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Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for
fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use
in functional imaging applications. For instance, spectral information combined with nanoparticle
contrast agents enables quantification of tissue perfusion levels, while temporal information details
cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and
reconstruction strategy for 5D CT (3D+dual energy+ time) which recovers spectral and temporal
information without substantially increasing radiation dose or sampling time relative to anatomic
imaging protocols.
Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and
sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction,
the authors establish an explicit rank-sparse signal model to describe the spectral and temporal
dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image
plus regularly undersampled principal components describing the spectral contrast. The temporal
dimension is represented as the same time and energy averaged reconstruction plus contiguous,
spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain
filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image
structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal
contrast images. This regularization strategy strictly constrains the reconstruction problem while
approximately separating the temporal and spectral dimensions. Separability results in a highly
compressed representation for the 5D data in which projections are shared between the temporal
and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved
the 5D reconstruction problem using the split Bregman method and GPU-based implementations of
backprojection, reprojection, and kernel regression. Using a preclinical mouse model, the authors
apply the proposed algorithm to study myocardial injury following radiation treatment of breast
cancer.
Results: Quantitative 5D simulations are performed using the MOBY mouse phantom. Twenty data
sets (ten cardiac phases, two energies) are reconstructed with 88 µm, isotropic voxels from 450 total
projections acquired over a single 360◦ rotation. In vivo 5D myocardial injury data sets acquired in
two mice injected with gold and iodine nanoparticles are also reconstructed with 20 data sets per
mouse using the same acquisition parameters (dose: ∼60 mGy). For both the simulations and the in
vivo data, the reconstruction quality is sufficient to perform material decomposition into gold and
iodine maps to localize the extent of myocardial injury (gold accumulation) and to measure cardiac
functional metrics (vascular iodine). Their 5D CT imaging protocol represents a 95% reduction in
radiation dose per cardiac phase and energy and a 40-fold decrease in projection sampling time
relative to their standard imaging protocol.
Conclusions: Their 5D CT data acquisition and reconstruction protocol efficiently exploits the
rank-sparse nature of spectral and temporal CT data to provide high-fidelity reconstruction results
without increased radiation dose or sampling time. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4931407]
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1. INTRODUCTION

X-ray computed tomography (CT) is ubiquitous, both clin-
ically and preclinically, for fast, high-resolution anatomic
imaging. However, compelling opportunities exist to expand
its use in functional imaging applications by exploring the
spectral and temporal dimensions. The simplest implemen-
tation of spectral CT, dual-energy (DE) CT, scans the same
subject with two different x-ray spectra, allowing separation
of two materials. We have demonstrated preclinical, func-
tional imaging applications of DE-CT to separate iodine and
calcium or iodine and gold nanoparticles, including classi-
fication of atherosclerotic plaque composition,1 noninvasive
measurement of lung2 and myocardial perfusion,3 and the
classification of tumor aggressiveness and response to therapy
in primary lung cancers4 and in primary sarcomas.5,6 Our
group has also pioneered preclinical 4D (3D+ time) cardiac
and perfusion imaging.7–10 Other groups have designed and
implemented algorithms for 4D cardiac microCT using retro-
spective, cardiorespiratory projection gating.11,12

Binning retrospectively gated projections to cardiac phases
results in random angular undersampling. The reconstruction
problem for each cardiac phase is very poorly conditioned,
requiring high-fidelity regularization to minimize variability
in the results. Two primary strategies exist for regularizing
reconstructions from binned projection data: spatiotemporal
total variation (4D-TV)13 and prior image constrained com-
pressed sensing (PICCS).14 4D-TV enforces spatiotemporal
gradient sparsity between the reconstructions of adjacent car-
diac phases, resulting in piecewise constant reconstruction re-
sults that are consistent in time. PICCS enforces gradient spar-
sity relative to a prior reconstruction, such as a well-sampled
temporal average reconstruction, recognizing that most im-
age features are static (redundant) in time. A third technique,
robust principal component analysis,15 effectively combines
redundancy (i.e., low rank) and sparsity constraints within a
single framework. Algorithms for rank-sparsity constrained
spectral16 and temporal17 CT reconstruction have been derived
and demonstrated in simulations.

The novelty in the work presented here comes from a
synergy between a hierarchical projection sampling strategy,
a deterministic rank and sparsity pattern, and a regulariza-
tion approach which exploits both, enabling simultaneous
temporal and spectral CT reconstructions of in vivo data
while maintaining or even lowering the associated radiation
dose. In a preliminary investigation of this problem, we
work with dual-energy microCT of the mouse combined
with retrospectively gated cardiac CT. While the results we
present use dual-energy CT exclusively to emphasize that
the majority of our approach extends to an arbitrary number
of spectral samples (i.e., >2),18,19 we call our combination
of spectral and temporal CT reconstructions 5D CT. High-
fidelity 5D CT reconstruction can reveal the dynamic range
of cardiac and respiratory motion (temporal contrast) in
the context of information such as vascular density and
perfusion quantified by the concentrations of spectrally differ-
entiable contrast agents (spectral contrast and material de-
composition).

As a motivating example, we apply our low-dose 5D CT
imaging and reconstruction protocol to study myocardial
injury following radiation therapy (RT). RT can be com-
bined with surgery to treat breast cancer, improving rates
of local control, and for some subgroups of patients, rates
of survival.20,21 However, RT to the chest, which includes
exposure of the heart to radiation, can cause radiation-related
heart disease (RRHD) and death.20,22–25 Radiation dose to the
heart has been reported to correlate with the risk of RRHD,25

though identifying patients who will develop RRHD remains
challenging.

In a previous microCT study of myocardial injury following
partial heart irradiation in a mouse model,26 CT data were
acquired 4 and 8 weeks after 12 Gy partial heart irradiation.
An additional microSPECT scan was acquired following the
8-week time point. Concerns over potential compounding ef-
fects between the treatment dose and the imaging doses con-
strained the CT data acquisition protocol. Specifically, instead
of acquiring a full prospective data set at two energies (dose:
∼1300 mGy), a single prospectively gated data set was ac-
quired with dual energy (dose: ∼130 mGy) to allow accu-
rate measurement of perfusion defect (myocardial injury) size
and extent based on its accumulation of gold nanoparticles.
A second, somewhat lower quality, retrospectively gated 4D
(3D+ time) data set was acquired to enable quantification of
left ventricle functional metrics (dose: ∼290 mGy). While the
total dose associated with these two image acquisitions was a
fraction of the total dose associated with a prospectively gated
5D acquisition (1300 vs 420 mGy), the two acquired data sets
were highly redundant.

This scenario raises questions regarding the expectation
of reliable material decomposition results and high temporal
resolution from a predetermined amount of retrospectively
gated projection data. More specifically, if we are willing
to take on the computational burden associated with solving
several iterative reconstruction problems in tandem, can we
exploit the redundancy between each phase and energy to
greatly reduce the amount of projection data and the scanning
time required for reliable 5D reconstruction results? Using
the methods proposed in Sec. 2, we believe the answer is
yes.

2. METHODS

To develop the proposed algorithm for 5D CT reconstruc-
tion, the general rank-sparse signal model and its applica-
tion to CT reconstruction are first presented (Secs. 2.A and
2.B). Data fidelity constraints enforced by residual weight-
ing are then outlined (Sec. 2.C). Methods and motivations
for enforcing gradient sparsity and low rank via rank-sparse
kernel regression (RSKR) are detailed in Secs. 2.D–2.F. The
presented concepts are then related through pseudocode for
the proposed algorithm (Sec. 2.G). Section 2.H discusses
the example application, the investigation of cardiac injury
following partial heart irradiation. Finally, details of simu-
lation and in vivo experiments are presented in Secs. 2.I
and 2.J.
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2.A. Sparsity-constrained CT reconstruction

To set up the problem of rank-sparsity constrained CT
reconstruction, we begin with a general expression for
sparsity-constrained CT reconstruction,

X = argmin
X

1
2
∥AX −Y ∥2

Q+λ∥W X ∥1. (1)

In solving this problem, X , the proposed solution, is pro-
jected through the imaging system, A (AT , backprojection) and
is compared with the system calibrated and log-transformed
projection data, Y . The optimal solution minimizes the sum of
these residuals and the absolute sum of intensity gradients in
X as weighted by the regularization parameter, λ. Common
choices for the gradient operator, W , include total variation27

and the piecewise-constant B-spline tight frame transform.28

Section 2.D details the gradient operator used in this work,
bilateral total variation (BTV).

