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Abstract

Molecular dynamics (MD) simulation methods have seen significant improvement since their 

inception in the late 1950s. Constraints of simulation size and duration that once impeded the field 

have lessened with the advent of better algorithms, faster processors, and parallel computing. With 

newer techniques and hardware available, MD simulations of more biologically relevant 

timescales can now sample a broader range of conformational and dynamical changes including 

rare events. One concern in the literature has been under which circumstances it is sufficient to 

perform many shorter timescale simulations and under which circumstances fewer longer 

simulations are necessary. Herein, our simulations of the zinc finger NEMO (2JVX) using 

multiple simulations of length 15, 30, 1000, and 3000 ns are analyzed to provide clarity on this 

point.
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1. Introduction

The ability to use computer models to build an atomistic picture of biomolecules helps 

tackle a variety of problems ranging from drug discovery to model development for protein 

folding mechanisms. The importance of these models was illustrated by the awarding of the 

2013 Nobel Prize in Chemistry to three pioneers in the field. While great strides have been 

made in the viability of MD since their inception in the late 1950s (Alder & Wainwright, 

1959), it is still essential to verify that the computer simulations are the best possible 

representation of the physical, in vivo, situation. Here, we highlight why, even for a small 

metal-binding protein, long-time-scale simulations are beneficial to understanding the zinc 

finger motif.

The protein of interest, the zinc finger domain of NEMO (nuclear factor-kappa B essential 

modulator) has three cysteines and a single histidine coordinating the zinc ion, and is 
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significant in the canonical NF-κB signaling pathway. The crystal structure has a beta–beta– 

alpha motif determined by NMR with label 2JVX in the Protein Data Bank (Cordier, 

Vinolo, Véron, Delepierre, & Agou, 2008). NEMO has been shown relevant to immune 

responses, oncogenesis, and apoptosis (Cordier et al., 2009), and mutations of NEMO on the 

X chromosome have been linked to human diseases such as incontinentia pigmenti 

(Martinez-Pomar et al., 2005). Generally, the NF-κB signaling pathway has many 

implications for many human diseases, and the regulation mechanisms of NEMO are not 

well understood (Courtois & Gilmore, 2006; Courtois & Smahi, 2006; Pasparakis, 2008). As 

such, this model system has biomedical interest, in addition to being a small metal–protein 

system for our purposes.

Previous publications suggest that convergence of nanosecond-scale simulations point to 

statistically significant conformations (Amadei, Ceruso, & Di Nola, 1999). While these 

simulations converge nicely, the limited timescale may inhibit access to local minima aside 

from that directly accessible to the crystallo-graphic structure. Folding, assembly, and 

diffusion processes, for example, require longer timescales to probe protein behavior and 

subsequent novel conformations may provide insight to a variety of protein mechanisms 

(Negureanu & Salsbury, 2012a, 2012b). The data here suggest that convergence can still be 

attained when extending to microseconds and include a much larger sampling of 

conformation space.

The timescales sampled for even modest-sized protein and RNA/DNA structures via 

conventional serial CPU simulations are insufficient to probe many biologically significant 

processes (Rueda et al., 2007). For example, events such as folding and docking can take 

micro- and milliseconds to occur. Computing with GPUs, on the other hand, provides 

reasonable access to longer timescales – at least in the microsecond range. Even a small 

423-atom (including the bound zinc ion) 28-residue protein indicates that there are 

significant conformational changes that appear in long simulations that are not present in 

shorter simulations of equal sampling. While this would not be surprising for a large protein 

complex, it is surprising for such a small system. Even a tiny monomer like this zinc finger 

samples unique conformational space when simulations are extended out to the microsecond 

range.

