions (Evans & Boitano, 2001). The peptides thus probably interact with the ELs on 

free hemichannels and thereby hinder/prevent the docking and assembly of two 

hemichannels into new gap junction channels. Gap26/27 also inhibit conductance of 

hemichannels (Braet, Vandamme, Martin, Evans, & Leybaert, 2003). In fact, inhibition of 

hemichannels occurs faster, within minutes, than inhibition of gap junctions which takes 

something in the range of hours, at least in cell culture assays (Decrock et al., 2009). In 

terms of diffusion, minutes is very long suggesting that the interaction site is poorly 

accessible (Wang et al., 2012). Single-channel patch clamp studies of Cx43 hemichannel 

block indicate a half-maximal inhibitory concentration of 81 μM for Gap26 and 161 μM for 

Gap27. However, inhibition obtained with Gap27 is stronger as compared to Gap26. Single-

channel analysis further demonstrated that Gap26/27 do not cause hemichannel pore block 

(provided their concentration is below 1 mM) and do not influence the unitary hemichannel 
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conductance of ~220 pS (Wang et al., 2012). Instead, Gap26/27 appear to act on channel 

gating as they reduce the open probability and increase the voltage threshold for electrical 

activation. Hemichannels can also be activated by chemical signals, for example by an 

increase in the intracellular Ca2+ concentration. It is not entirely clear how Gap26/27 inhibit 

chemically-triggered hemichannel opening but a likely scenario is that they interact with a 

binding site outside the permeation pathway of the closed hemichannel and thereby lock the 

channel in a stabilized closed state (Wang et al., 2013).

3.1. Blocking hemichannels without blocking gap junctions

As mentioned earlier, most gap junction blockers, including carbenoxolone/glycyrrhetinic 

acid-derived molecules also block hemichannels and are thus not hemichannel-specific 

(Takeuchi et al., 2011). Lanthanum ions (La3+) block hemichannels and do not inhibit gap 

junctions (Anselmi et al., 2008) but this trivalent ion also blocks Ca2+ channels (Mlinar & 

Enyeart, 1993; Young et al., 2002). Gadolinium (Gd3+) is another trivalent ion hemichannel 

blocker (Stout et al., 2002). These trivalent ions can be used for in vitro work on cells with 

low expression of Ca2+ channels but they are not appropriate tools to block hemichannels in 

a complex in vivo setting. Gap26/27 peptides are also useful, provided cell exposure is short 

enough (tens of minutes) to prevent effects on gap junctions. Peptide5 (VDCFLSRPTEKT 

(Figure 1) [see Table 1], not to be confused with peptide5 from the Warner et al. (1995a) 

study, overlaps with Gap27 (SRPTEKT) but lacks the last 4 C-terminal amino acids and has 

5 extra amino acids N-terminally. This peptide was identified by testing various slightly 

overlapping mimetic sequences of the Cx43 EL2 for their potential to inhibit the swelling of 

rat pup spinal cord segments kept in organotypic culture; peptide5 more than halved 

swelling after 1 or 4 days in culture. Propidium iodide hemichannel dye uptake assays with a 

low extracellular Ca2+ concentration showed hemichannel block at 5 μM while calcein dye 

spread studies indicated gap junction block at 500 μM (O'Carroll et al., 2008). Interestingly, 

peptide5 also reduced Cx43 expression and had beneficial effects on glial fibrillary acidic 

protein (GFAP) expression in astrocytes and neuronal nuclei (NeuN) and SMI-32 (marker 

of nonphosphorylated neurofilaments) expression. The distinct concentration-dependence of 

hemichannel and gap junction block indicates there may be two different, yet unknown 

interaction sites for peptide5. It should be noted that, although peptide5 mimics a sequence 

on EL2 of Cx43, this does not mean that this peptide is necessarily selective for this 

particular Cx – further testing of its selectivity is therefore indicated.

Recent work has identified two new peptides, called L2 and Gap19, (Figure 1) which 

specifically block Cx43 hemichannels without inhibiting gap junctions. In contrast to 

Gap26/27 and peptide5, these two peptides mimic sequences located at the intracellular side 

of the Cx43 protein which is known to vary widely between different connexins. The L2 

sequence is located on the cytoplasmic loop (CL) of Cx43 and the Gap19 sequence is a 9 

amino acid stretch within the L2 domain (Wang et al., 2013) (Table 1)(L2 sequence: 

DGANVDMHLKQIEIKKFKYGIEEHGK, Gap19 sequence underlined). The L2 region is 

involved in CL interactions with the CT and the short Gap19 sequence is a crucial domain 

for this interaction. CT-CL interaction results in closure of gap junctions, according to a 

putative ball-and-chain model (reviewed in (Delmar et al., 2004)). Exogenous addition of 

L2-derived RXP Cx43-binding peptides prevents CT-CL interaction and thereby prevents 
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gap junction closure induced by acidification or octanol (Verma et al., 2009), i.e., L2 peptide 

acts to stabilize the open state of gap junctions. Surprisingly, the L2 peptide, in contrast to 

its effects on gap junctions, blocks Cx43-based hemichannels (Ponsaerts et al., 2010). 