The matrix X consists of several columns, each represent-
ing the reconstructed result at a given temporal phase (t) and
energy (e),
X :=


Xt=1,e=1 . . . Xt=NT,e=1 Xt=1,e=2 . . . Xt=NT,e=NE


,

(2)

where NT is the total number of time points (cardiac phases)
and NE is the total number of energies to be reconstructed.
As each column of X represents an independent volume, the
dimensions of X are the number of voxels per volume (rows)
by time and energy (columns, NE · NT). When retrospective
projection sampling is used (as it is here), Y consists of NE

columns,

Y :=

Ye=1 . . . Ye=NE


. (3)

Each column of Y has NY rows (number of detector ele-
ments times the number of projections per energy). Given
these definitions for X and Y , Eq. (1) is shorthand notation
for a series of temporal and energy selective reconstruction
problems,

X = argmin
X

NT
t=1

NE
e=1


1
2
(AeXt,e−Ye)TQt,e(AeXt,e−Ye)

+ λ
�
W Xt,e

�
1

�
. (4)

Equivocating Eqs. (1) and (4), A and AT are defined to apply to
all columns of X and Y independently, with the total cost being
the summation of all temporal and energy selective costs. Fur-
thermore, A and AT are energy selective (e subscript) to match
the angular sampling of Ye. The time and energy selective,
diagonal weighting matrix, Q, noted by an L2-norm subscript
in Eq. (1), is the product of a weighted least squares penalty
term and a time point selective weighting term. These weights
are detailed in Sec. 2.C. Nominally, the gradient operator, W , is
defined to apply to each column of X independently; however,
within the context of joint, low rank and gradient sparsity
constraints, enforcing regularity between the columns of X can
be highly efficacious.

2.B. Rank-sparsity constrained CT reconstruction

To develop this joint regularization strategy, we begin by
defining rank-sparse solutions to the CT reconstruction prob-
lem as those that adhere to the following signal model:

X = XL+XS. (5)

In other words, X is exactly represented as the sum of two
matrices which have the same number of rows and columns
as X : one with low column rank (XL) and one with sparse
nonzero entries (XS). Low column rank implies that the num-
ber of independent columns of XL is less than its total number
of columns.

Thanks to the work of Candès et al.,15 we know that if a
meaningful rank-sparse decomposition exists, it can be very
generally estimated through convex optimization (robust prin-
cipal component analysis, RPCA),

[XL,XS]= argmin
XL,XS

∥XL∥∗+λ∥XS∥1 (6)

subject to

X = XL+XS.

∥XL∥∗ is referred to as the nuclear norm and represents the sum
of singular values of the matrix XL. Minimizing this sum is a
convex proxy for minimizing matrix rank. Similarly, the L1-
norm is a convex proxy for enforcing gradient sparsity within
the columns of XS.

Combining Eqs. (1) and (6) yields a new expression for
rank-sparsity constrained CT reconstruction,

[XL,XS] = argmin
XL,XS

1
2
∥A(XL+XS)−Y ∥2

Q+λL∥XL∥∗
+ λS∥W XS∥1. (7)

In other words, Eq. (7) expresses that we wish to find a recon-
struction that is closely related to the acquired projection data
and that has a rank-sparse decomposition. Depending on the
projection sampling strategy and the rank and sparsity pattern
of the columns of X , enforcing regularity on the rank-sparse
decomposition of X in lieu of its independent columns can
substantially improve the conditioning of the inverse problem.
In Secs. 2.C–2.F, we discuss the specifics of our data fidelity
weighting and regularization strategies for rank-sparsity con-
strained (5D) CT reconstruction. Following previously pub-
lished work,16,29 we then solve a modified version of Eq. (7)
using the split Bregman method and the add-residual-back
strategy (Sec. 2.G).

2.C. Data fidelity weighting

The data fidelity residuals in Eqs. (1) and (7) are weighted
by the time and energy selective diagonal matrix, Q. For our
implementation of 5D CT reconstruction,

Qt,e =TtΣ
−1
e . (8)

The Q matrix is, itself, the product of two diagonal matrices
(each with dimension NY · NY): the time point (phase) selec-
tive matrix, T , and the energy selective matrix, Σ. Σ weights
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each individual line integral using a weighted least squares
approach,30

Σe =Diag
( 
σ2
e,1 . . . σ2

e, i . . . σ2
e,NY

 )
, (9)

σ2
e, i = exp(Ye, i/η), (10)

where i indexes all detector pixels and projections acquired
at a single energy (i.e., i = 1 : NY). The relationship between
the measured projection data, Y , and the measurement vari-
ance, σ2, is modeled as Gaussian [Eq. (10)], given a constant
parameter, η, relating the two. Physically, this relationship
recognizes that highly attenuated measurements are the least
reliable. Within the context of sparsity-constrained CT recon-
struction [Eqs. (1) and (7)], highly attenuating features are
more heavily regularized, while low contrast features are better
resolved. We note that using a diagonal covariance matrix im-
plies (assumes) that the projection measurements are spatially
uncorrelated.

The temporal weights, T , are redundant for all line integrals
within a single projection and are determined using Gaussian
basis functions. The complete set of basis functions (here,
10) spans the R–R interval of the cardiac cycle. To recon-
struct a given phase, a weight is assigned to each projection
based on the normalized difference between the time point
to be reconstructed and the time at which each projection
was acquired. Once assigned, the weights for each phase are
normalized such that they sum to one. Given these weights,
enforcing data fidelity for a given cardiac phase amounts to
interpolating the reconstruction of that phase from among the
acquired temporal samples. More details on the computation
of the temporal weights are provided in Subsection 1 of the
Appendix.

Further regarding temporal weighting and the work pre-
sented here, we assume that the temporal sampling is only
loosely correlated with projection angle and cardiac phase
so that the overall sampling pattern is effectively random.
This assumption holds true for the in vivo results presented
here (Sec. 2.J); however, additional delays in the projection
acquisition sequence may be required to decorrelate tem-
poral samples in future work. To deal with respiratory mo-
tion in the in vivo data, the respiratory cycle was retrospec-
tively divided into ten phases of equal length (starting and
ending at end inspiration). Projections acquired during the
outlying respiratory phases (8 and 9) were given a temporal
weight of zero prior to normalization of the temporal weights.
Additional details of the respiratory gating are provided in
Sec. 2.J.

2.D. Bilateral total variation

For the proposed 5D reconstruction algorithm, we use bilat-
eral filtration (BF) to enforce image domain, intensity gradient
sparsity. The bilateral filter is an edge-preserving, smoothing
filter,31

dt,e(l)=

m

D(m)R(l,m)Xt,e(l−m)
m

D(m)R(l,m) . (11)

As before, Xt,e denotes the column of X corresponding to
time point t and energy e, while dt,e denotes the correspond-
ing filtered result. The variable l indexes the voxel within
Xt,e to which the filter is applied. The variable m indexes
a complete set of 3D voxel offsets from l at which filtra-
tion weights are computed to perform weighted averaging.
Combined Xt,e(l−m) represents the image intensity at posi-
tion l −m within reconstructed volume Xt,e. Specific to our
implementation of BF,18 the domain (D) and range (R) ker-
nels used to compute the filtration weights are defined as
follows:

D(m)=



1, ∥m∥2 ≤ b
0, ∥m∥2 > b

, (12)

R(l,m)= exp*
,
−
(WKXt,e(l,m))2

2h2σ2
t,e

+
-
. (13)

The filtration domain [Eq. (12)] is spatially invariant, depend-
ing only on the position offset. The domain radius, b, defines
the scales of image derivatives given equal, nonzero weight
within the filtration domain (here, b= 6). The Gaussian range
weights [Eq. (13)] are scaled by a user-defined scalar multi-
plier, h, which controls the degree of smoothing (h≈ 2.5), and
the noise standard deviation, σt,e, measured in Xt,e prior to
filtration.

In the original implementation of BF from the work of
Tomasi and Manduchi,31 the range weights are centered on the
intensity of the voxel being filtered,

W Xt,e(l,m)B Xt,e(l−m)−Xt,e(l). (14)

Notably, this is also a generic definition for the intensity
gradient operator referred to in the sparsity-constrained CT
reconstruction problem [Eqs. (1) and (7)]. However, we have
previously demonstrated that resampling Xt,e to the 10% cut-
off of the modulation transfer function of the imaging system
greatly improves denoising performance without substantially
compromising image resolution,6 leading to a modified defi-
nition specific to our implementation of BF,

WKXt,e(l,m)B Xt,e(l−m)−

n

K(n)Xt,e(l−n). (15)

The K subscript of W denotes that the filtration domain
is resampled with a spatially invariant, 2nd order, classic
kernel,6,32 denoted by K , prior to the computation of the inten-
sity gradient. The n index is equivalent to, but independent
of, m.

Building on a previous derivation33 and practical applica-
tions,18,34 it can be shown that BF reduces BTV subject to data
fidelity,

d = argmin
d

1
2
∥X −d∥2

2+λ∥WKd∥BTV, (16)

∥WKd∥BTVB

NT
t=1

NE
e=1


l


m

D(m)R(l,m)�WKdt,e(l,m)�
m

D(m)R(l,m) . (17)

As with Eqs. (1) and (7), the columnwise evaluation of Eq. (16)
is implied. Additional details on the origins of Eqs. (16) and
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(17) can be found in Subsection 3 of the Appendix. The signif-
icance of Eq. (16) to the problem of 5D CT reconstruction
and the split Bregman method will be discussed in Secs. 2.F
and 2.G. Here, we compare Eq. (11) (BF) and 17 (BTV) and
see that BTV applies the BF weights to the magnitude of
the intensity gradients. Summing over all spatial positions (l),
energies (e), and time points (t) yields the cost associated with
BTV.

