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Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to
surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable
methods to perform such segmentation automatically. In this work, the authors present a method for
semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images.
Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image.
This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external
marker. With these two markers, lesion contour on the image can be accurately delineated using
traditional watershed transformation. Density information will then be extracted from the segmented
2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The
authors have developed a robust strategy to automatically determine internal and external markers
for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the
lesion to be delineated on a reference image, the method can automatically determine dual threshold
values to approximately separate the lesion from its surrounding structures and refine the thresholds
from the segmented lesion for the accurate segmentation of the lesion volume. This method was
applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent
radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold
standard” for validation of the method’s accuracy.
Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of
82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm.
Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced
CT images can be accurately estimated by a semiautomatic segmentation method. C 2015 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4932365]
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1. INTRODUCTION

The liver is the second most common site for metastatic spread
after the lymph nodes.1–5 Nearly, all primary tumor sites can
deposit metastases in the liver due to its rich and dual blood
supply. For instance, about 50% of colorectal cancer, the third
most common type of cancer and the second most common
cause of cancer death in the USA, will eventually develop
liver metastases.3,4

CT is routinely performed in patients with liver cancer; tu-
mor size measured on CT images is critical for surgery/therapy
planning, disease monitoring, and therapy response assess-
ment. Despite lacking accuracy and reproducibility, liver
metastases are measured manually by radiologists in clinical
settings. This is particularly impractical when dealing with
tumor volumes.

A few studies have been reported on the development
of semiautomated/automated segmentation methods for liver
lesions on contrast-enhanced CT images.6–15 Williams et al.
made use of edge detection and linking techniques to delineate
the liver tumor boundary on CT images.6 Liver CT images can

often be noisy and this method was known to be sensitive to
noise. In Refs. 7, 8, and 10, some models such as ellipse,
ellipsoid, and alpha shape were employed to extract and
highlight liver lesions on CT images. However, these models
did not always conform to actual growth patterns of the liver
metastases. Chemouny et al. gave a tool for liver and hepatic
tumors and location and volumetry in 3D space.9 Zhao et al.
developed a shape-constrained region-growing method for the
delineation of liver metastases.11 Experimentally determined
parameters used in this algorithm need to be validated if
the algorithm is applied to the liver images acquired using
different imaging protocols. Hong et al. proposed an algorithm
combining an adaptive thresholding, a contour correction,
and a fuzzy C-means clustering technique for automated
identification and segmentation of tumor candidates in the
liver.12 The algorithm’s assumption on tumor intensities,
i.e., tumor intensities should be either greater or lower than
those of the liver parenchyma, may not always hold true.
Another fuzzy C-means algorithm for volumetric analysis
of liver metastases on CT images proposed by Yim et al.13

required manual determination of a mask including the target

6283 Med. Phys. 42 (11), November 2015 0094-2405/2015/42(11)/6283/11/$30.00 © 2015 Am. Assoc. Phys. Med. 6283

http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://dx.doi.org/10.1118/1.4932365
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4932365&domain=pdf&date_stamp=2015-10-08


6284 Yan, Schwartz, and Zhao: Semiautomatic segmentation of liver metastases on CT images 6284

lesion and an approximately 0.5 cm margin surrounding
the lesion. Bellon et al. developed a semiautomated region
partitioning method with watershed model.14 Yim and Foran
compared the segmentation results obtained by watershed,
active contour, and dual-scale active contour for hepatic
metastases on CT images and concluded that the dual-scale
active contour method was promising.15 For the watershed
model, because of the oversegmentation that is associated
with this model, the algorithm demanded manual operations
to correct the results, especially the results of heterogeneous
lesions. For the active contour method, the requirement on the
initial contour was strict, i.e., it should be as close as possible
to the target boundary.