2. Methods

Computational improvements such as parallelization across the multiple GPU processors 

that are contained within a single GPU core have recently made microsecond-scale 

simulations more accessible. For comparison, the same protein was simulated on a Ethernet, 

quad-core CPU system running at 2.4 GHz (timing runs showed negligible time savings 

with more processors) and a single GPU core with explicit TIP3P waters (Jorgensen, 

Chandrasekhar, Madura, Impey, & Klein, 1983). Additional GPU speed up was provided by 

hydrogen mass repartitioning requiring increased time steps to 4 fs (Harvey, Giupponi, & 

Fabritiis, 2009).

All simulations were run at 300 K with the solvent ionized to .15 mol/L concentrations of 

Na+ and Cl−. The GPU system requires a cubic water box causing the significant increase in 
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the number of waters. Despite having nearly twice the number of simulation atoms, the 

speed increase on the GPU is significant as shown in Table 1. All GPU computations were 

performed on Metrocubo workstations from Acellera on Titan GPUs; the 3 μs simulations 

were performed on newer, faster Metrocubo workstations. The CPU-based simulations were 

performed on the DEAC cluster at Wake Forest University.

Raw sampling in each simulation space was different between the CPU and GPU 

trajectories, but all simulations were trimmed so that sample size, not the sampling rate, is 

consistent between all data. For the nanosecond simulations, this means steps of 500 ps for 

the 15 and 30 ns simulations, 4 ns for the 1 μs simulation, and 12 ns for the 3 μs simulation.

All simulations assumed rigid bonds to hydrogen atoms employing the CHARMM 22 force 

field with a patch to deprotonate the cysteines that coordinate the bound zinc ion (Lee, 

Salsbury, & Brooks, 2004). The CPU NAMD simulations used Langevin damping for 

pressure and temperature control using NAMD defaults. The GPU ACEMD simulations 

used Langevin damping for temperature control and Berendsen pressure with default 

parameters. Long-range electrostatics was calculated using a particle mesh Ewald 

implementation (Harvey & De Fabritiis, 2009).

3. Results

Although nanosecond-scale simulations have shown great success in studying the 

conformational dynamics of proteins and protein complexes (Negureanu & Salsbury, 2012b, 

2014), results of short timescales can be incomplete as the sampling may not address rare 

conformations that are simply inaccessible on the nanoscale. Findings presented here 

support that longer timescale simulations likely sample more of the available free energy 

landscape. Namely, on longer timescales, NEMO is not as rigid when compared to shorter 

simulations, suggesting that there are indeed regions about the global minima, and perhaps 

other excited wells, that are being sampled. Many shorter simulations give different results 

than a single or a few longer simulations. Short simulations readily give details about the 

main behavior of the protein, whereas long simulations additionally include more excited 

states. These less common but stable conformations available in microseconds could play be 

a mechanism significant to biological function such as molecular recognition (Boehr, 

Nussinov, & Wright, 2009).

We hypothesize that the rarer fluctuations offered in microseconds could be associated with 

binding events and that the conformational states available are regulated by the presence of 

zinc. The activation and deactivation of binding capacity of the zinc-binding domain may 

vary in the presence and absence of zinc, respectively. These rare fluctuations could allow 

for binding of zinc or protein–-protein interactions, with ubiquitin, for example Cordier et al. 

(2009).

3.1. RMSF indicates greater flexibility in longer time simulations

The change in protein backbone fluctuations (Figure 1) is consistent with the idea that 

microsecond simulations sample a greater region of conformational space evidenced by the 
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larger RMS fluctuation. The standard error for the various trajectories is shown, indicating 

that these are not likely to be chance events.

The most significant difference between the timescales occurs between residues 6 and 16, 

with the most pronounced area from 6 to 10. Residues 6 and 9 are zinc-binding cysteines on 

beta sheets separated by a turn. While the bound zinc may be accentuating these larger 

fluctuations as the binding site alpha carbons have higher fluctuations on average, it is clear 

that, in general, the protein fluctuations are larger in the long simulations. The RMS 

fluctuations of the simulations compared to one another show that, despite having the same 

initial conformation, the longer timescale simulations show greater fluctuations overall.