Enforcing gradient sparsity with BTV provides several
specific advantages over total variation based approaches.
Much like the B-spline tight frame transform, BTV con-
siders multiple scales of image derivatives, minimizing gradi-
ents between distant neighbors and, potentially, preventing
over smoothing relative to localized total variation.34 Un-
like tight frame transforms, however, BTV abstracts image
intensities to probabilities in the form of spatially localized
range weights. When several images share the same under-
lying image structure, weights at the same spatial position
in each image can be multiplied to substantially improve
denoising performance in each individual image, regardless
of differences in or lack of image contrast. We have previ-
ously applied this approach for postreconstruction denoising
of spectral CT data.18 We call this approach joint bilateral
filtration (joint BF) because it treats the intensity in each spec-
tral dimension as an independent (jointly) Gaussian random
variable,

Rjoint(l,m) = Rn=1(l,m) ·Rn=2(l,m). . .Rn=N (l,m)

= exp*
,
− 1

2h2

N
n=1

(WKXn(l,m))2
σ2

n

+
-
, (18)

where n is a generic index for N total volumes. The resulting
range kernel, Rjoint(l,m), replaces R(l,m) in Eq. (11) for the
filtration of each component volume, reducing BTV in a way
that promotes consistency between each component image and
greatly improving the fidelity of postreconstruction material
decomposition.18

For temporal reconstruction, we further extend the mini-
mization of BTV to the temporal dimension. Specifically, we
extend the image domain by one cardiac phase preceding
and following the cardiac phase to which the filter is
being applied (Sec. 2.F). Given the inherent edge-preserving
nature of the bilateral filter, temporal “edges” are pre-
served between cardiac phases based on the assigned range
weights. Note that we are not the first to apply bilateral
filtration to the problem spatiotemporal CT reconstruc-
tion;35 however, we are the first to integrate it into the
split Bregman method for explicit minimization of BTV
(Sec. 2.G).

2.E. Rank-sparse signal model

Sections 2.A and 2.B reviewed the application of RPCA to
CT reconstruction based on previous work.16 In Sec. 2.D, we
reviewed our own contrast and noise independent scheme for
enforcing image-domain gradient sparsity. In Secs. 2.E and
2.F, we combine the robustness of rank-sparse representation

with the joint regularity enforced by BF to create a new
regularization strategy we refer to as RSKR.

We begin by noting that, despite its ease of application,
RPCA can require tens or even hundreds of singular value
decomposition operations to converge to an exact solution,
limiting its practicality in real-world CT reconstruction prob-
lems. Luckily, by exploiting additional constraints inherent
in the problems of temporal and spectral CT reconstruction,
we can take advantage of rank-sparse representation without
explicitly performing RPCA. Said in another way, if we
know, a priori, what rank and sparsity pattern to expect, we
can regularize the reconstruction problem in such a way that
the solution adheres to the expected pattern.

For the sample problem of dual energy reconstruction
(NE = 2) at 10 time points (NT = 10), we model the recon-
struction at a given phase and energy, Xt,e, as the sum of the
following components (Fig. 1):

Xt,e = XT̄ , Ē±XEnergy+XTime, t+rt,e = XL,e+XS, t,e. (19)

The second expression relates Xt,e to the general rank-sparse
signal model [Eq. (5)]. This problem specific variant of the
rank-sparse signal model highlights that the NT ·NE columns
of X are described by a low-rank basis, XL,e, which depends
on energy, and spatially sparse components, which depend
on both time and energy, XS, t,e. XT̄ , Ē is shorthand notation
for the time (T̄) and energy (Ē) average reconstruction which
consists of a single column,

XT̄ , Ē =
1

NT NE

Nr
t=1

NE
e=1

Xt,e. (20)

When reconstructed from angularly interleaved spectral pro-
jection data acquired over a full rotation, XT̄ , Ē represents
a high-fidelity reconstruction with minimal undersampling
artifacts, even when each individual energy is angularly
undersampled. For the case of dual energy, the spectral
contrast, XEnergy, is then a single column,

XEnergy= XT̄ ,e=1−XT̄ , Ē, (21)

where XT̄ ,e=1 is the temporal average reconstruction at energy
1. In relation to the general rank-sparse decomposition
[Eq. (5)] and the definition of X in Eq. (2), the spectral
dimension is then represented as follows for the dual energy
case:

XL,e=1= XT̄ , Ē+XEnergy,

XL,e=2= XT̄ , Ē−XEnergy, (22)

XL,e=1 and XL,e=2 represent the static portions of the volume
at each energy and form a rank 2 basis for approximating all
NT ·NE columns of X .

By definition, XL,e=1 and XL,e=2 [Eq. (22)] are simply
the time average reconstructions at each energy (i.e., XT̄ ,e);
however, within the context of RSKR, stratifying noise
and undersampling artifacts to XEnergy will prove significant
(Sec. 2.F). Beyond dual energy, decomposition of XT ,e

into XT̄ , Ē and XEnergy can be generalized to an arbitrary
number of energies by performing principal component
decomposition of XT ,e, increasing the number of columns
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F. 1. Rank-sparse signal model. (A) The expected reconstruction at a given time point and energy, Xt,e, is modeled as the sum of low-rank ba-
sis functions describing the energy dimension, XL,e, and sparse columns describing the spectrotemporal contrast, XS, t,e [Eq. (19)]. The independent
columns of XL,e are chosen to correspond with the time and energy average reconstructions (XT̄ , Ē) and the spectral (“energy”) contrast (XEnergy).
The sparse columns of XS represent the temporal contrast (XTime) and additional energy-dependent spectrotemporal contrast (rt,e). For dual energy CT
using energy integrating detectors, the magnitude of rt,e is comparatively small, leading to a separable approximation by which the time and energy
dimensions are regularized independently [Eq. (25)]. (D) The average reconstruction is regularly and densely sampled. The energy dimension is deter-
ministically undersampled, while the time dimension is randomly sampled (projection intensity∝ assigned weights). (E) Projection undersampling leads to
noise and shading artifacts in FBP reconstructions; however, complementary image structure between each component can be exploited for high-fidelity
regularization.

of XEnergy to NE − 1. Singular value decomposition to find
principal components seems inefficient given the previous
observation that RPCA may be impractical for real-world
CT reconstruction problems. Here, however, the energy
dimension will generally be much smaller than the dimen-
sionality of X (i.e., NE < NT · NE), reducing computation
time. Furthermore, the proposed algorithm converges after
a very small number of regularization steps (Sec. 3.C).
We discuss future adaptation of the proposed model to an
arbitrary number of energies in Sec. 4.

Similar to the spectral contrast, the temporal contrast,
XTime, is computed as follows:

XTime=

Xt=1, Ē−XT̄ , Ē . . . Xt=NT, Ē

−XT̄ , Ē


, (23)

where Xt, Ē is the energy average reconstruction at time point
t. The NT total columns of XTime are energy independent. The
temporal contrast is included in the NT ·NE columns of XS in
the general rank-sparse signal model [Eq. (5)],

XS, t,e = XTime, t+ rt,e. (24)

Referring back to Eq. (19), the only time and energy
dependent component is the spectrotemporal contrast, rt,e,

which represents the residual in approximating Xt,e as the
sum of separable time (XTime) and energy (XT̄ , Ē, XEnergy)
components. Figure 1 illustrates each component of our
problem specific, rank-sparse signal model.