In this paper, we propose a method, based on marker-
controlled watershed transformation, to segment liver metas-
tases on contrast-enhanced volumetric CT images. The
markers, i.e., the internal and the external markers, intro-
duced to the conventional watershed method can resolve
the oversegmentation problem. Marker-controlled watershed
transformation is a well-known segmentation method based
on watershed transformation and morphological reconstruc-
tion.16–18 It has been widely applied due to its ability to detect
the target boundary allocated between the markers (i.e., an
internal marker that is a region inside the target object and
an external marker that is a region contained within the
background), even if there is no clearly defined edge between
the target and its surroundings.16–21 Successful use of marker-
controlled watershed transformation depends on successful
determination of the two markers, which was the focus of this
work. Our method requires manual selection of a seed region-
of-interest (ROI) inside the liver metastasis on one slice. It can
then automatically determine both the internal and the external
markers for automated delineation of the lesion contours on

all lesion slices. Details of the method will be illustrated in
Sec. 2, followed by Secs. 3 and 4.

2. METHODS

Liver lesions that are metastasized from colorectal cancer
often possess relatively hypoattenuated values compared
to liver parenchyma on contrast-enhanced CT images that
are acquired during the portal venous phase. Difficulty
arises in the segmentation when lesion’s attenuations are
heterogeneous or when a lesion resides at the edge of the liver
where attenuations of the surrounding tissues may overlap
with those of the lesion. Our marker-controlled watershed
algorithm for segmentation of liver metastasis on volumetric
CT images consists of the following three steps: (1) estimation
of the dual threshold values based upon a manually chosen
seed ROI on a reference slice, (2) determination of the internal
and external makers with the estimated threshold values, and
(3) segmentation of the 3D liver metastasis. All these steps
are shown in Figs. 1–4 and described in detail.

2.A. Estimation of the threshold values

For a segmentation task, it is acceptable that a lesion
is identified manually (with a single click-and-drag of the
computer mouse) by drawing a circle inside the lesion on
the reference slice (the slice where the segmentation starts).
Such an initiation can not only allocate the lesion but also
provide information about intensity distribution of the lesion
on that slice, assisting in determination of the internal and the
external markers for segmenting the lesion on the reference
slice.

F. 1. Selection of the reference slice from volumetric liver metastasis CT images.
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F. 2. Rough segmentation of the target liver metastasis on the selected 2D reference slice. (a) The given circle; (b) the threshold result, in which the white,
gray, and black represent the high-intensity, low-intensity, and middle-intensity regions, respectively; (c) illustration of deleting the rib bones; (d) the threshold
result of deleting the rib bones; (e) the internal and the external markers; (f) the marker-controlled watershed segmentation results.

2.A.1. Estimation of dual threshold values
for the lesion on reference slice

The reference slice should be in the middle of the
consecutive CT slices containing the lesion so that the lesion
area on the slice is relatively large (Fig. 1). Meanwhile, a seed
ROI should contain as much heterogeneous information (if the
lesion is heterogeneous) as possible [Fig. 2(a)]. In this way,
the intensity distribution estimated based upon the ROI should
approximately represent that of the lesion on the slice. In order
to determine the markers for the lesion on the reference slice,
a threshold technique is used.

Our data show that the intensity of a liver lesion follows
Gaussian distribution. Thus, two threshold values (i.e., a lower
value Tlower and a higher value Tupper) that roughly span the
entire range of the lesion intensity can be estimated with the
following Eqs. (1) and (2):

Tlower= Imean−w1∗ Istd, (1)
Tupper= Imean+w2∗ Istd, (2)

where Imean is the average intensity and Istd is the standard
deviation calculated using the pixels in the lesion ROI. The
parameters w1 andw2 are weighting factors which are constant.
They had the experimentally determined values of 2.0 and
1.732 in the present paper.

2.A.2. Determination of the markers for the lesion
on reference slice

With the estimated dual thresholds, the reference image
can be divided into three regions: (a) the low-intensity regions

[gray areas in Fig. 2(b)] in which pixels’ intensities are lower
than Tlower, (b) the high-intensity regions [white areas in
Fig. 2(b)] in which pixels’ intensities are higher than Tupper, and
(c) the intermediate-intensity regions [gray areas in Fig. 2(b)]
in which pixels’ intensities are between Tlower and Tupper.