Gap19 displays similar effects: inhibition of Cx43 hemichannels while not affecting gap 

junctions upon short exposure (30 min) but slightly stimulating them upon longer exposures 

(24-48 hrs) (Wang et al., 2013). In depth mechanistic investigations based on single-channel 

patch clamp experiments, surface plasmon resonance (SPR) and amino acid substitution 

experiments showed that CT-CL interactions are necessary for hemichannel opening 

(Abudara et al., 2014; D'Hondt et al., 2013; Iyyathurai et al., 2013; Ponsaerts et al., 2012; 

Ponsaerts et al., 2010; Ponsaerts et al., 2012; Wang et al., 2013). CT-CL interactions by 

themselves do not trigger hemichannel opening per se but bring the hemichannels into an 

available-to-open state that allows their opening by other stimuli of electrical or chemical 

nature (Saez & Leybaert, 2014; Wang et al., 2013). Moreover, Gap19 specifically acts on 

Cx43 hemichannels while not influencing Cx40 hemichannels or pannexin 1 channels 

(Wang et al., 2013). Thus, Gap19 and L2 peptides are interesting tools to investigate 

contributions of Cx43 hemichannels in brain and heart diseases, in particular ischemia 

and/or inflammatory conditions. L2 is not membrane permeant but Gap19 has some intrinsic 

plasma membrane permeability related to its high lysine content (4 out of 9 amino acids are 

lysines). Both Gap19 and L2 peptides can be linked to the TAT membrane translocation 

motif to improve/facilitate cell entry and access to the cytoplasmic Cx43 CT target. 

Determination of the half-maximal hemichannel inhibition concentration for the TAT-linked 

versions of these peptides gave values of ~10 μM for TAT-L2 and ~7 μM for TAT-Gap19, 

which are in good agreement to the Kd values for both peptides to interact with the CT 

determined from SPR experiments. Other novel interesting molecules, for example the linear 

peptide RRNYRRNY, the cyclic peptide CyRP-71 and the peptidomimetic ZP2519 target 

the Cx43 CT and act to prevent Cx43-based gap junction closure (De Vuyst et al., 2011; 

Verma et al., 2009; Verma et al., 2010). These substances are of potential translational value 

because they prevent gap junction closure and thereby preserve the physiological roles of 

gap junctions while they are expected (but still not proven) to inhibit hemichannel opening 

(by preventing CT-CL interaction).

Another approach for blocking hemichannels is the use of antibodies directed against the 

extracellular portions of the Cx proteins. Antibodies against the ELs have been generated for 

Cx26 (Clair et al., 2008) and Cx43 (Baklaushev et al., 2009; Riquelme et al., 2013; Hofer & 

Dermietzel, 1998; Siller-Jackson et al., 2008). Antibodies raised against the EL2 of Cx43 

(Figure 1) have higher affinity than those against EL1, hence EL2 antibodies have been most 

frequently used. EL2 antibodies have been raised against the sequence T186 – K206 

(polyclonal Ab, (Hofer & Dermietzel, 1998)), Y185 – K206 (polyclonal Ab, (Siller-Jackson 

et al., 2008)) or Q173-I208 (monoclonal Ab, (Baklaushev et al., 2009)) which include part 

of the Gap27 sequence (SRPTEKTI for Q173-I208). These antibodies block hemichannels 

as determined in assays of low extracellular Ca2+-triggered Lucifer Yellow dye uptake in 

astrocytes (Hofer & Dermietzel, 1998) and fluid shear stress-induced prostaglandin E2 

release in osteocytes (Siller-Jackson et al., 2008). Because they are bulky, it is conceivable 

that hemichannel block is caused by pore obstruction. Additionally, EL-antibodies 

invariably also inhibit gap junctions: they interact with the ELs of free hemichannels and 
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thereby prevent the docking and formation of gap junctions (Riquelme et al., 2013). Like for 

Gap26/27 peptides, gap junction block occurs with some latency which likely depends on 

the turn-over rate of the Cx protein (antibody-bound hemichannels cannot form new gap 

junction channels resulting in slow disappearance of junctional coupling). Although EL-

antibodies have significantly higher affinities than EL-peptides, they may suffer from the 

same specificity limitations because of the conserved nature of the EL sequences (for 

example: Cx32 EL2 has a homology score of ~70% with Cx43 EL2, (Hofer & Dermietzel, 

1998)). EL2 antibodies do however not block pannexin channels (Siller-Jackson et al., 2008) 

that have strongly different sequences compared to Cx.

4. Ischemia/reperfusion injury and neuroprotection in the central nervous 

system

4.1. Irreversible brain injury

Numerous studies of the effect of gap junction blockers and knockout of specific Cx have 

been performed on models of brain ischemia and central nervous system trauma. Most of the 

gap junction blockers used have off-target effects (see 5. Pharmacological modulation of 

Cx43-formed channels) and also affect hemichannels, making mechanistic interpretation of 

the reported results difficult.

Early studies using halothane reported a reduction in infarct size in a mid-cerebral artery 

occlusion (MCAO)/reperfusion model in rats and cats (Saito et al., 1997; Warner et al., 

1995). Intraperitoneal injection of octanol 30 min before MCAO (without reperfusion) in 

rats reduced infarct size measured 24 hrs later by 50% (Rawanduzy et al., 1997). A similar 

octanol treatment schedule gave a 30-50% reduction of cell death in the hippocampus 

following transient (10 min) bilateral clamping of the common carotid arteries in rats (Rami 

et al., 2001). In a model of transient (12.5 min) intrauterine global hypoxia applied to at term 

pregnant rats, carbenoxolone administration reduced pup mortality by 40% 24 hrs later and 

by 55% 21 days later. Caspase-3 activation in the brain was reduced by 57% 24hrs after 

hypoxia (de Pina-Benabou et al., 2005). Using a model of transient (18 min) bilateral global 

ischemia (4 vessel occlusion), carbenoxolone and 18α-glycyrrhetinic administered 30-40 

min before ischemia directly into the hippocampus reduced cell death by 27% in the CA1 

region 5 days after ischemia (Perez Velazquez et al., 2006). Interestingly, treatment was also 

effective when substances were applied 30-40 min after ischemia induction but not when 

applied at 90 min post-induction, indicating that the first 1.5 hrs of ischemia/reperfusion are 

critical for protection by carbenoxolone/18α-glycyrrhetinic treatment.