2.F. Rank-sparse kernel regression

Given retrospective projection sampling along the time
dimension, the problem of reconstructing each phase of
the cardiac cycle at each energy is poorly conditioned. To
overcome this poor conditioning, our implementation of
RSKR approximates each column of Xt,e using only its
separable components (Fig. 1),

Xt,e ≈ XT̄ , Ē±XEnergy+XTime, t, (25)

The extent to which this separable approximation holds
informs the potential for projection undersampling in solving
the 5D reconstruction problem, since the same projections
are used to solve two separate subproblems. Separability
also partially alleviates poor conditioning, since the temporal
contrast is recovered using angularly interleaved projections
from each sampled energy.
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Despite these features, substantial regularization is still
required to minimize variability in reconstructions from un-
dersampled, retrospectively gated projection data. To this end,
RSKR exploits the well-sampled time and energy average
reconstruction (XT̄ , Ē) as a template for regularizing energy and
time resolved reconstructions within the framework of joint BF
[Eq. (18)]. Specifically, to regularize the spectral contrast, the
following joint BF operation is performed,


dT̄ , Ē dEnergy


=BF

( 
XT̄ , Ē XEnergy

 )
. (26)

BF() is shorthand for joint filtration between XT̄ , Ē and each
column of XEnergy, and dT̄ , Ē and dEnergy are defined as the
filtered analogs of XT̄ , Ē and XEnergy, respectively. For the
dual energy case where XEnergy is a single column, Eq. (26)
is equivalent to the following evaluated at all voxel coordi-
nates, l,

BF
( 

XT̄ , Ē(l) XEnergy(l)
 )
=




m

D(m)RE (l,m)XT̄ , Ē(l−m)
m

D(m)RE (l,m)


m

D(m)RE (l,m)XEnergy(l−m)
m

D(m)RE (l,m)

, (27)

RE (l,m)= exp*
,
− 1

2h2



�
WKXT̄ , Ē(l−m)�2

σ2
T̄ , Ē

+

�
WKXEnergy(l,m)�2

σ2
Energy


+
-
. (28)

In other words, a single joint range kernel, RE (l,m), is com-
puted [Eq. (28)] and then used to filter each column of the
input [Eq. (27)]. Because XT̄ , Ē is well sampled compared
with XEnergy, the range weights associated with XT̄ , Ē pri-
marily determine the joint range weights (σ2

T̄ , Ē
< σ2

Energy),
and the image structure is copied from XT̄ , Ē to the columns
of XEnergy while preserving the contrast in XEnergy. After
applying the filter, the regularized, low-rank components are
recovered as follows for the dual energy case:

dL,e=1= dT̄ , Ē+dEnergy,

dL,e=2= dT̄ , Ē−dEnergy, (29)

Because of the complementary structure enforced between
each component, dT̄ , Ē and dEnergy add (subtract) construc-
tively in recovering dL,e. In the multienergy case, dL would
be recovered from dT̄ , Ē, the filtered principal components
(i.e., filtered columns of dEnergy) and the component coef-
ficients. For convenience, we denote the factorization of X
into XT̄ , Ē [Eq. (20)] and XEnergy [Eq. (21)], the application
of the filter [Eq. (26)], the recovery of the filtered, low-rank
components [Eq. (29)], and the replication of the low-rank
components NT times to represent all NT · NE columns of X
[Eq. (2)] as a single operation,

dL =BFEnergy(X). (30)

To regularize each component of the temporal contrast,
the following joint filtration operation is performed at all
voxel coordinates, l, and time points (columns of XTime), t,

dS, t(l) = BFt([XT̄ , Ē(l) XTime(l)])

=

t+1
q=t−1


m

D(m)RT (l,m,t,q)XTime,q(l−m)
t+1

q=t−1


m

D(m)RT (l,m,t,q)
, (31)

RT(l,m,t,q) = exp*
,
− 1

2h2



�
WKXT̄ , Ē(l,m)�2

σ2
T̄ , Ē

+
(WKXTime(l,m,t,q))2

σ2
t


+
-
. (32)

Analogous to the spectral filtration operation, XT̄ , Ē and XTime
are used to construct the joint range kernel, RT [Eq. (32)],
with the objective of copying image structure from XT̄ , Ē to
each column of XTime. Since dT̄ , Ē is already computed in the
spectral filtration operation and included in dL, only XTime is
filtered with the joint kernel, yielding its regularized analog,
dS [Eq. (31)]. Specific to the temporal filtration operation,
the filtration domain is circularly extended along the time
dimension to enforce spatiotemporal gradient sparsity be-
tween neighboring time points. To filter phase t, we choose to
include one phase prior to the phase being filtered (q = t−1)
and one phase after the phase being filtered (q = t + 1)
in addition to the phase being filtered (q = t). The voxel
coordinates, l −m, are time point invariant, meaning that all
voxels across time and space which are within the filtration
domain contribute equally to the weighted average which
updates the intensity of voxel l at time point t [Eq. (31)].
Given the extended domain, the gradient operator [Eq. (15)]
is modified to the following:

WKXTime(l,m,t,q)B XTime,q(l−m)
−


n

K(n)XTime, t (l−n). (33)

In other words, only the time point being filtered, t, is
resampled. The resampled intensity is then used to compute
intensity differences within the extended filtration domain.

As with the spectral filtration operation [Eq. (30)], we
define the following shorthand notation for the temporal
filtration operation:

dS =BFTime(X). (34)

This notation represents factorization of X to XT̄ , Ē and XTime
[Eqs. (20) and (23)], joint filtration of XT̄ , Ē and each column
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of XTime at each spatial location [Eq. (31) evaluated for all
l], and replication of the filtered result NE times to match all
NT · NE columns of X [Eq. (2)]. Because both the spectral
and temporal contrast images are filtered relative to the same
well-sampled time and energy average image [Eqs. (27) and
(31)], they add constructively to form d, the regularized
approximation of X ,

d = dL+dS. (35)

Because of the separable approximation [Eq. (25)], we
note that d does not include the regularized analog of the
spectrotemporal contrast, r .

2.G. Rank-sparsity constrained 5D reconstruction

To perform 5D reconstruction, we revisit the equation
for rank-sparsity constrained CT reconstruction [previously,
Eq. (7)],

[XL,XS] = argmin
XL,XS

1
2
∥A(XL+XS)−Y ∥2

Q+λL∥XL∥∗
+ λS∥W XS∥1. (36)

Following from our separable approximation [Eq. (25)],
which enforces low-rank spectral contrast and sparse tem-
poral contrast, we modify Eq. (36) to include BTV as reduced
by the BFEnergy [Eq. (30)] and BFTime [Eq. (34)] filtration
operations discussed in Sec. 2.F,

[XL,XS] = argmin
XL,XS

1
2
∥A(XL+XS)−Y ∥2

Q

+ λL∥WKXL∥BTV,Energy+λS∥WKXS∥BTV,Time. (37)

The subscripts Energy and Time denote the range weights for
which BTV is reduced [RE, Eq. (28) and RT , Eq. (32)]. It is
possible to minimize BTV for the time and energy dimen-
sions independently; however, because the range weights are
bounded by the same time and energy average range weights
in both cases and because the data fidelity depends on the
sum of both components, it is convenient (and effective) to
combine them into a single expression,

X = argmin
X

1
2
∥AX −Y ∥2

Q+λ∥WKX ∥BTV. (38)

Equation (38) is, in fact, a general expression for sparsity-
constrained CT reconstruction which minimizes BTV [com-
pare with Eq. (1)]. It is the choice of range weights and the
factorization of X prior to regularization which change as a
function of the dimensionality of the problem. In this way,
Eq. (38) applies to rank-sparsity constrained 5D reconstruction
as well as to any problems which include a subset of the space,
time, and energy dimensions (e.g., 3D+time and 3D+energy).

Following previously published work, we solve Eq. (38)
using the split Bregman method with the add-residual-back
strategy.16,29 We replace the singular value thresholding (rank
reduction) and soft thresholding (gradient sparsity) of the prior
rank, intensity, and sparsity model [PRISM (Ref. 16)] with
RSKR, obtaining a revised algorithm for rank-sparsity con-
strained spectrotemporal CT reconstruction (i.e., “5D recon-
struction,” Fig. 2). Each L2-norm minimization subproblem

F. 2. 5D CT reconstruction using the split Bregman method and rank-
sparse kernel regression. (1) Weighted least squares initialization of each time
point and energy to be reconstructed. Note that each column of X is updated
independently [Eqs. (1) and (4)]. (2) Initialization of the regularization (v)
and data fidelity ( f ) residual terms. (3–6) A single iteration of rank-sparse
kernel regression (Sec. 2.F). (7 and 8) Data-fidelity updates for each time
point and energy. Convergence of steps 3–8 is declared when the magni-
tude of the residual updates falls below a specified tolerance (∼3 iterations,
Sec. 3.C). A detailed derivation of this algorithm can be found in Subsection
2 of the Appendix.

(steps 1 and 8) is solved using the previously discussed data
fidelity weighting (Sec. 2.C) and five iterations of the biconju-
gate gradient stabilized method.36 The minimization for each
phase and energy in step 1 is initialized with unweighted
filtered backprojection (FBP) using all available projection
data acquired at the matching energy. The minimization for
each phase and energy in step 8 is initialized with the result
from step 1 (first iteration) or with the estimate from the previ-
ous iteration (subsequent iterations). As previously discussed,
the algorithm readily handles the limiting cases of temporal
reconstruction at a single energy and spectral reconstruction at
a single time point. We note that the name kernel regression in
our newly proposed regularization strategy, RSKR, is derived
from the overlap between the add-residual-back strategy used
with the split Bregman method29 and a denoising technique
known as kernel regression,32 both of which iteratively refine
the residuals associated with noise (v; Fig. 2, steps 3–6).
Bilateral filtration with the reintroduction of residuals is a
form of kernel regression for piecewise constant signals.32 A
detailed derivation of the 5D reconstruction algorithm can be
found in Subsection 2 of the Appendix.