Considering that the right ribs may have an influence on
the following steps if the lesion is located at the periphery
of the liver and connects with right intercostal muscles, we
forcedly classified the region including the right ribs into the
low-intensity regions. In this presented paper, we first use
threshold technique (the threshold value is fixed 180 HU) to
extract the bones in the right part of the body. Then, we find
the point nearest to the center of the given ROI for every
bone. Sort these points from the front to the back of the body
in turns and according to the distance of these points to the
center of the given ROI, we can interpolate the other points
between them. Let the positions of the interpolated points
be {(bx0,by0),(bx1,by1),. . .,(bxm,bym)}. The region closed by
polygon {(0,0),(0,by0),(bx0,by0),. . .,(bxm,bym),(bxm,0),(0,0)}
is the region that needs to be forcedly classified into the low-
intensity regions [Figs. 2(c) and 2(d)].

One area from the intermediate-intensity regions that has
the largest intersection with the given circular ROI is chosen
as an area-of-interest (AOI). Holes inside the AOI are filled
prior to further processing. The boundary pixels of the AOI
can be grouped into two sets: one consisting of the pixels
lying between the AOI and the high-intensity regions and the
other consisting of the pixels between the AOI and the low-
intensity regions. In the former set, almost all of the pixels
are located in the near of or at the edge of the lesion because
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F. 3. Histogram used to estimate the dual threshold values for the 3D target liver metastasis. (a) The roughly delineated contour and the expanded contour
overlapped on the 2D reference slice; (b) the intensity histogram of the pixels inside the roughly delineated contour; (c) the intensity histogram of the pixels
between the roughly delineated contour and the expanded contour; (d) the combined intensity histogram.

of the hyperintensity values of the normal liver parenchyma
captured during the portal venous phase. In the latter set, pixels
can belong to different structures such as muscle and fat if the
lesion resides at the periphery of the liver that is adjacent to
the chest wall.

Based upon this analysis, a strategy is developed to obtain
the internal and the external markers to restrict the search area
for the lesion boundary on the reference slice. The external
marker is obtained by dilating the AOI with a certain filter
width (8 pixels in this work) and taking the outside region of
the expanded AOI. Then, the boundary points of the nondilated
AOI that neighbor the normal liver parenchyma are connected,
creating a new area. This area will be eroded with a certain
width (5 pixels in this work) to obtain the internal marker.

2.A.3. Rough segmentation of the target liver
metastasis on the selected reference slice

The watershed transform treats the gray image as a
topographic surface where light pixels are high and dark
pixels are low. We flood the surface from its local minima.
In order to prevent the merging of waters from different
sources, dams must be built at certain points. These dams are
called watersheds. The regions enclosed by the watersheds are
water basins. In practice, the traditional watershed transform
often produces heavy oversegmentation due to noise or
local heterogeneity in the image. In order to solve this
problem, marker-controlled watershed was proposed.22 In
marker-controlled watershed transform, some markers are first
defined. The marker inside the object is called internal marker
and outside is called external maker. Once the internal and
external markers are determined, a gray scale reconstruction

algorithm22 is used to modify the gradient image (in this paper,
the gradient image is obtained with the Sobel operator) to
allow the local minima only occur in the regions of the two
markers.22 Then, the traditional watershed transform can be
applied to the modified gradient image to obtain the target
lesion boundary in the belt between the internal and the
external markers [Fig. 2(f)].

2.A.4. Estimation of the threshold values for the 3D
target liver metastasis

After roughly segmenting the target liver metastasis on the
selected reference slice, it seems that we can simply use the
intensity inside the delineated contour to estimate the dual
threshold values for the 3D target liver metastasis with the
similar method in Sec. 2.A.1. Unfortunately, through lots of
experiments, we find that while the estimated lower threshold
value works well, the higher threshold often fails. In order to
solve this problem, the iterative threshold selection method23

is used. Because the higher threshold is used to separate the
target liver metastasis and the normal liver parenchyma, if we
have a histogram only counting the intensities of the target
liver metastasis and its surrounding normal liver parenchyma,
we can utilize it to estimate the threshold with the iterative
threshold selection method. This is also due to the attenuation
difference between the liver metastasis and the normal liver
parenchyma.