3.2. Clustering analysis distinguishes short from long timescales

Clustering results vary across the four different time-scales. A quality threshold 

implementation of clustering built-in to visual molecular dynamics (VMD's) measure 

command (Heyer, 1999) was used to complete the clustering analysis. An RMSF cut-off 

distance of 2.2 Å ring was chosen by examining all samples, both together and separate, to 

find where there was most often the fewest number of unclustered structures for alpha 

carbons, for example, the point that maximized the clustering of the structures. Structures 

are clustered based on alpha-carbon RMS distance as compared to the crystal structure, and 

limited to 50 clusters, with the 51st cluster containing all single-member clusters.

Clustering all of the trajectories concatenated (Figure 2) shows that the long timescales 

probe a configuration space not evident in the nanosecond regime. All 100,000 frames are 

included in the clustering analysis of the alpha carbons of NEMO, highlighting changes of 

the protein backbone. The red vertical lines differentiate time-scales, each 25,000 frames, 

and the green vertical lines differentiate individual trajectories. The trajectories are ordered 

by ascending simulation length. The effective step size of each frame varies for the sampled 

data. Namely, the 15 and 30 ns simulations have a clustering step size of 500 ps, the 1 μs 

simulations 4 ns, and the 3 μs simulations 12 ns . This clustering shows that there are low-

order, novel clusters only appearing in longer simulations. The last 1 μs simulation and the 

last 3 μs simulation are responsible for the second most populated cluster.

These structures, despite only occurring in two of the simulations, are responsible for 5% of 

the cluster populations. Similarly, the third cluster occurs in these two simulations and an 

additional 3 μs simulation and represents 3.4% of the populations. The lowest order state 

(first cluster) constitutes 79.4% of the total frames. Long-timescale simulations dominate 

higher order cluster populations with 83% of structures in clusters 4 and higher. Unique 

conformations are sampled more often in microsecond-length simulations according to the 

clustering analysis as shown in Figure 2. It is clear that if dominant conformations are of 

primary interest, shorter simulations are adequate (Vieira & Degrève, 2009). In fact, they are 

preferred as the appropriate region of phase space will be well covered with fewer computer 

resources.

Figure 3(a) highlights the structural changes that occur, with the primary representative of 

the three lowest order cluster structures that constitute 87.8% of all of the frames. The 

separation of secondary structure that results from the extension of the turn between the beta 
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sheet and alpha helix is only seen in the microsecond regime. Figure 3(b) shows primary 

representatives of clusters 20 and 27, also only seen in the microsecond simulations that 

show destabilization of the alpha helix. This loss of secondary structure is a prime example 

of novel insight of conformational changes evidenced only with a larger simulation space. It 

is reasonable to hypothesize that significant conformational changes like the one shown here 

are more likely in long MD simulations.

The relative populations of the individual trajectories overlaid on that of all the trajectories 

in Figure 4 indicate that the shortest simulations have clusters dominated by the lowest order 

cluster, but the microsecond simulations have a more diverse cluster representation.

3.2.1. Markov convergence shows ergodic simulations—A Markov chain of the 

cluster data from Figure 2 provides addition information for analysis. Where the Markov 

chain analysis assumes that each transition is only dependent on the current state, and 

independent of any previous state. In this case, we found that the nanosecond data all fit in 

nine clusters, where the microsecond simulations still required all 51 clusters.

Using the rate matrix determined from the Markov chain, we ascertain the number of steps 

required for convergence of each cluster to the distribution of the clusters for each timescale. 

We expect that if the system is ergodic, we will obtain the equilibrium cluster distribution 

regardless of the initial cluster state over long time periods. An initial pure-state cluster 

distribution is applied to the rate matrix iteratively to determine time to convergence to the 

equilibrium distribution. All pure states converge to the equilibrium distribution for all four 

timescales (Figure 5) albeit on different timescales.