In the case of spectral CT reconstruction, we use the
reconstructed results at each energy to perform postrecon-
struction material decomposition,

C = argmin
C

∥CM−X ∥2
2 subject to C ≥ 0. (39)

M is a system calibrated and optimized material sensitivity
matrix which converts between material concentrations, C,
and x-ray attenuation, X . Because material concentrations
cannot be negative, an additional non-negativity constraint
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F. 3. Prospective vs retrospective projection gating. (A) Results of in vivo dual energy microCT reconstruction in the mouse. Three hundred projections were
acquired at each of two energies (80 kVp, shown; 40 kVp) using prospective cardiorespiratory gating [end diastole, 300 projections/energy/phase] (Ref. 26).
Reconstruction of each data set was performed using FBP followed by joint BF prior to material decomposition (red, iodine; green, gold). (B) Comparable
reconstruction results using retrospective projection gating followed by time-weighted FBP (Sec. 2.C) and by 5D reconstruction with rank-sparse kernel
regression [22.5 projections/energy/phase; Fig. 2]. Approximate relative projection sampling densities are as shown by energy for one cardiac phase and for dual
source acquisition. Iodine and gold concentrations are shown in mg/ml. CT data are scaled in Hounsfield units. Scale bar: 1 cm.

(C ≥ 0) is enforced by performing subspace projection on the
least squares decomposition of each image voxel. We have
detailed our material decomposition approach in previous
work.18 As discussed in this previous work, an approximation
is required to separate two exogenous contrast agents using
dual energy data. Tissues denser than water (e.g., muscle)
appear to be composed of low concentrations of the two
contrast materials; however, these concentrations are gener-
ally lower than the sensitivity of the decomposition method
and can be factored out by windowing for visualization (used
for the in vivo data here, Sec. 2.J) and by subtracting out
the apparent tissue concentrations when making quantitative
measurements. Bone appears to be composed of gold, but
can easily be ignored or segmented out as needed. While
not performed here, we note that projection-based beam
hardening correction prior to reconstruction could improve
material decomposition accuracy.

2.H. Cardiac injury data

To illustrate the potential of our newly proposed spec-
trotemporal CT reconstruction scheme, we revisit the study
outlined in Sec. 1. This previous study used cardiac microCT
to assess a preclinical model of cardiac injury following
radiotherapy (12 Gy partial heart irradiation).26 The study
concluded that Tie2Cre; p53FL/− mice with both alleles
of p53 deleted in endothelial cells developed substantial
myocardial perfusion defects and left ventricle hypertrophy
within 8 weeks of partial heart irradiation, while Tie2Cre;
p53FL/+ mice with a working copy of p53 did not. Fur-
thermore, a highly significant correlation (p = 0.001) was
established between the accumulation of gold nanoparticles
within the myocardium assessed by dual energy microCT
and perfusion defects within the myocardium measured with
microSPECT.

Representing these previous findings, the imaging results
presented here were acquired 4 (Tie2Cre; p53FL/+) and 8

(Tie2Cre; p53FL/−) weeks after partial heart irradiation. Three
days prior to imaging, gold nanoparticles were injected into
the vasculature (0.004 ml/g AuroVist; Nanoprobes, Yaphank,
NY). Three days was adequate for these nanoparticles to
accumulate at the site of myocardial injury and then to clear
from the vasculature. Immediately prior to imaging, liposomal
iodine nanoparticles37 were injected into the vasculature
(0.012 ml/g) to allow measurement of cardiac functional
metrics. Figure 3 compares prospectively gated in vivo
microCT data used in this previous study (A) with a weighted
filtered backprojection reconstruction of a second set of
retrospectively gated projection data used in this paper (B). A
single phase (ventricular diastole) was imaged using prospec-
tive gating and regular angular sampling (300 projections/
energy). Additional data acquisitions details are provided in
Sec. 2.J.

2.I. Simulations

To validate the convergence of the proposed algorithm
given random temporal sampling and to illustrate the effective-
ness of RSKR, we conducted a 5D cone-beam CT simulation
experiment using our dual source system geometry38 and real-
istic spectral and noise models. Mimicking the cardiac injury
model discussed in Sec. 2.H, the MOBY mouse phantom39

(400×400×160, 88 µm, isotropic voxels) was modified to
include 3 mg/ml of gold in the myocardium and 12 mg/ml of
iodine in the blood pool. The simulation experiment included
data acquired at two energies (40 and 80 kVp; tungsten
anode; filtration: 0.7 mm Al and 3 mm PMMA), allowing
postreconstruction material decomposition of iodine and gold
[Eq. (39)]. Identical to the in vivo data discussed in Sec. 2.J, the
simulation was initialized with 225 projections/energy with
interleaved regular angular sampling over a single 360◦ rota-
tion [Fig. 1(D)]. Each projection was acquired by selecting
a random subphase from 1 to 100 representing the complete
cardiac cycle and then by averaging the closest ten subphases,
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F. 4. Summary of results from the 5D MOBY mouse phantom simulation experiment. A spatially matching 2D slice is shown in each panel. (Columns) First
5 of 10 cardiac phases spanning ventricular systole through diastole (yellow labels: LA, left atrium; RA, right atrium; LV, left ventricle; RV, right ventricle).
(Rows) “Expected” reconstruction results including the 10 ms integration time, weighted “FBP” reconstruction results, 5D reconstruction (“5D Recon.”) results
using the proposed algorithm (Fig. 2), and absolute residuals (“|Residuals|”) for the 5D reconstruction results. The CT data are scaled in HU as shown. Note
that, as shown, the residuals are amplified by a factor of three relative to the grayscale data. RMSE: Root-mean-square error metric averaged over all ten phases.

representing a 10 ms projection integration time and a heart
rate of 600 beats/min. The MOBY phantom simulation
experiment did not include respiratory motion. Prior to
reconstruction, a realistic level of Poisson noise was added
to the projection data (expected noise standard deviation:
∼80 HU in water). Using the previously described tem-
poral basis functions to weight projections, the objective
was to reconstruct ten phases of the cardiac cycle at two
energies.

2.J. In vivo data

All in vivo data sets were acquired with our dual source
microCT system,38 which consists of two identical imaging
chains offset by 90◦. Each chain consists of an Epsilon high fre-
quency x-ray generator (EMD Technologies, Saint-Eustache,
QC), a G297 x-ray tube (Varian Medical Systems, Palo Alto,
CA; f s = 0.3/0.8 mm; tungsten rotating anode; filtration:
0.7 mm Al and 3 mm PMMA), and a XDI-VHR CCD x-ray
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F. 5. Recovery of spatiotemporal resolution in the 5D MOBY mouse phantom simulation experiment. (A) Spatially matching, coronal, 2D slices through the
expected reconstruction results for ventricular diastole and systole at 80 kVp. The expected reconstructions are averaged over the 10 ms projection integration
time. Yellow vertical lines denote spatially matching line profiles plotted in (D) and (E). The line profiles extend through the left atrium (LA) and left ventricle
(LV) and then through the liver. (B) Corresponding temporally weighted FBP reconstruction results. (C) Corresponding 5D reconstruction results (Fig. 2). CT
data are scaled in HU as denoted by the calibration bar (bottom, left). (D) Line profile from (A) plotted for each reconstruction result at ventricular systole. Line
profile RMSE: FBP, 320 HU; 5D Recon., 53 HU. (E) Line profile from (A) plotted for each reconstruction result at ventricular diastole. Line profile RMSE:
FBP, 286 HU; 5D Recon., 41 HU.

detector (Photonic Science Limited, Robertsbridge, UK;
22 µm pixels) with a Gd2O2S scintillator. All in vivo exper-
iments were approved by the Institutional Animal Care and
Use Committee at Duke University.

The prospectively gated Tie2Cre; p53FL/− mouse data set
[end diastole, Fig. 3(A)] was acquired with cardiorespira-
tory gating8 using 40 kVp, 250 mA, and 16 ms per exposure
for one x-ray source and 80 kVp, 160 mA, and 10 ms for
the second x-ray source. In previous work, these sampling
kVps were found to be optimal for separating iodine and
gold contrast.40 The free-breathing animal was scanned while
under anesthesia induced with 1% isoflurane delivered by
nose cone. Both x-ray tubes were triggered simultaneously
at the coincidence of end diastole and end-expiration. The
ECG signal was recorded with BlueSensor electrodes (Ambu
A/S, Ballerup, DK) taped to the front footpads. Body temper-
ature was maintained at 38 ◦C with heat lamps connected to
a rectal probe and a Digi-Sense feedback controller (Cole-
Parmer, Vernon Hills, IL). A pneumatic pillow on the thorax
was used to monitor respiration. Three hundred equiangular
projections (1002 × 667, 88 µm pixels) were acquired per
x-ray source/detector. The dual source scan required about
5 min to complete. Reconstruction was performed using the
Feldkamp algorithm41 and resulted in reconstructed 40 and
80 kVp volumes with isotropic 88 µm voxels. The estimated
radiation dose was 130 mGy.