While the previous studies with Cx channel blockers reported improved outcomes, 

subsequent studies in knockout animals showed the opposite result. Permanent MCAO gave 

a 83% larger infarct size and 120% larger rate of apoptosis (TUNEL) in the penumbra zone 

(zone around the ischemic core) when applied to global heterozygous Cx43 knockout mice 

as compared to wildtype mice (Nakase et al., 2003; Siushansian et al., 2001). Interestingly, 

astrogliosis was reduced in heterozygous Cx43 knockout mice, which might result from 

diminished astrocytic intercellular Ca2+ wave activity (De Bock et al., 2014). Follow-up 

work by the same group in astrocyte-specific Cx43 knockout mice confirmed these results: 
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larger infarct size and rate of apoptosis in the penumbra (Nakase et al., 2004). An up-

regulation of astrocytic Cx30 (the second most prevalent Cx in astrocytes) in heterozygous 

Cx43 knockout mice was reported (Nakase et al., 2003) but no data were included on the 

effect of Cx30/Cx43 double knockout animals on infarct size and astrogliosis. The impact of 

CT-truncation of Cx43 (Cx43 K258stop; Cx43ΔCT/+) was studied in the MCAO model. 

Infarct volume was twice as large in Cx43ΔCT/+ and Cx43ΔCT/− as compared to wildtype 

mice (Kozoriz et al., 2010). Astrogliosis was reduced by 30% (Cx43ΔCT/+) to 50% 

(Cx43ΔCT/−) and microglial infiltration of the peri-infarct zone was almost twice as large in 

Cx43ΔCT/+ and Cx43ΔCT/− compared to wildtype mice. Interpretation of these results is 

more difficult, as the CT-truncation used affects channel as well as non-channel functions of 

Cx43. The effect of Cx43ΔCT/+ in astrocyte cultures demonstrated slightly reduced gap 

junctional coupling in Cx43ΔCT/+ and a more pronounced reduction in coupling (halving) in 

Cx43ΔCT/−. A subconductance state of gap junctional gating appeared to be lost. 

Hemichannels were also tested and propidium iodide dye uptake triggered by a low 

extracellular Ca2+ concentration suggested a doubling of hemichannel function in 

Cx43ΔCT/+ and halved in Cx43ΔCT/− relative to wildtype mice. Intercellular Ca2+ waves, 

which are propagated by both gap junction and hemichannel related mechanisms (Leybaert 

& Sanderson, 2012) were normal in Cx43ΔCT/+ but reduced in Cx43ΔCT/−. Overall, the 

infarct size was increased to a comparable degree in both Cx43ΔCT/+ and Cx43ΔCT/− while 

the effect on channel functions was rather diverse. Although fine-detailed interpretation of 

these results has been proposed in terms of channel functions of Cx43 (Kozoriz et al., 2010), 

overall it looks like the increased brain infarct size associated with CT-truncation has more 

to do with an influence on non-channel functions of Cx43.

Remarkably, no reports are available investigating the use of Gap26/27 as potential 

protective agents against ischemic injury in the brain, while these peptides display clear 

cardioprotective potential (Hawat et al., 2010; Hawat et al., 2012). In part, this is related to 

the fact that these peptides cannot pass the blood-brain barrier (BBB) although they might 

pass through once the BBB has lost its integrity (molecular weight of Gap26 is 1551 and for 

Gap27 1305). Importantly, Cx in BBB endothelial cells are an accessible and promising 

target for neuroprotection purposes in their own right. For example, intravenously 

administered Gap27 protected the BBB against bradykinin-induced leakage by inhibiting 

oscillations in the endothelial cytoplasmic Ca2+ concentration (De Bock et al., 2011). Ca2+ 

entry via Cx hemichannels (Cx43 but probably also Cx37) contributed to endothelial Ca2+ 

oscillations and inhibiting this Ca2+ entry pathway with Gap27 preserved BBB function (De 

Bock et al., 2011; De Bock et al., 2012; De Bock et al., 2013). Peptide5, which has some 

sequence overlap with Gap27 (see Table 1) and blocks hemichannels at 5 μM concentration 

has been demonstrated to be a potential neuroprotectant in various in vivo models of 

ischemia in brain as well as in spinal cord injury. In most cases, application was done 

directly to the neuronal tissue to circumvent problems of limited BBB passage of this 

peptide. In a model of transient 30 min ischemia by bilateral clamping of the carotid arteries 

in fetal sheep, peptide5 when infused intraventrically 90 min after ischemia for 1 hr or 25 

hrs, improved oligodendrocyte survival and prevented brain weight loss associated with 

ischemia (Davidson et al., 2012). Neuronal cell loss was partly but not significantly reduced. 

Making use of the same model, the authors compared intraventricular peptide5 infusion 
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starting 1 hr before and applied during ischemia or starting 90 min after ischemia and 

infused for the next 25 hrs. Only the latter post-ischemia treatment protected significantly 

against neuronal cell loss in the cortex and oligodendrocyte loss in various white matter 

regions (Davidson et al., 2013). Neuronal cell loss in the most vulnerable hippocampal CA1 

and CA3 regions was however not prevented by any of those treatments. Overall, this work 

demonstrates that peptide5 action is most prominent after ischemia, presumably by 

preventing hemichannel opening and thereby limiting injury spread in gray and white matter 

during reperfusion. Intraperitoneal administration of peptide5 at the start of reperfusion (100 

μM estimated systemic concentration) limited Evans blue dye leakage from blood vessels 4 

hrs and 24 hrs later and prevented vascular endothelial cell death after 6 hrs of reperfusion 

(Danesh-Meyer et al., 2012). GFAP astrocyte immunoreactivity was (non-significantly) 

reduced and Cx43 expression was doubled in astrocytes and endothelial cells starting from 4 

hrs.