In order to construct a histogram counting only the
intensities of the target liver metastasis and its surrounding
normal liver parenchyma, we must first define their regions
(Fig. 3). For the target liver metastasis, we directly use the
rough segmentation result. For the surrounding normal liver
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F. 4. Segmentation of the 3D target liver metastasis. (a) The selected reference slice; (b) the example slice, in which the target liver metastasis is connected
with that in the reference slice in 3D space; (c) and (d) are the threshold images of (a) and (b), and the arrows represent the 3D connectivity; (e) the segmentation
result of (b).

parenchyma, we use some points outside and within a certain
distance (for all our experiments, the distance is 10 pixels)
of the delineated target liver metastasis. At the same time,
the intensity of the points should be higher than the average
intensity of the segmented target liver metastasis.

According to the intensity inside the segmented target liver
metastasis and the constructed histogram, we can refine the
dual threshold values: T3Dlower and T3Dupper for the target 3D
liver metastasis with Eqs. (3) and (4),

T3Dlower= ITmean−w3∗ IT std, (3)
T3Dupper=Toptimal, (4)

where ITmean is the mean intensity and IT std is the standard
deviation in intensity of the segmented target liver metastasis
on the selected 2D reference slice. w3 is a weighting parameter,
which has a constant value of 2.5 in this paper. Toptimal is
the threshold calculated by the iterative threshold selection
method.

2.B. Determination of the markers for the target 3D
liver metastasis

At present, the CT data scanned for the clinical application
are still not isotropic. The resolution along the scanning axis
is often several times to in-plane resolution. Thus, in the
presented paper, we still deal with 3D data slice by slice.
The fortunate thing is that we can automatically determine
the range of the 3D data with 3D connectivity, rather than

manually give the start and end slices. The other advantage of
utilizing 3D connectivity is that the algorithm can effectively
solve the branch problem for the 3D object.

Similarly, for 3D data, we first use the refined dual
threshold values (T3Dlower and T3Dupper) to divide the entire
3D data into three classified regions: (a) the low-intensity
regions, inside which the image intensities are lower than
T3Dlower, (b) the middle-intensity regions, inside which the
image intensities are between T3Dlower and T3Dupper, and (c)
the high-intensity regions, inside which the image intensities
are higher than T3Dupper. Then, we also use the same method
to eliminate the influence of the right rib.

After that, we choose one 3D connected region from
the middle-intensity regions, which has the largest common
area with the circular ROI, and use it as a volume-of-
interest (VOI). With VOI, we can easily determine those
slices including the target lesion regions and the AOIs on
each of them [Figs. 4(c) and 4(d)]. For every AOI on
each slice, we use the same method described in Subsec-
tion 2.A.2 to determine the corresponding internal and external
markers.

2.C. Segmentation of the target 3D hepatic lesion

Once all the corresponding internal and external markers
are determined, we just need to use the method of Subsec-
tion 2.A.3 for every AOI on each slice [Fig. 4(d)]. All these
operations will make up the segmentation for the target 3D
liver metastasis.
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3. EXPERIMENTS AND RESULTS
3.A. Imaging data

We retrospectively collected portal venous phase CT scans
of 15 patients from a clinical trial database of patients with
liver metastases. The CT imaging protocol used in the trial
is listed in Table I. Retrospective Institutional Review Board
(IRB) approval was received for the study. The CT images
(LightSpeed QX/I, GE Medical Systems, Milwaukee, WI)
were first retrieved from the hospital picture archiving and
communication system (PACS) to our research PACS (rPACS)
where the DICOM format images were stored with patient
identification information deidentified. The images in the
rPACS were then read for the automated segmentation and
quantification analysis.