The same mouse [Fig. 3(B)] and a second Tie2Cre; p53FL/+

mouse were used to acquire 5D data sets to test the pro-
posed algorithm. The 5D data sets were acquired with retro-
spective cardiac gating.42 Projection images were acquired at

80 kVp, 100 mA, 10 ms per exposure and 40 kVp, 200 mA,
10 ms per exposure without waiting for cardiac and respira-
tory coincidence. Respiratory and ECG signals were recorded
in synchrony with the acquisition of the projections. Dur-
ing the acquisitions, the mice were free breathing (p53FL/−

mouse: 46 breaths/min, 425 heart beats/min; p53FL/+ mouse:
44 breaths/min, 415 heart beats/min). Sampling involved a sin-
gle rotation of the animal (360˚), resulting in 225 projections
per imaging chain (per energy). A total of 450 projections
(1002×667, 88 µm pixels) were acquired with an acquisition
time of less than 1 min per animal. The final angular pitch,
including the projections from both energies, was 0.8◦. 5D
reconstruction resulted in 20 3D volumes corresponding to
ten phases of the cardiac cycle sampled at two energies. The
reconstructed matrix size was 768×768×250 with isotropic
88 µm voxels. The estimated radiation dose was 60 mGy.

Prior to reconstruction, the distribution of sampled cardiac
phases was confirmed to be approximately uniform, with min-
imal correlation between projection angle and cardiac phase.
As previously discussed in Sec. 2.C, respiratory gating was
enforced retrospectively by excluding (i.e., assigning a zero
weight to) projections acquired during respiratory phases 8
and 9 of 10 total respiratory phases. As expected, this reduced
the number of projections used for reconstruction by ∼20%
(225 projections/energy to∼180 projections/energy). The rela-
tionship between this respiratory gating strategy and the rank-
sparse signal model (Fig. 1) is analyzed in Sec. 4.

Following 5D reconstruction of the Tie2Cre; p53FL/− and
Tie2Cre; p53FL/+ data sets, automated segmentation of the
left ventricle was performed using methods outlined in
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F. 6. 5D MOBY phantom material decomposition results for matching 2D slices in coronal and axial orientations for ventricular systole and diastole. (A)
Expected reconstruction results including the 10 ms integration time. For context, the iodine (I, red) and gold (Au, green) material maps are overlaid on the
corresponding 80 kVp grayscale data. Calcium (bone) appears as gold in the decomposed images. (B) Corresponding 5D reconstruction results produced
with the proposed algorithm (Fig. 2). (C) Gold and iodine absolute residual images. Iodine and gold concentrations are scaled as shown in mg/ml. RMSE:
Root-mean-square error metric for the material decompositions averaged over all ten phases. CT data are scaled in Hounsfield units.

previous work,43 including label smoothing with Atropos.44

We note that Atropos exploited the spectral contrast, using
both sampled energies in the label smoothing process. The
spectral contrast facilitated the separation of iodine in the blood
pool from gold at the site of myocardial injury in the Tie2Cre;
p53FL/− mouse data set. Following label smoothing, the left
ventricle label was used to measure end diastolic volume
(EDV), end systolic volume (ESV), stroke volume (SV=EDV
−ESV), ejection fraction (100 * SV/EDV), and cardiac output
(heart rate * SV).

3. RESULTS
3.A. Simulations

Figure 4 summarizes the results of the 5D MOBY phantom
simulation experiment, comparing the expected reconstruc-
tion results with temporally weighted filtered backprojection
reconstructions (Sec. 2.C) and the results obtained with the
proposed 5D reconstruction algorithm (Fig. 2). 5D reconstruc-
tion with RSKR provides a 7-fold reduction in root-mean-
square error (RMSE, averaged over all phases) over the FBP
reconstructions for both energies. As a point of reference, the
RMSE values for 5D reconstruction (80 kVp: 46 HU; 40 kVp:

40 HU) are well below even the expected error due to noise
in a regularly sampled FBP reconstruction (RMSE = expected
noise standard deviation: ∼80 HU). Furthermore, the absolute
residual images, which compare the 5D reconstruction results
with the expected reconstruction results, show highly accurate
recovery of the atria and ventricles at each cardiac phase shown
(systole through diastole). This observation is quantitatively
verified in Fig. 5 which compares matching line profiles taken
through the left atrium, myocardium, left ventricle, and the
liver for the 80 kVp data in the coronal orientation. Comparing
weighted FBP reconstruction results with the 5D reconstruc-
tion results, the RMSE associated with the dynamic line profile
is reduced from 320 to 53 HU at ventricular systole and from
286 to 41 HU at ventricular diastole.

Figure 6 compares the expected material decomposition
(A) with the material decomposition results following 5D
reconstruction (B) overlaid on the reconstructed 80 kVp data.
Given realistic concentrations of iodine (I, 12 mg/ml) in the
blood pool and gold (Au, 3 mg/ml) in the myocardium, the
temporal resolution and the accuracy of the material decom-
position are seen to be high enough to differentiate the two
materials in both the axial and coronal orientations. Specifi-
cally, the RMSE of the material decomposition is seen to be
13% of the gold concentration in the myocardium (RMSE:
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F. 7. In vivo 5D reconstruction results. Rows: Reconstruction results for the (A) Tie2Cre; p53FL/+ mouse and for the (B) Tie2Cre; p53FL/− mouse. Results
consist of matching weighted FBP reconstructions and 5D reconstructions using the proposed algorithm (Fig. 2). Columns: Reconstructions at (C) 80 kVp and
(D) 40 kVp. Time-averaged reconstructions as well as reconstructions at end systole and end diastole are shown for matching 2D slices. Yellow, anatomic labels:
RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle. CT data are scaled in Hounsfield units with a different scaling for (A) and (B) as shown.
Scale bar: 1 cm.

0.38 mg/ml) and 4% of the iodine concentration in blood
pool (RMSE: 0.48 mg/ml). Absolute residual images for the
CT data at each energy (Fig. 4) and, correspondingly, for
the material decompositions [Fig. 6(C)] localize the largest
errors to edge features which are slightly smoothed relative to
the expected discretized phantom; however, the errors do not
appear to be strongly correlated with the dynamic portion of
the reconstruction, denoting accurate recovery of the temporal
resolution.

3.B. In vivo data

Figure 7 compares analytical reconstruction results using
weighted FBP with corresponding reconstruction results pro-
duced by the proposed 5D algorithm for the p53FL/− mouse
and the p53FL/+ mouse. The proposed algorithm not only
removes a substantial amount of noise from the time average
reconstructions at each energy (noise standard deviation: FBP,
∼130 HU; 5D Recon., ∼30 HU) but also does so in such a way
that the joint image structure at each energy is emphasized,
preconditioning the results for material decomposition. The
static portions of the time-resolved reconstructions at each
energy, which are regularized jointly with the time and energy
averaged reconstruction, are seen to become highly redundant.

Based on the prior expectation that the temporal contrast is
spatially sparse, this is the expected outcome (Fig. 1). Within
the heart, the nonzero temporal contrast is seen to clearly
differentiate ventricular systole from ventricular diastole in the
healthy p53FL/+ mouse.

Figure 8(A) (p53FL/+) and 10(A) (p53FL/−) expand the en-
ergy average temporal dimension, showing the reconstruction
at each temporal phase, as well as the recovered spatially
sparse temporal contrast images (i.e., columns of XS; Fig. 1).
For the p53FL/+ animal, cardiac function of the left and right
ventricles (LV and RV) and the left atrium (LA) appears
normal, with clear differences in volume between ventricular
diastole and systole. This observation is verified by the line
profiles plotted in Fig. 9 which highlight the differences be-
tween ventricular diastole and systole in the left atrium and
left ventricle. Furthermore, the reconstruction of the liver is
seen to remain consistent in time. By contrast, contraction
of the LV is clearly compromised in the p53FL/− animal,
consistent with the reduction in left ventricle ejection fraction
and stroke volume previously observed in five p53FL/− animals
(relative to five p53FL/+ animals) 8 weeks after partial heart
irradiation.26 For the results in this paper, these observations
are supported by the left ventricle functional metrics summa-
rized in Table I and derived by automated segmentation of
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F. 8. In vivo 5D reconstruction results for the Tie2Cre; p53FL/+ mouse (Ref. 45). (A) Energy averaged reconstruction results at each of ten cardiac phases,
including difference images between each phase and the time-averaged reconstruction. Anatomic labels (upper, left): LA, left atrium; RV, right ventricle; LV, left
ventricle. (B) End diastole at 80 and 40 kVp followed by postreconstruction material decomposition results (red, iodine; green, gold). CT data and difference
images are scaled in Hounsfield units as shown. Iodine and gold concentrations are scaled as shown in mg/ml. Scale bars: 1 cm.

the 5D reconstruction results. Expanding ventricular diastole
along the energy dimension [yellow boxes, Figs. 8(B) and
10(B)] allows material decomposition into iodine (red) and
gold (green) maps. In the p53FL/− animal, which is susceptible
to the development of perfusion defects,26 a high concentration
of gold is seen to have accumulated at the site of myocardial
irradiation [yellow arrows, Fig. 10(B)], positively identifying
and outlining a myocardial perfusion defect.