4.2. Spinal cord injury

In vivo data are also available from spinal cord injury models. The pathophysiology of spinal 

cord injury involves the mechanotrauma proper, associated with direct cell injury, as well as 

ischemia related to vascular thrombosis or tissue swelling-induced vessel compression, 

leading to a secondary/delayed phase of cell death. In a rat spinal cord compression model, 

Cx43 downregulation by local application of antisense oligodeoxynucleotides (Cx43-

asODN) immediately after injury improved the locomotion score from 24 hrs after injury up 

to 4 weeks later (Cronin et al., 2008). It also decreased cord tissue swelling and disruption, 

gave less astrocyte activation, less extravasation of bovine serum albumin and less 

infiltration of neutrophils. In another spinal cord transection model, the observations of less 

astrocyte activation and neutrophil recruitment upon Cx43-asODN treatment were 

confirmed, and it was further demonstrated that treatment decreased OX42+ microglial cell 

recruitment to the lesion site. Animals with astrocyte specific Cx43 knockout combined with 

global knockout of Cx30 (Cx30/Cx43 double knockout) displayed a consistently improved 

locomotor score starting from post-injury day 3 and lasting for at least 56 days (Huang et al., 

2012). Electrophysiological recovery estimated from compound action potential amplitude 

was also better in the Cx30/Cx43 double knockout mice. The lesion volume was more than 

halved at 8 weeks post-injury in the double knockout mice and the myelin mass was 3.5 

times larger in the double knockout compared to wild-type mice. These are striking 

observations as astrocyte-specific Cx43 knockout results in a larger infarct size in brain 

ischemia as discussed above ((Nakase et al., 2004) – though no data are available on Cx30/

Cx43 double knockout mice for brain ischemia). Counts of reactive astrocytes (GFAP 

positive) and microglial cells were also decreased (Huang et al., 2012). Interestingly, post-

injury ATP release measured in the tissue was decreased in the double knockout and the 

authors suggested a link between suppressed ATP release and protection against neuronal 

and oligodendrocyte cell death as well as decreased astrocyte and microglial activation. 

Hemichannel blockade with peptide5 had similar effects as decreasing Cx43 expression. In a 

spinal cord weight drop rat model, local application of peptide5 for 24 hrs (applied via an 

intrathecal catheter and an osmotic pump) improved locomotor recovery, prevented the 

Cx43 increase at 4 hrs and 8 hrs post-injury and restored its phosphorylation at S368 

(O'Carroll et al., 2013). This treatment also decreased astrocyte activation (GFAP 
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expression) adjacent to the lesion site and cell counts of activated microglia up to several 

millimeters away from the lesion site in gray and white matter. Neuron counts were also 

increased after treatment up to several mm away from the lesion (almost double counts of 

SMI32+ cells). Tumor necrosis factor-α and interleukin 1-β expression at the injury site was 

diminished by peptide5 treatment, suggesting a suppressive effect on inflammation and 

microglial activation via inhibition of ATP release or other mechanisms.

4.3. Conditioning

Ischemic preconditioning has been best characterized in the heart (see 7. Ischemia/

reperfusion injury and protection in the heart) but also exerts protective effects in the brain 

(Gidday, 2006). Similar to the heart, the signaling cascade involves mitochondrial ATP-

dependent potassium channels and K+ fluxes (Wu et al., 2011). However, in contrast to the 

heart where preconditioning is linked to mitochondrial Cx43, brain preconditioning has been 

linked to the opening of plasma membrane hemichannels, with subsequent ATP release and 

formation of extracellular adenosine (Lin et al., 2008). A transient MCAO (45 min) 

followed by reperfusion for 24 hrs had a reduced infarct volume when occlusion was 

preceded by ischemic preconditioning in wildtype mice (infarct volume more than halved) 

while there was no protection in Cx30/Cx43 double knockout animals (global knockout for 

Cx30, astrocyte specific knockout for Cx43).

In summary, although results using hemichannel inhibitors and genetic deletion of the 

hemichanel gene provided conflicting results, selective Cx43 hemichannel inhibition might 

be a promising target in neuroprotection.

5. Myocardial ischemia/reperfusion injury and cardioprotection

5.1. Irreversible injury

Cx43 forms hemichannels, which are predominantly closed in healthy myocardium 

(Goodenough et al, 2004; Krysko et al., 2005). However, they can open in response to 

electrical and chemical triggers, most notably during ischemia and inflammatory conditions 

(Saez et al., 2005; Saez & Leybaert, 2014; Wang et al., 2012a; Wang et al., 2013a; Wang et 

al., 2013b). In cardiomyocytes, metabolic inhibition activated a non-selective current 

through Cx43 hemichannels (Kondo et al., 2000). Single channel analysis of this current 

demonstrated a reversal potential of 0 mV and a unitary conductance of ~200 pS, which are 

biophysical properties compatible with Cx43 hemichannel activity (Wang et al., 2012a; 

Wang et al., 2013b). The 0 mV reversal potential suggests non-selectivity in terms of ion 

permeation. As a result, prolonged opening of Cx43 hemichannels during ischemia may lead 

to loss of ionic gradients, excessive Ca2+ entry, cell swelling and cellular damage. Cx43 

hemichannels are also a well-defined release pathway for several metabolites such as ATP 

(Kang et al., 2008) and glutamate (Ye et al., 2003) to the extracellular space affecting 

homeostasis of neighboring cells (Tsukimoto et al., 2005).

Cardiomyocyte dye uptake following 1 hr simulated ischemia was blocked by Gap26 

(Shintani-Ishida et al., 2007), and cardiomyocyte swelling caused by simulated ischemia/

reoxygenation was blocked by Gap19 (Wang et al., 2013b). As a consequence, 

cardiomyocyte survival after simulated ischemia/reoxygenation was increased by Gap19 
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(Wang et al., 2013b) or Gap26 (Hawat et al., 2010). Also in mice hearts in vivo, infarct size 

after ischemia/reperfusion was attenuated by blockade of Cx43 hemichannels using Gap19 

(Wang et al., 2013b). Gap26/Gap27 reduced myocardial infarct size after ischemia/

reperfusion in rats (Hawat et al., 2010;Hawat et al., 2012;Johansen et al., 2011). The effect 

of Gap26/27 on infarct size appears to be larger than the one obtained with Gap19, which 

might be due to the fact that Gap26/27 is less selective towards gap junctions and 

hemichannels and also inhibits channels composed of Cx other than Cx43 (see 5. 