3.3. Covariance differentiated by timescales

Covariance plots (Figure 6) show clear differences in correlation between the different 

durations, most notably between the nanosecond and microsecond simulations in that the 

nearly identical correlation between the beta sheets of the nanosecond regime changes in the 

microsecond scale. There are long-range correlations between the alpha helix and turn in the 

1 μs that are not present in the 3 μs simulations.

Clearly, the 15 and 30 ns simulations are very similar visually and quantitatively, with a 

correlation coefficient of R = .981, whereas the differences between the microsecond 

simulations are much more drastic. To emphasize the differences, comparisons of all 

matrices are shown with the same scaling in Figure 7. Consistent with the clustering data, 

short-timescale simulations sufficiently probe dominant aspects of the covariance.

The difference in the covariance matrices between all timescales further supports the 

difference in nanosecond and microsecond simulations. Correlation coefficients are 

displayed in the top corner of each plot. There is significant disagreement between the two 

microsecond duration trajectories, particularly in the alpha-helical region. They have a 

modest correlation coefficient of R = .584.
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3.4. Covariance of clusters isolate interesting conformations

After concatenating all of the trajectories together and performing clustering analysis, as in 

Figure 2, we isolated the clusters and examined the covariance of each of the five most 

populated clusters separately (Figure 8). The covariance of the lowest order cluster is similar 

to that of the nanosecond simulations, with a correlation coefficient of R = .984 and .976 for 

the 15 and 30 ns simulations, respectively, which is expected if the nanosecond-scale 

simulations predominately sample a single state on the free energy landscape. To this end, 

primary conformations are most effectively studied with nanosecond-timescale simulations.

The second-order cluster appears only in the microsecond regime is structurally different 

showing minimal long-range correlation and the beta sheet correlation signature. Similarly, 

the third-order cluster also only occurs in a subset of the long-time simulations, yet it has 

interactions between the beta sheets once again.

The microsecond-timescale simulations are responsible for clusters 2 and 3. These structures 

are kinetic traps and the protein stays in these configurations for the majority of the 

simulation after entering this state. This suggests that these less-populated, rarer clusters are 

indeed different conformational minima, which require longer scale simulations to reach.

4. Conclusion

Even longer simulations will afford larger fluctuations, and eventually folding processes will 

be examined in atomic detail. However, there is a wealth of information available in the 

microsecond scale. This time domain provides details primary behavior as well as ancillary 

behavior that we hypothesize supports biological function. Additionally, the accelerated 

hardware capabilities allow ample simulations for a good statistical basis. As such, we prefer 

microsecond simulations when resources are available.

Even a small 28-residue monomer shows significant conformational sampling in 

microsecond simulations. State sampling, as measured by clustering analysis, is very 

different between short and long simulations. Longer simulations sample a larger 

conformational space exposing larger fluctuations, stable structural configurations, and 

different covariance signatures. GPU parallelization makes long-timescale MD simulations 

practicable to examine slower, yet biologically important, processes.

Acknowledgments

Computations were, in part, performed on the Wake Forest University DEAC cluster. Thank you to Wake Forest 
Provost office and Information Systems Department for their support. Finally, thanks to Ryan Melvin for providing 
Matlab scripts for Markov analysis.

Funding: FRS was partially supported by NIH [R01CA129373]; WFU Comprehensive Cancer Center 
[5P30CA012197-39]; and RCG was supported by SCB training [grant T32GM095440-04].

References

Alder BJ, Wainwright TE. Studies in molecular dynamics. I. General method. The Journal of Chemical 
Physics. 1959; 31:459–466.

Godwin et al. Page 6

J Biomol Struct Dyn. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Amadei A, Ceruso MA, Di Nola A. On the convergence of the conformational coordinates basis set 
obtained by the essential dynamics analysis of proteins' molecular dynamics simulations. Proteins: 
Structure, Function, and Genetics. 1999; 36:419–424.

Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular 
recognition. Nature Chemical Biology. 2009; 5:789–796.10.1038/nchembio.232 [PubMed: 
19841628] 

Cordier F, Grubisha O, Traincard F, Veron M, Delepierre M, Agou F. The zinc finger of NEMO is a 
functional ubiquitin-binding domain. Journal of Biological Chemistry. 2009; 284:2902–2907. 
[PubMed: 19033441] 

Cordier F, Vinolo E, Véron M, Delepierre M, Agou F. Solution structure of NEMO zinc finger and 
impact of an anhidrotic ectodermal dysplasia with immunodeficiency-related point mutation. 
Journal of Molecular Biology. 2008; 377:1419–1432. [PubMed: 18313693] 

Courtois G, Gilmore T. Mutations in the NF-κB signaling pathway: Implications for human disease. 
Oncogene. 2006; 25:6831–6843. [PubMed: 17072331] 

Courtois G, Smahi A. NF-κB-related genetic diseases. Cell Death & Differentiation. 2006; 13:843–
851. [PubMed: 16397577] 

Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU 
hardware. Journal of Chemical Theory and Computation. 2009; 5:2371–2377.10.1021/ct900275y 
[PubMed: 26616618] 

Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: Accelerating biomolecular dynamics in the 
microsecond time scale. Journal of Chemical Theory and Computation. 2009; 5:1632–1639. 
[PubMed: 26609855] 

Heyer LJ. Exploring expression data: Identification and analysis of coexpressed genes. Genome 
Research. 1999; 9:1106–1115. [PubMed: 10568750] 

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential 
functions for simulating liquid water. The Journal of Chemical Physics. 1983; 79:926–935.

Lee MS, Salsbury FR, Brooks CL. Constant-pH molecular dynamics using continuous titration 
coordinates. Proteins: Structure, Function, and Bioinformatics. 2004; 56:738–752.

Martinez-Pomar N, Munoz-Saa I, Heine-Suner D, Martin A, Smahi A, Matamoros N. A new mutation 
in exon 7 of NEMO gene: Late skewed X-chromosome inactivation in an incontinentia pigmenti 
female patient with immunodeficiency. Human Genetics. 2005; 118:458–465. [PubMed: 
16228229] 

Negureanu L, Salsbury FR. The molecular origin of the MMR-dependent apoptosis pathway from 
dynamics analysis of MutSα-DNA complexes. Journal of Biomolecular Structure & Dynamics. 
2012a; 30:347–361. [PubMed: 22712459] 

Negureanu L, Salsbury FR. Insights into protein–DNA interactions, stability and allosteric 
communications: A computational study of mutSα-DNA recognition complexes. Journal of 
Biomolecular Structure & Dynamics. 2012b; 29:757–776. [PubMed: 22208277] 

Negureanu L, Salsbury FR. Non-specificity and synergy at the binding site of the carboplatin-induced 
DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. 
Journal of Biomolecular Structure & Dynamics. 2014; 32:969–992. [PubMed: 23799640] 

Pasparakis M. IKK/NF-κB signaling in intestinal epithelial cells controls immune homeostasis in the 
gut. Mucosal Immunology. 2008 Nov; 1(Suppl. 1):S54–S57. [PubMed: 19079232] 

Rueda M, Ferrer-Costa C, Meyer T, Pérez A, Camps J, Hospital A, Gelpí JL. A consensus view of 
protein dynamics. Proceedings of the National Academy of Sciences. 2007; 104:796–801.

Vieira DS, Degrève L. An insight into the thermostability of a pair of xylanases: The role of hydrogen 
bonds. Molecular Physics. 2009; 107:59–69.10.1080/00268970902717959

Godwin et al. Page 7

J Biomol Struct Dyn. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Alpha-carbon root-mean-square fluctuations (RMSF).