Referring back to Fig. 3(B), we see that these retrospective
reconstruction results for end diastole in the p53FL/− mouse
compare favorably with prospectively gated reconstruction
results acquired for the same phase and in the same animal.
Comparing the “prospective” imaging protocol with the “low-
dose retrospective” protocol (Table II) used to produce the
results in Fig. 3(B), we see a 92.5% reduction in the amount
of projection data acquired per cardiac phase and energy, a
95% reduction in radiation dose per cardiac phase and energy,
and a 40-fold decrease in the projection sampling time. As
mentioned in Sec. 1, due to the excessive dose associated with
the prospective imaging protocol, only a single phase was
acquired at two energies using this protocol (dose:∼130 mGy);

F. 9. Spatially matching line profiles generated from the energy average, in
vivo 5D reconstruction results for the Tie2Cre; p53FL/+ mouse [Fig. 8(A)].
The line profile is illustrated in yellow on the systole panel of Fig. 8(A). Here,
the line profile is plotted for the energy average reconstruction at diastole and
systole as well as for a corresponding line profile in the time and energy
average (“Time Avg.”) reconstructions (solid gray). Peaks corresponding to
the spatial positions of the left atrium, left ventricle, and the liver are marked
at the bottom of the plot.
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T I. Cardiac functional metrics (left ventricle).

Genotype
End diastolic
volume (µl)

End systolic
volume (µl)

Stroke volume
(µl)

Ejection fraction
(%)

Respiratory rate
(breaths/min)

Heart rate
(beats/min)

Cardiac output
(ml/min)

Tie2Cre; p53FL/+ 49.15 18.28 30.87 62.81 44 415 12.81
Tie2Cre; p53FL/− 103.46 85.89 17.57 16.89 46 425 7.47

even so, the results in this paper represent a 25% reduction in
the total number of projections used (600 vs 450) to reconstruct
10 times the amount of data. As a point of reference, Table II
also includes the “retrospective” imaging protocol used to
measure cardiac functional metrics in previous work26 where
it was referred to as “4D-microCT.”

F. 10. In vivo 5D reconstruction results for the Tie2Cre; p53FL/− mouse (Ref. 45). (A) Energy average reconstruction results at each of ten cardiac phases,
including difference images between each phase and the time-averaged reconstruction. Anatomic labels (upper, left): RA, right atrium; LA, left atrium; RV, right
ventricle; LV, left ventricle. (B) End diastole at 80 and 40 kVp followed by postreconstruction material decomposition results (red, iodine; green, gold). Arrows
denote the center of a perfusion defect caused by partial heart irradiation. CT data and difference images are scaled in Hounsfield units as shown. Iodine and
gold concentrations are scaled as shown in mg/ml. Scale bars: 1 cm.

3.C. Computational considerations

As previously discussed in Sec. 2.J, the in vivo recon-
struction results presented in this paper (Figs. 3, 7, 8, and
10) consist of 20 768×768×250 volumes reconstructed with
88 µm isotropic voxels (10 phases×2 energies= 20 volumes)
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T II. CT imaging protocols.

Projection gating Cardiac phases Energies Projection No. Sampling time (min) mAs/projection (80, 40 kVp) Approximate dose (mGy)

Prospective 10 Dual 6000 40 1.6, 4 1300
Retrospective 10 Single 2250 5 1, 2 290
Low dose retrospective 10 Dual 450 <1 1, 2 60

from 450 projections acquired across two imaging chains. All
computations were performed on a stand-alone workstation
with a 6-core Intel Core i7 processor clocked at 4.0 GHz,
64 GB of system RAM, and a GeForce GTX 780 graphics
card with 3 GB of dedicated onboard RAM. Iterative recon-
struction was performed using GPU-based implementations
of voxel-driven backprojection and ray-driven reprojection.42

All BF operations were also performed on the GPU. All GPU
codes were compiled and executed using NVIDIA’s CUDA
libraries (toolkit: v6.0, compute capability: 3.5). All geometric
calculations were performed in double precision. All other
computations were performed in single precision. The total
computation time to execute three iterations of the proposed
algorithm, including least squares initialization (Fig. 2, step
1), was ∼5.5 h [16.5 min/phase/energy], with no perceptible
changes in image quality resulting from additional iterations.
All simulations and in vivo results in this work are converged
and are shown after three iterations of the proposed algorithm.

4. DISCUSSION AND CONCLUSIONS

In Sec. 1, we raised the question of whether or not 5D recon-
struction from a limited (and perhaps even predetermined)
amount of projection data can be a tractable inverse problem.
As outlined in Fig. 1, we have set up the reconstruction prob-
lem as follows. Globally, we acquire our projection data with
regular angular sampling suitable for high-fidelity reconstruc-
tion with an analytical method (i.e., filtered backprojection).
For the spectral dimension, this global projection distribution
is subdivided into two (or more) angularly interleaved sub-
sets of projections. For the temporal dimension, we assume
that the temporal sampling is uncorrelated with projection
angle and approximately uniform across the cardiac cycle. We
also assume that any dynamic motion is cyclic (e.g., cardiac
cycle and respiratory cycle) such that it sums to zero over
time. Intuitively, if these conditions are met, the spectral and
temporal reconstruction problems are approximately indepen-
dent [Eq. (25)]. For the spectral reconstruction problem, we
are attempting to recover dense, but gradient sparse, spectral
contrast with a dimensionality equal to one less than the num-
ber of energies we are attempting to reconstruct [Eq. (21)].
For the temporal reconstruction problem, we must recover a
larger number of temporal contrast images, but each image
is more heavily constrained to be spatially sparse and to be
consistent with its neighbors [Eq. (23)]. In both cases, we are
enforcing gradient sparsity relative to the same high-fidelity
template through RSKR, meaning that the spectral contrast
and the temporal contrast images we recover exhibit coherent
image structure. In summary, if these assumptions hold, we can

share projections between the temporal and spectral dimen-
sions, enabling us to solve the 5D reconstruction problem from
highly undersampled data.

The results presented in this work address the most common
spectral sampling case, dual energy CT data acquired with
energy integrating detectors; however, the proposed 5D CT
reconstruction algorithm (Fig. 2) extends to an arbitrary num-
ber of spectral samples. Specifically, the data-fidelity update
steps (Fig. 2, steps 1 and 8) apply to each time point and energy
independently [Eqs. (1) and (4)], and, therefore, innately
handle an arbitrary number of spectral samples. Regarding
spectral regularization (Fig. 2, step 3), the decomposition
of the spectral dimension into the time and energy average
image, XT̄ , Ē, and the spectral contrast, XEnergy, is equivalent
to principal component decomposition, where XEnergy has
NE − 1 independent columns (Sec. 2.E). Joint BF is then
applied between XT̄ , Ē and the columns of XEnergy. We have
previously demonstrated effective joint BF of multiple spectral
samples using 3 kVps sampled with an energy integrating
detector18 and using full-spectrum CT data acquired with a
photon counting x-ray detector.19 The only caveat in applying
the proposed algorithm to generic spectral reconstruction
problems is that the proposed separable approximation [Fig. 1;
Eqs. (19) and (25)] will break down when the magnitude of
the spectrotemporal contrast, rt,e, becomes significant relative
to the magnitude of the temporal contrast, XTime. This will
happen, for instance, when performing K-edge imaging of
a dynamic feature using a photon counting x-ray detector.
Nominally, this 5D reconstruction problem can be handled
by performing explicit 5D BF, extending the spectral filtra-
tion operation along the temporal dimension; however, this
approach sacrifices the approximate independence of the time
and energy dimensions. In future work, we will attempt to
extend our separable approximation to handle arbitrary spec-
tral sampling cases by further exploiting the redundancy in
image structure which persists regardless of differences in
contrast.

For applications where the number of spectral samples
is small (e.g., dual energy) and the separable approximation
holds, the temporal reconstruction problem will determine the
amount of projection data needed for accurate reconstruc-
tion. Given any reasonable number of projections, we expect
to make progress with the temporal reconstruction problem
because of the broad base of support of the temporal basis func-
tions and the availability of a high-fidelity temporal average
image. For highly undersampled cases [here, 22.5 projec-
tions/energy/phase] where the initialization inadequately re-
covers the temporal resolution (Fig. 2, step 1), a balance must
be struck between enforcing regularity relative to the tem-
poral average and recovering temporal resolution during the
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data-fidelity update step (Fig. 2, step 8). Over regularizing
causes underestimation of the temporal resolution, while un-
der regularizing leaves noise and shading artifacts in the re-
constructed result. In future work, we will investigate this
relationship more thoroughly by quantifying the tradeoff be-
tween projection number and recovered temporal resolution.
Potential metrics for this purpose include temporal modula-
tion transfer measurements and the reproducibility of derived
cardiac functional metrics. We will also investigate methods
to decorrelate the projection angular sampling from specific
cardiac phases to avoid inconsistent reconstruction results be-
tween phases.