Pharmacological modulation of Cx43-formed channels).

Replacement of Cx43 by Cx32 in mice reduced infarct size following ischemia/reperfusion 

(Rodriguez-Sinovas et al., 2010) and also partial (50%) depletion of myocardial Cx43 

attenuated infarct size in one (Kanno et al., 2003) but not in other studies (Heinzel et al., 

2005;Schwanke et al., 2002). Thus, sustained ischemia/reperfusion opening of Cx43-formed 

hemichannels combined with residual gap junctional communication contributes to 

irreversible myocardial injury (the latter phenomenon has been termed “spreading of 

injury”, for a review, see (Garcia-Dorado et al., 2004)). Interestingly, in cultured 

cardiomyocytes, the rate of apoptosis increased rather than decreased when gap junctional 

communication was reduced (Yasui et al., 2000).

Many pharmacological interventions which reduce infarct size after ischemia/reperfusion 

such as blockade of p38 MAPK (Surinkaew et al., 2013), high density lipoprotein/

sphingosine-1 phosphate (Morel et al., 2012), PKC epsilon activating peptide (Lancaster et 

al., 2011), FGF2/diazoxide (Srisakuldee et al., 2009) or estradiol (Lee et al., 2004) preserved 

Cx43 phosphorylation during ischemia/reperfusion, although causality between altered Cx43 

phosphorylation and reduced infarct size was proven only in one study (Srisakuldee et al., 

2009).

5.2. Conditioning

In cardiomyocytes, preconditioning by simulated ischemia/reoxygenation reduced Lucifer 

Yellow uptake prior to the sustained ischemic period but maintained Lucifer Yellow uptake 

following the prolonged lethal simulated ischemia (Sundset et al., 2007). Maintained Lucifer 

Yellow uptake followed by prolonged simulated ischemia was associated with preserved 

Cx43 phosphorylation. Cardiomyocytes isolated from heterozygous Cx43 knockout mice – 

in contrast to cardiomyocytes from wildtype mice - could not be conditioned by simulated 

ischemia/reoxygenation (Li et al., 2004).

Similar to the data in isolated cardiomyocytes, infarct size reduction by ischemic (Sanchez 

et al., 2013;Schwanke et al., 2002) or pharmacological (Heinzel et al., 2005) preconditioning 

was absent in Cx43 knockout mice or in mice in which Cx43 was replaced by Cx32 

(Rodriguez-Sinovas et al., 2010). Also blockade of Cx43-formed channels using heptanol 

during the preconditioning cycles of ischemia/reperfusion blocked the infarct size reduction 

in mice hearts (Li et al., 2002). In many studies, ischemic or pharmacological 

preconditioning increased the extent of phosphorylated Cx43 during sustained ischemia 

(Hatanaka et al., 2004; Hund et al., 2007; Miura et al., 2010; Miura et al., 2007; Naitoh et 

al., 2006;Naitoh et al., 2009; Totzeck et al., 2008;Jain et al., 2003; Lee & Chou, 2003; 

Schulz et al., 2003) and subsequently reduced gap junction permeability (Lee&Chou, 2003; 
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Miura et al., 2010; Miura et al., 2007; Naitoh et al., 2006; Naitoh et al., 2009) and increased 

lateralization of Cx43 (Vetterlein et al., 2006). Preserved phosphorylation was caused by 

activated PKC epsilon (Jain et al., 2003; Lee and Chou, 2003; Miura et al., 2010; Naitoh et 

al., 2009), and knockout of PKC abolished both the reduction in infarct size and the 

preservation of Cx43 phosphorylation by ischemic preconditioning in mice hearts (Hund et 

al., 2007). Apart from PKC, MAPK also contributed to Cx43 phosphorylation maintenance 

during sustained ischemia by ischemic or pharmacological preconditioning (Naitoh et al., 

2006; Schulz et al., 2003). In some studies, however, the rate of Cx43 during sustained 

ischemia remained unaffected by ischemic preconditioning (Muhlfeld et al., 2010) and rate 

of gap junction uncoupling was decreased (Jain et al., 2003).

Importantly, although Cx43 deficient mice cannot be preconditioned by ischemic 

preconditioning, the RISK and SAFE pathways, which have been often associated with 

cardioprotection, became activated in these mice to a similar extent as in wildtype and 

conferred a protective effect (Sanchez et al., 2013). Indeed, the lack of cardioprotection by 

preconditioning in Cx43 deficient mice appears to be related to mitochondrial Cx43 and the 

insufficient mitochondrial production of reactive oxygen species (Heinzel et al., 2005).

Similarly to ischemic preconditioning, ischemic or pharmacological postconditioning 

reduced infarct size and preserved myocardial Cx43 expression and phosphorylation during 

sustained ischemia in rat hearts (Wu et al., 2012; Zhao et al., 2013). In contrast, to ischemic 

preconditioning, however, infarct size was reduced by ischemic postconditioning in 

heterozygous Cx43 knockout mice (Heusch et al., 2006) (for review, see (Schulz et al., 

2007)).

Remote ischemic preconditioning (i.e. the preconditioning ischemia/reperfusion occurs in an 

organ distant from the heart) in rats preserved Cx43 protein expression and phosphorylation 

potentially contributing to the protection of the rat heart in vivo (Brandenburger et al., 

2014).