3.B. Performance evaluation

The performance of a segmentation algorithm can be
assessed by comparing the computer-generated contours
to the “gold standard” contours, which generally are the
contours drawn by human observers.24,25 In the present
study, the gold standard was generated by an experienced
radiologist who manually delineated the contours of all
liver metastases without seeing the computer results. As

discussed in Ref. 25, several quantitative measurements
were calculated to measure the deviations of the computer
results from the gold standard. These included the con-
tour distance-based measurements such as average distance
and Hausdorff distance between the computer-segmented
contours and the radiologist-generated contours,25,27–29 as
well as area/volume matching-based measurements such
as the ratios of overlap, overestimation, and underesti-
mation of the computer-segmented areas/volumes and the
radiologist-generated areas/volumes.24–26 For convenience, all
the measurement definitions used in this paper are rewritten
as follows.

The average boundary distance and Hausdorff boundary
distance are defined in Eqs. (5) and (6), respectively,

average_dist=max*.
,

1
m

m
i=1

d(ai,B),1n
n
j=1

d(bj,A)+/
-
, (5)

Hausdorff_dist=max(max
i

{d(ai,B)},max
j
{d(bj,A)}),

i = 1,. . .,m; j = 1,. . .,n, (6)

where the set of points A= {a1,a2,. . .,am} is the contour to be
evaluated (e.g., the computer-generated contour in this work)
and B = {b1,b2,. . .,bn} is the gold standard contour (e.g., the
radiologist-generated contour in this work), each ai or bi is a

F. 5. Segmentation results obtained with the proposed method. (a) The original images and the given circle (see the arrow). (b) The computer-generated
segmentation results. (c) The radiologist’s manual results.
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F. 6. Segmentation results obtained with the proposed method. (a) The
original images and the given circle (see the arrow). (b) The computer-
generated segmentation results. (c) The radiologist’s manual results.

point on the contours, and

d(ai,B)=min
j

�
bj−ai

�
, j = 1,. . .,n (7)

is the distance from ai to the closest point on the contour B.
Let R_A and R_B be the set of points inside the contours to

be evaluated and the gold standard contours, respectively, and
the overlapped (overlap_ratio), overestimated (over_ratio),
and underestimated (under_ratio) ratios can be defined as

overlapped_ratio=
R_A∩R_B
R_A∪R_B

, (8)

over_ratio=
R_A−R_A∩R_B

R_B
, (9)

under_ratio=
R_B−R_A∩R_B

R_B
, (10)

where ∩ is the “AND” operator and ∪ is the “OR” operator.
To assess the reproducibility of the proposed method,

which may be affected by variations in seed ROI placement,
and the pairwise agreement between the radiologist and the
computer, the concordance correlation coefficient (CCC)30

was used. The CCC quantifies reproducibility, taking into
account both the correlation between two measurements and
the deviation from the 45◦ line of the best-fit line in a plot of
one measure by the other. Suppose that Yil and Y i2 are two

measurements for the ith liver metastasis and that the Yil and
Y i2 pairs are independent and follow a bivariate distribution
with means µ1 and µ2 and covariance matrix,

*
,

σ2
1 σ12

σ12 σ2
2

+
-
.

Then, the CCC is defined as

CCC=
2σ12

σ2
1+σ

2
2+ (µ1− µ2)2 . (11)

The CCC has a few of advantages over other methods used to
assess reproducibility: (1) it takes into account both accuracy
and precision; (2) it is a nonparametric statistic and does not
assume the data that follow a particular distribution (i.e., the
data do not have to be normally distributed); (3) it easily
accommodates clustered data.11 In the present paper, the CCC
was calculated with the software MedCalc version 15.6.1
(https://www.medcalc.org).

3.C. Results and discussion

In order to validate the proposed method, we applied it to
69 liver metastases (size range, 1.1–10.3 cm in diameter) from
15 patients’ image data described in Sec. 3.A. Then, we asked
an experienced radiologist to manually delineate the contours
for all cases without seeing the computer-generated results.
The deviation between the computer-generated and manually
delineated contours was analyzed in detail.