Notes: The RMSF in angstroms of the alpha carbons of NEMO. The nanosecond duration 

data show less fluctuations at all CA than the microsecond simulations. Large fluctuations 

show significant deviation near the beta sheet zinc-binding cysteines. The standard error of 

each simulation is shown and general agreement is shown between the two time regimes.
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Figure 2. 
Clustering across trajectories.

Notes: Clustering of all timescales sampling 25,000 frames of each duration. A cut-off of 2.2 

Å ring; applied to RMSD clustering with 50 clusters and the 51st representing unclustered 

populations. Red vertical lines differentiate timescales and green lines differentiate 

individual trajectories. Few unclustered structures appear in the short simulations, with 

many in the longer simulations. Unique, stable structures, clusters 2 and 3, appear only in 

the long-timescale simulations as well.
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Figure 3. 
Structures of clusters.

Notes: Cluster structures of NEMO including the alpha helix, two beta sheets, and bound 

zinc ion. The high-order proteins show the destabilization of the alpha helix and 

displacement of the zinc ion from the dominant cluster. (a) Clusters 1 (blue), 2 (red), and 3 

(silver) show the dominant clusters comparing all timescales. Clusters 2 and 3 only appear in 

microsecond simulations. (b) Clusters 1 (blue), 20 (orange), and 27 (ice blue) compare 

changes to the secondary structure of higher order, long-timescale conformations.
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Figure 4. 
Relative cluster populations.

Notes: Relative cluster populations comparing clustering results of each trajectory clustered 

separately to that of all trajectories combined. The nanosecond simulations are both 

dominated by the lowest order cluster, where the microsecond clusters show a more diverse 

clustering population, and all clustering straddles the timescales.
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Figure 5. 
Markov convergence.

Notes: Pure-state convergence of the equilibrium distribution for each timescale shows that 

all data converge to the equilibrium distribution showing that each set is ergodic. The (a) 15, 

(b) 30, (c) 1000, and (d) 3000 ns simulations converge in approximately 8, 9, 72, and 210 ns, 

respectively.
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Figure 6. 
Covariance of each timescale.

Notes: Covariance plots of individual timescales [(a) 15, (b) 30, (c) 1000, and (d) 3000 ns] 

show that the nanosecond simulations are nearly identical, where the microsecond 

simulations show significant differences. There is a notable alpha helix–beta sheet, long-

range interactions in the 1 μs data that are not present in the 3 μs simulations. The 3 μs 

simulation also shows very strong correlation from the alpha helix to the N-terminus.
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Figure 7. 
Covariance differences.

Notes: Subtracted covariances of different timescales along with corresponding correlation 

coefficients. The nanosecond simulations have the highest correlation, while the 3 μs 

simulations have the lowest correlations, and highlight correlation with the alpha helix 

region and the tail, and anti-correlation between two zinc-binding residues, a histidine (22) 

and a cysteine (9). (a) Comparing the two nanosecond timescales, shows very high 

correlation and little deviation. (b) The next longest interval difference shows differences in 

the secondary structures, mostly in the beta sheets. (c) Very similar to the other nanosecond 

comparison, the 1000–15 ns comparison also shows differences in the correlation near the 

beta sheet and zinc-binding location. (d) Comparing the two microsecond simulation sets, 

there is change between the tail and the beta sheet, as well as changes with the long-range 

beta sheet interactions. (e) The covariance between the 3000 and 30 ns simulations is the 

least correlated at R = .503. (f) The largest difference in timescales shows little correlation, 

and changes appear with the alpha-helix region as well as the tail regions.
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Figure 8. 
Covariance of clusters.

Notes: Covariance of the three most populated clusters across all timescales. (a) The lowest 

order (first) cluster shows covariance highly correlated with the 15 and 30 ns simulations (R 

= .985 and .976, respectively). (b) The second cluster loses the long-range interactions 

across the beta sheets, and is most correlated with the 3 μs simulation (R = .856). (c) The 

third recovers the beta sheet interaction and is most strongly correlated with the 15 ns 

simulations (R = .945).
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