In summary, blockade of Cx43 prior to ischemia and/or reperfusion reduces irreversible 

injury following ischemia/reperfusion. However, data obtained from ischemic conditioning 

studies suggest that Cx43 is essential also for cardioprotection. Thus, timing of blockade of 

Cx43 appears to be of utmost importance in order to maximize the cardioprotective effect.

6. Mitochondrial Cx 43

Apart from being present at the sarcolemma, Cx43 has been identified in mitochondria of 

cardiomyocytes (Boengler et al., 2005), astrocytes (Kozoriz et al., 2010a), endothelial cells 

(Kiec-Wilk et al., 2012; Mohammad & Kowluru, 2011;Trudeau et al., 2012), stem cells (Lu 

et al., 2012), hepatocytes (Vinken et al., 2013) and pancreatic cancer cells (Sun et al., 2012).

In cardiomyocytes, Cx43 is mainly located in the inner mitochondrial membrane of 

subsarcolemmal mitochondria (Figure 2; Boengler et al., 2009;Rodriguez-Sinovas et al., 

2006), although one study reported Cx43 being present also in the outer mitochondrial 

membrane (Goubaeva et al., 2007). Mitochondrial Cx43 expression in the heart decreased 

with age (Boengler et al., 2007). A decline in mitochondrial Cx43 content was also seen 
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after activation of the NMDA receptor 1 (NMDAR-1) in cardiomyocytes; NMDAR-1 

activation increased translocation of matrix metalloproteinase 9 to mitochondria thereby 

inducing mitochondrial Cx43 degradation and mitophagy (Tyagi et al., 2010). [A similar 

effect was also seen in retinal endothelial cells (Mohammad & Kowluru, 2011; Trudeau et 

al., 2012)]. In contrast, ischemia/reperfusion (Boengler et al., 2005;Penna et al., 2009) or 

diazoxide (Yang et al., 2011) increased cardiac mitochondrial Cx43 content.

Mitochondrial Cx43 is involved in loss of cardiomyocyte division after birth; the signaling 

cascade involves reactive oxygen species formation and p38 MAPK activation (Matsuyama 

& Kawahara, 2011). Knockdown of mitochondrial Cx43 or inhibition of p38 MAPK 

restored the proliferation of neonatal rat cardiomyocytes (Matsuyama and Kawahara, 2009).

Mitochondrial connexin 43 impacts on respiratory function (Boengler et al., 2012;Ruiz-

Meana et al., 2014), and the ischemia-associated reduction in mitochondrial respiration is 

associated with increased oxidized Cx43 cysteines. The latter effects are attenuated by 

ischemic preconditioning (Ruiz-Meana et al., 2014). Apart from its effect on respiration, 

mitochondrial Cx43 modulates the matrix potassium flux in heart (Boengler et al., 

2013;Miro-Casas et al., 2009) and brain (Kozoriz et al., 2010a) mitochondria. S-nitrosation 

of mitochondrial Cx43 increases mitochondrial permeability, especially for potassium, and 

leads to increased reactive oxygen species formation. The increased amount of S-nitrosation 

mitochondrial Cx43 by ischemic preconditioning or nitrite administration may link nitric 

oxide and Cx43 in the signal transduction cascade of cardioprotective interventions 

(Soetkamp et al., 2014).

Regulation of the matrix calcium content also depends on mitochondrial Cx43; the calcium 

retention capacity of subsarcolemmal mitochondria was reduced by blocking Cx43-formed 

channels with Gap27 (Srisakuldee et al., 2014). In mitochondria derived from rat brain, 

carbenoxolone reduced the calcium retention capacity (Azarashvili et al., 2011). The 

modification of the calcium retention capacity is always accompanied by alterations in the 

phosphorylation status of mitochondrial Cx43 with the S262 epitope being of particular 

importance (Azarashvili et al., 2011;Srisakuldee et al., 2014).

Abolishing the mitochondrial import of Cx43 by blocking its interaction with heat shock 

protein 90 completely blocked the infarct size reduction by diazoxide in isolated rat hearts 

(Miro-Casas et al., 2009). In this study, sarcolemmal Cx43 remained unaffacted.

These data indicate that the presence of mitochondrial Cx43 is of utmost importance for 

cardioprotective pathway(s) being functional.

7. Cx43 function in the presence of major cardiovascular risk factors

It has been well established that organoprotective cellular mechanisms are inhibited by the 

presence of major cardiovascular risk factors (see for reviews: Ferdinandy et al., 2007, 

2014). Indeed, aging, hypertension, and metabolic diseases have been shown to interfere 

with Cx43 signalling.
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7.1. Age and gender

In aged mice and rat hearts, total and mitochondrial Cx43 expression are decreased 

(Boengler et al., 2007; Fannin et al., 2014; Watanabe et al., 2004; Zaman et al., 2014). Also 

lateralization of Cx43 is enhanced in aged cardiomyocytes (Dhein and Hammerath, 2001). 

The increased heterogenety of Cx43 distribution correlates with age-associated alterations in 

heart rhythm and increased atrial fibrillation in patients (Nattel et al. 2007; Fannin et al., 

2014).There are differences regarding gender as Cx43 expression is higher in female 

compared to male hearts (Knezl et al., 2008; Tribulova et al., 2005). Starvation in mice 

reduced the expression of Cx43 at the sarcolemma of cardiomyocytes (McLachlan et al., 

2009).