The experiments demonstrated that almost all 69 liver
metastases were successfully segmented using the proposed
algorithm. Figures 5 and 6 show two segmentation results:
one of the liver metastases is relatively heterogeneous (Fig. 5)
and the other one is relatively homogenous (Fig. 6). These
examples visually demonstrate the ability of our algorithm
to accurately delineate the liver metastasis in volumetric
CT images even when the liver metastasis is located at the
periphery of the liver and/or the boundaries between the liver
metastasis and the surrounding structures are unclear. The
other advantage of the proposed method is that it deals with
the branching problem by utilizing the connectivity in 3D
space. Quantitative evaluation results are provided in Table II.
The CCC between the volumes of the liver metastases defined
by the computer-generated contours and the gold standard
contours is 0.9976 (95% confidence interval: 0.9967–0.9983).
The statistic data (1.2 mm for the median boundary distance
and 82.3% for the median volume overlap percentage) indicate
the accuracy of the proposed method for the segmentation
of liver metastasis. By comparing the overestimated and
underestimated ratios, we find that the algorithm seems to
be prone to underestimation.

The overlap ratio is a widely used method to evaluate
the performance of image segmentation algorithms. From a
visual inspection of segmented objects, radiologists agree that
a volume nonoverlap of 30% is good, 30%–60% is acceptable,
and 60% is poor.31 In Ref. 31, Jolly and Grady pointed out
that for their algorithm, 90% of the segmented cases fell
into the good to acceptable zone. For our method, all the
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T I. Contrast-enhanced CT imaging protocol.

Items Parameters

Slice thickness 7.5 mm
Table speed HQ 11.25–15.0 mm/rotation
Coverage 1 breath hold: from diaphragm domes

to iliac crests
Time (s) Unique to patient
Injection [(rate/time)/volume] (2.5 cm3/s)/125 cm3

Injection to scan delay 70 s
Oral contrast Yes

segmented liver metastases fell into the good to acceptable
zone. This may be because the method proposed in Ref. 31
is a general method, rather than specific for liver metastasis
segmentation.

In Ref. 32, an intraobserver difference of 15.2%± 7.7% was
obtained for the volumes of 102 liver metastases in 45 patients.
The mean overlap, overestimated ratio, and underestimated
ratio of 81.4%, 7.5%, and 12.6% (Table II) of our method
indicate that the difference between the computer-generated
contours to the gold standard contours is similar to the
intraobserver difference.

From the statistic data of Table II, we can also see that
the Hausdorff distance seems to be large. By comparing the
computer-generated results to the radiologist’s manual results,
we found that the large distances often happen at the two
terminals of the target liver metastases (Figs. 5 and 6). In
order to bring the reasons to light, we chose two adjacent
terminal slices of the case in Fig. 5 in which the distances
between computer-generated contours and those drawn by
the radiologist are large (15.0 mm for Hausdorff distance).
From Fig. 7, it is not difficult for us to find that the liver

T II. Summary statistics for the performance of the proposed segmenta-
tion method based on the comparison of the computer segmentation results
and the radiologist’s manual delineation results.

Comparison items Mean
Standard
deviation Minimum Median Maximum

Average distance (mm) 1.3 0.7 0.3 1.2 3.7
Hausdorff distance (mm) 8.5 4.6 1.5 8.8 21.2
Overlap ratio (%) 81.4 4.9 70.4 82.3 90.5
Overestimated ratio (%) 7.5 5.3 1.1 6.0 21.9
Underestimated ratio (%) 12.6 4.8 5.5 11.5 28.7

metastasis intensity in the terminal part of every branch
[arrows 1 and 2 in Fig. 7(f)] becomes very similar to that
of the surrounding normal liver parenchyma, rather than that
of liver metastasis in the middle part [arrow 3 in Fig. 7(c)].
Moreover, there is nearly no boundary between the terminal
part of the target liver metastasis and its surrounding normal
liver parenchyma [Fig. 7(d)]. Thus, it is very difficult for
the proposed method to detect the liver metastasis boundary
correctly [Figs. 7(e) and 7(f)]. This will inevitably result
in a large boundary distance. The definition of Hausdorff
distance specifies that it only considers the worst situation.
Therefore, even though such a large distance only happens at
the terminal slice, the Hausdorff distance is large for the entire
target object. For our experiments of all 69 liver metastases,
this is the main reason for the large Hausdorff distance.
Apparently, this will enlarge the average distance to some
extent.