7.2. Hypertension and cardiac hypertrophy

Most studies related to hypertension are done in spontaneously hypertensive rats. The results 

obtained differ in terms of Cx43 expression with Cx43 being up-regulated and 

phosphorylation of Cx43 being increased (Bacova et al., 2010; Bacova et al., 2012; Benova 

et al., 2013; Fialova et al., 2008; Mitasikova et al., 2008; Radosinska et al., 2011; 

Radosinska et al., 2013; Zhao et al., 2008) in some studies and Cx43 expression being 

decreased (Bacharova et al., 2008; Zhang et al., 2014) in others. Part of the observed 

differences might relate to the degree of left ventricular hypertrophy associated with 

hypertension, since in human hearts mild hypertrophy increased while extensive 

hypertrophy reduced left ventricular Cx43 expression (Kostin et al., 2004). Mild left 

ventricular hypertrophy due to pressure or volume overload was associated with changes in 

Cx43 sarcolemmal distribution in human hearts (Vetter et al., 2010). Similarly in mice with 

aortic banding, total Cx43 expression remained unaltered but Cx43 became redistributed 

(Boulaksil et al., 2010) or total Cx43 expression decreased (Qu et al., 2009; Yasuno et al., 

2013) and Cx43 was dephosphorylated (Yasuno et al., 2013). Indeed, many interventions 

which reduce hypertension and/or hypertrophy (angiotensin II (AT) receptor 1-

blockade(Zhao et al., 2008) or knockout (Yasuno et al., 2013), aldosterone antagonists 

(Yasuno et al., 2013), renin inhibition (Zhang et al., 2014) but also compounds such as 

melatonin (Benova et al., 2013), atorvastatin (Bacova et al., 2010; Chen et al., 2007), 

omega-3 free fatty acids (Bacova et al., 2012) or red palm oil (Mitasikova et al., 2008)) 

attenuate the observed changes in Cx43 expression and/or phosphorylation. Interestingly, 

blockade of AT- receptor 1 attenuated microRNA-1 expression (Curcio et al., 2013) which 

subsequently affected Cx43 expression: an increase in microRNA-1 secondary to p38MAPK 

activation in cardiomyocytes (Zhang et al., 2010b) or overexpression of microRNA-1 in 

mice depressed Cx43 expression (Zhang et al., 2010b) but a decrease in microRNA-1 

increased Cx43 expression in female hearts (Stauffer et al., 2011).

7.3. Diabetes and hypercholesterolemia

Cx43 expression under diabetic conditions also shows variability from being increased 

(Anna et al., 2014; Howarth et al., 2008; Joshi et al., 2014), unaltered (Nygren et al., 2007) 

or even decreased (Lin et al., 2006a;Lin et al., 2006b; Sheu et al., 2007). In contrast, data on 

Cx43 phosphorylation and distribution are more homogenous: almost all studies show an 

increase in Cx43 phosphorylation (Anna et al., 2014; Howarth et al., 2008; Lin et al., 2006a; 
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Lin et al., 2006b) [at PKC phosphorylation sites (Lin et al., 2006a; Lin et al., 2006b)] and a 

redistribution/lateralization of Cx43 in cardiomyocytes (Anna et al., 2014; Howarth et al., 

2008; Joshi et al., 2014; Lin et al., 2006a; Lin et al., 2006b; Nygren et al., 2007), the latter 

being associated with an increase also in Cx43 nitrosation (Joshi et al., 2014).

In rabbits with hypercholesterolemia, JNK2 was activated which subsequently led to a 

reduction in Cx43 expression and redistribution of Cx43 away from gap junctions (Lin et al., 

2005). Similarly in rats fed a high fat-diet, myocardial Cx43 expression was reduced and 

Cx43 was redistributed away from gap junctions and mitochondria in cardiomyocytes 

(Gorbe et al., 2011).

7.4. Post-myocardial infarction

There is a substantial amount of literature demonstrating a reduction and disorganization of 

myocardial Cx43 in the infarcted area as well as in the border zone. The decrease in 

myocardial Cx43 expression post-myocardial infarction in mice (Jackson et al., 2008; 

Lindsey et al., 2006) was related to increased NO availability since Cx43 expression was 

preserved in nitric oxide synthase 2 knockout mice despite a similar extent of infarction 

(Jackson et al., 2008). In cardiomyocytes, a nitric oxide donor dose-dependently decreased 

Cx43 expression over time (Jackson et al., 2008). Part of the degradation of Cx43 appears to 

be through matrix metalloproteinase 7 since the reduction in Cx43 expression post-

myocardial infarction was not detected in matrix metalloproteinase 7 knockout mice 

(Lindsey et al., 2006). Also an increase in micro RNA-1 in the infarcted heart (Yang et al., 

2007) might contribute to the decline in myocardial Cx43 expression (see above). 

Interestingly, the amount of fibrosis post-myocardial infarction is reduced in heterozygous 

Cx43 knockout mice through decreases in phosphoSMAD despite increased TGFß 

concentrations (Zhang et al., 2010a), again pointing to non-channel effects of Cx43.

7.5. Heart Failure

In failing animal hearts, total Cx43 expression (Ai & Pogwizd, 2005; Danielson et al., 2013; 

Givvimani et al., 2014; Wang et al., 2012b) and Cx43 expression at gap junctions is reduced 

(Hesketh et al., 2010; Petrich et al., 2004; Wang et al., 2012b; Zhong et al., 2007) 

independent of the cause of heart failure. Similarly, in tissue samples from failing human 

hearts (dilated or ischemic cardiomyopathy), Cx43 expression is reduced and Cx43 is 

redistributed away from the gap junctions (Dupont et al., 2001; Kostin et al., 2003). In some 

heart failure studies, Cx43 became dephosphorylated and dye transfer was reduced (Ai et al., 

2011; Ai& Pogwizd, 2005) while in one study the phosphorylation of the S255 residue of 

Cx43 increased (Sato et al., 2008). Overexpression of Cx43 in failing hearts through 

adenovirus application restored cardiomyocyte coupling (Ai et al., 2010). The decrease in 

Cx43 expression is related to increased mitophagy and matrix metalloproteinase activation 

and can be blocked by inhibiting mitochondrial division (Givvimani et al., 2014), but also an 

increase in micro RNA (19a/b) contributes to loss of Cx43 (Danielson et al., 2013). In viral 

myocarditis, increases in micro RNA-1 repressed Cx43 expression in mice (Xu et al., 2012).

In conclusion, cardiovascular risk factors often are associated with a Cx43 deficient state 

especially in mitochondria thereby interfering with cardioprotection.
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10. Conclusion and perspectives

Cx43 has multiple cellular locations and functions and changes in its expression and/or its 

channel and non-channel activities contribute to several cardiovascular pathologies (brain 

and heart irreversible injury, arrhythmias). More research is needed to understand the 

pathophysiological alterations in Cx43 and to develop potential selective pharmacological 

approaches to reverse these effects. Development of mimetic peptides (opening/closing 

Cx43-formed channels) which may differentiate between the different channel subtypes at 

the sarcolemma (hemichannels, gap junctions) or mitochondria or interfere with the non-

channel function of Cx43 might be a promising approach to help treating cardiovascular 

pathologies in the future.
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Figure 1. Schematic drawing of the arrangement of Cx43 in the plasma membrane (PM)
Cx43 has a tetraspan topology with two extracellular loops (EL1 and EL2), one cytoplasmic 

loop (CL) and intracellulary located N- and C-terminal tails (NT, CT). Prototypic Cx43 

mimetic peptide sequences are indicated and localized on EL1 (Gap26), EL2 (Gap27) and 

CL (Gap19). The CT contains a large range of phosphorylation sites that are the target of the 

various kinases indicated. Illustration generated with the Protter tool (Omasits et al. 2014).
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Figure 2. Connexin channels in cardiac ischemia
Connexins form gap junctions (GJ) that connect cardiomyocytes with each other at the site 

of cell-cell junction located intercalated disks (ID). They also form free unapposed 

hemichannels (HC) in the plasma membrane not incorporated in GJs. Ischemic conditions 

lead to junctional uncoupling and GJ closure as a result of [Ca2+]i elevation (Dekker et al., 

1996; Peracchia, 2004; Xu et al., 2012), acidosis (Ek-Vitorin et al., 1996; Ek et al., 1994), 

altered phosphorylation status (Ek-Vitorin et al., 2006; Pahujaa et al., 2007) and other 

ischemia-related factors (Sanchez et al., 2011). In addition to this, connexins are remodeled 

as a result of processes that involve lateralization of connexin protein (Chkourko, et al., 

2012; Kieken et al., 2009), altered trafficking (Remo et al., 2011; Smyth et al., 2010) and 

internalization (Duffy et al., 2004; Smyth et al., 2014; Sorgen et al., 2004). Most evidence 

comes from Cx43 which is a major connexin in ventricular cardiomyocytes that is also 

present in atria (in addition to Cx40). Cx43 hemichannels are normally closed but open in 

response to ischemia mimicking conditions (Kondo et al., 2000; Contreras et al., 2002), 

lowered redox status (Retamal et al., 2007; Saez et al., 2010), lowering of extracellular 

[Ca2+] (Li et al., 1996; Torres et al., 2012), moderate elevation (≤500 nM) of [Ca2+]i (De 

Vuyst et al., 2009; Ponsaerts et al., 2010; Wang et al., 2012a) and mechanical stress (Batra 

et al., 2014). They open with alkaninization, close with acidosis (Schalper et al., 2010) and 

close with above 500 nM [Ca2+]i elevation (Wang et al., 2012a). It is currently not clear how 

connexin remodeling impacts hemichannel function. GJ closure acts in a protective manner 

by limiting cell death spread to neighboring cardiomyocytes but may also lead to increased 

propensity for postischemic arrhythmogenesis because of heterogeneities in conduction 

velocity and consequent conduction delays. Hemichannel opening may lead to excessive 

entry of Na+ and Ca2+ and the loss of essential metabolites (ATP and others) from the cells 

(Saez et al., 2010).
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Figure 3. Cx43 in mitochondria (Cx43)
Cx43 is imported into the inner mitochondrial membrane of mitochondria in a heat shock 

protein (HSP) 90– dependent pathway. Its import into subsarcolemmal mitochindria in 

cardiomyocytes is increased by preconditioning interventions. Cx43 is S-nitrosylated and 

influences mitochondrial matrix potassium (K+) and calcium (Ca2+) influx and reactive 

oxygen species (ROS) formation. Miotchondrial Cx43 is important for cardioprotection 

through modification of ROS formation. Apart from its influence on ion fluxes, Cx43 affects 

mitochondrial respiratory complex function. Some studies indicate that Cx43 might also be 

localized at the outer mitochondrial membrane where it is important for cytochrome C (Cyt 

C) release. Finally, matrix metalloproteinases (MMP) affect the stability of mitochondrial 

Cx43. For details see text.
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Table 1

Connexin mimetic peptides

Peptide Cx43 sequence (human)

Gap26 VCYDKSFPISHVR

Gap27 SRPTEKTIFII

Peptide5 VDCFLSRPTEKT

L2 DGVNVDMHLKQIEIKKFKYGIEEHGK

Gap19 KQIEIKKFK
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Table 2

Importance of connexin 43 is ischemia/reperfusion injury and protection from it.

Brain Spinal cord Heart

Ischemia Conditioning injury Ischemia Conditioning

Cx43+/− ↑ ↓ or = Protection
lost

Cx43−/− ↑ Protection
lost

Function
improved
(Cx43/30

double KO)

↓
(Cx32 KI)

Protection
lost

(Cx32 KI)

Cx43K258 ↑

Cx43 antisense Function
improved

Pharmacological
Blockade

↓ Protection
lost

Peptide5 ↓ ↓
Inflammation

decreased

Gap19 ↓

Gap26/27 ↓

Legend to Table: Arrows illustrate effect on irreversible injury (↑ = increased; ↓ = decreased) KO: knockout; KI: knockin. For details see text.
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