The other reason that the proposed method cannot correctly
detect the boundary of the target liver metastasis is that the
intensity of surrounding structures is too similar to that of the
metastasis, especially for metastases located at the periphery

F. 7. Illustration of the large distances between the computer-generated contours and those drawn manually by the radiologist. (a) and (d) are the original
images. (b) and (e) are computer-generated contours corresponding to (a) and (d). (c) and (f) are radiologist-delineated contours corresponding to (a) and (d). In
this example, the Hausdorff distance is 15.0 mm.
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F. 8. Illustration of the computer-generated leaking out contours. [(a1)–(a3)] The original images. [(b1)–(b3)] The computer-generated contours. [(c1)–(c3)]
The radiologist’s manually delineated contours.

of the liver. This sometimes lets the computer-generated
contour leak out and produces large boundary distances. This
will also enlarge the average boundary distance. Figure 8 is
such an example, in which the Hausdorff distance is about
21.2 mm. For this case, it also produces the maximal average
distance (3.7 mm). What we want to point out is that this is a
rare phenomenon. For all 69 liver metastases, there are only
three such cases, and this (Fig. 8) is the worst one. In each of
the three cases, boundary leakage happens in only one or two
slices. It is easy for the user to correct them.

For a semiautomatic segmentation algorithm, results are
often affected by manual selection of an initial ROI. To
validate the robustness of our algorithm to the variations in
manually given initializations, i.e., the seed circles, we reran
the algorithm on all 69 cases with a different ROI and blinded
to the initializations of that first round. The pairwise agreement
between the two measurements was evaluated with the overlap
ratio and the CCC. For the 69 liver metastases in 15 patients,
the algorithm achieved a median overlap ratio of 92.6% and
a CCC of 0.9990 (95% confidence interval: 0.9984–0.9994).
This is better than that obtained by the method proposed in
Ref. 11. Figure 9 illustrates a typical case. The two different
seed ROIs are provided in Fig. 9(a) (ROI 1 and ROI 2).

Figure 9(b) shows the segmentation result obtained with ROI
1 in Fig. 9(a). Figure 9(c) shows the segmentation result
obtained with ROI 2 in Fig. 9(a). The volumes of the liver
metastases in Figs. 9(b) and 9(c) are 335.5 and 343.5 cm3.
The overlap ratio is about 96.8%.

For the proposed method, the parameters w1, w2, and w3
in Eqs. (1)–(3) are weighting factors. Throughout this paper,
for all the demonstrated cases and experiments, w1, w2, and
w3 were fixed with the constant values of 2.0, 1.732, and 2.5,
which were experimentally determined. From the results, we
can see that the algorithm is robust to these parameters.

Once the seed ROI was provided, the proposed liver
metastasis segmentation algorithm took about 15 s to segment
one 3D liver metastasis (programmed with  Version 6.4
Win32 and run on a laptop of 2.5 GHz CPU and 4 GB
RAM).

The proposed segmentation algorithm focuses on liver
metastases with hypointensity. One limitation of the algorithm
is that it has not considered cases with a hyperintense lesion or
an enhanced ring. In the future, we will enhance our algorithm
by incorporating information of liver parenchyma so that it
can handle liver lesion with hypointense, or when there is an
enhanced ring.
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F. 9. Segmentation results obtained with the different seed ROIs. (a) The original images and the given seed circles (see the arrows). (b) The segmentation
result with the seed ROI (ROI 1). (c) The segmentation result with the other seed ROI (ROI 2).

4. CONCLUSIONS

Based on marker-controlled watershed transformation, we
developed a semiautomatic method for the segmentation of 3D
liver metastases in volumetric CT images. The only manual
requirement of the algorithm is an initialization circle inside
the target liver metastasis in a selected reference slice. By
combining techniques including thresholding, morphological
operations, and 3D connectivity, we proposed a reliable
method to automatically determine the internal and the
external markers for every region on each slice. The algorithm
was applied to 69 liver metastases in 15 patients and received
a median overlap, overestimation ratio and underestimation
ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median
average boundary distance of 1.2 mm. Preliminary results
have demonstrated that the proposed algorithm is accurate
and promising.
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