Further regarding the temporal reconstruction problem and
given the application of partial heart irradiation, we have
focused on the recovery of cardiac motion. For the MOBY
phantom experiments presented in this work, no respiratory
motion was modeled. For the in vivo experiments, respiratory
motion was recorded using a pneumatic pillow. The recorded
respiratory signal was then used retrospectively to assign zero
weights to projections recorded during respiratory phases 8
and 9 (of ten phases of equal length starting and ending at end
inspiration). These phases were determined to be outliers by
looking at the reprojection residuals following initialization
of the algorithm (Fig. 2, step 1) without respiratory gating,
and then by correlating the largest residuals with respiratory
phase. Consistent with previous work,46 gating for respiratory
phase had little impact on the recovered cardiac motion;
however, the absence of respiratory gating did result in shading
artifacts near the diaphragm and liver which were inconsistent
between the reconstructed cardiac phases. Given that the
primary objective of this work was to derive an algorithm that
provides reliable results from randomly sampled projection
data, we chose to assign zero weights to projections acquired
during respiratory phases 8 and 9. Based on the temporal
contrast images shown in Figs. 8 and 10 and the line profiles in
Fig. 9, this approach worked well for the two in vivo data sets
presented in this work. Strictly speaking, however, removing
projections diverges from the hierarchical sampling strategy
outlined in Fig. 1, since projections are indirectly removed
from the well-sampled time and energy averaged data. In
future work, we propose to investigate the use of nonzero
respiratory weights, perhaps assigned based on the reprojec-
tion residuals following unweighted initialization, to strike a
balance between consistent reconstruction results and ideal
projection sampling.

Assuming we can reliably undersample the projection
data to control radiation dose and imaging time without
sacrificing reconstructed image quality, the required compu-
tation time for 5D reconstruction could still be a significant
issue. For the in vivo results presented here, the projection
acquisition time was <1 min vs ∼5.5 h for reconstruction
[16.5 min/phase/energy]. Thanks to a GPU-based imple-
mentation and the separability of the temporal and spectral
problems, regularization with BF (RSKR) is quite efficient
(∼10 min/iteration). In other words, the data-fidelity update
steps dominated the total computation time (Fig. 2, steps 1
and 8). The use of broad temporal basis functions notably
increases the computation time when every projection has a

nonzero contribution to the reconstruction of each temporal
phase. In future work, it may be possible to reduce the
computation time by truncating the temporal basis functions
and relaxing the constraint that the temporal basis functions
exactly sum to a uniform distribution. More interesting,
however, is the promise of parallelizing the GPU code across
multiple GPUs. The split Bregman method inherently subdi-
vides the reconstruction problem into highly parallelizable
subproblems. Since all of the BF steps and then all of the
data-fidelity update steps can be run in parallel, the algorithm
could scale almost linearly with the available number of GPUs.
We look to take advantage of parallelization across multiple
GPUs in future work.

In conclusion, we have outlined and demonstrated a com-
plete algorithm for 5D CT reconstruction from retrospectively
gated projection data. By following fairly general guidelines
for the data acquisition, we have argued that the problem of
5D CT reconstruction from undersampled projection data is
not only possible but also reasonably well conditioned when
the low-rank nature of the spectral reconstruction problem and
the sparse nature of the temporal reconstruction problem are
exploited in tandem. In addition to preclinical applications of
5D CT like the one presented here, we believe our methods
could find clinical application, particularly in intraoperative C-
arm CT reconstruction from retrospectively gated projection
data. In the more distant future, the continued development
of photon counting x-ray detectors as a supplement, or even
replacement, for traditional energy-integrating detectors will
make 5D CT data acquisition and reconstruction routine, as
dynamic data sets will inherently be supplemented with spec-
tral information. We look forward to applying our methods to
these and other 5D CT imaging applications.
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APPENDIX: SUPPLEMENTAL DERIVATIONS
1. Data fidelity weighting for temporal reconstruction

The temporally selective weights, T , [Eq. (8)] are redundant
for all line integrals within a single projection. The weight
for a given projection is determined by the time point to be
reconstructed, t, and the time during the cardiac, R–R interval
at which the projection was acquired, u,

Tt,u = exp*
,
− (td(t,u))

2

2σ2
T

+
-
, (A1)
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td(t,u)=min
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− u
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NT
− u

NU
+1
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)
,

(A2)

σT =
1

NT2
√

2ln2
. (A3)

As shown in Eq. (A1),T consists of Gaussian temporal weights
computed from the minimum cyclic distance in time between
t and u [Eq. (A2)]. NU is the R–R interval in milliseconds
(cardiac R–R interval of a mouse: ∼100 ms). NT is chosen to
be ten phases. As a result [Eq. (A3)], the expected full width
at half maximum of 10 ms matches the projection integration
time (Secs. 2.I and 2.J). To assign equal a prior weight to all
possible temporal samples (i.e., to make the basis functions
sum to a uniform distribution in time), a small correction factor
is applied to each temporal basis function, yielding corrected
weights, T ′,

T ′t,u =Tt,u−
1

NT

NT
i=1

Ti,u+
1

NT Nu

NT
i=1

Nu
j=1

Ti, j . (A4)

In other words, Eq. (A4) equalizes the mean of the Gaussian
basis functions at every possible time, u. For each time point,
these corrected weights are then normalized such that they sum
to one. Given these weights, enforcing data fidelity for a given
cardiac phase amounts to interpolating the reconstruction of
that phase from among the acquired temporal samples.

2. The split Bregman method for rank-sparsity
constrained CT reconstruction

The 5D reconstruction algorithm outlined in Sec. 2.G and
Fig. 2 solves the following optimization problem [previously,
Eq. (38)]:

X = argmin
X

1
2
∥AX −Y ∥2

Q+λ∥WKX ∥BTV. (A5)

As in the text [Eq. (4)], the data fidelity term implies column-
wise evaluation, including the time point and energy dependent
weighting matrix, Q [Eq. (8)]. For brevity, we work with a sin-
gle BTV regularization term as previously defined in Eq. (17);
however, the derivation can be readily extended to include
additional BTV terms with variable range weighting schemes
[Eq. (37)]. Following the approach in the PRISM algorithm,16

the dummy variable, d, is introduced,

X = argmin
X

1
2
∥AX −Y ∥2

Q+λ∥WKd∥BTV+
µ

2
∥X −d∥2

2. (A6)

Note that Eq. (A6) is equivalent to Eq. (A5) when X = d. Intro-
ducing this dummy variable ultimately allows the data fidelity
term and the BTV term to be minimized in separate substeps.
As in the split Bregman method29 and the alternating direction
method of multipliers,47 the conditioning and convergence of
Eqs. (A5) and (A6) is improved by constructing and evaluating
the Lagrangian function, L, with Lagrange multipliers (resid-
uals), f and v ,

L(d,v, f ,X) = 1
2
∥AX −Y ∥2

Q+ ⟨ f ,Q(AX −Y )⟩
+ λ∥WKd∥BTV+

µ

2
∥X −d∥2

2+ µ⟨v,X −d⟩. (A7)

The f multiplier (NY rows and NE ·NT columns) is introduced
to minimize the time and energy specific data fidelity resid-
uals. The v multiplier (NX rows and NE ·NT columns) and µ
regularization parameter are introduced to minimize X−d and
thus equate Eqs. (A5) and (A6). The ⟨.,.⟩ notation is introduced
to denote inner products computed between and summed over
time points and energies,

⟨a,b⟩B
NT
t=1

NE
e=1

aT
t,ebt,e. (A8)

Updating each variable in the Lagrangian function in turn
[Eq. (A7)] solves the original optimization problem [Eq.
(A5)].48 Following the update steps in the algorithm pseu-
docode (Fig. 2) and the order of the variables in the definition
of L [Eq. (A7)], the d variable is first updated, while the v , f ,
and X variables are held constant (Fig. 2, steps 3–5),

dn+1 = argmin
d

L(d,vn, f n,X n)= λ∥WKd∥BTV

+
µ

2
∥X n−d∥2

2+ µ⟨vn,X n−d⟩, (A9)

where the n superscript denotes variables which are held con-
stant and which has not yet been updated during the current
iteration. This expression reduces to the following:

dn+1= argmin
d

1
2
∥X n+ vn−d∥2

2+
λ

µ
∥WKd∥BTV, (A10)

which is equivalent to Eq. (16). Consistent with both the add-
residual-back strategy29 and kernel regression,32 we apply BF
to X n+ vn to yield dn+1. We note that several iterations of BF
could be required to strictly minimize Eq. (A10); however, for
the work presented here, a single iteration of BF per iteration
of the split Bregman method proved adequate for the algorithm
to converge in ∼3 iterations (Sec. 3.C). In Subsection 3 of
the Appendix, we revisit Eq. (A10) and previous work which
relates it to several popular denoising schemes.33

Next, the multiplier variable, v , is updated by gradient
ascent (Fig. 2, step 6),47

L
�
dn+1,v, f n,X n

�
= µ



v,X n−dn+1�, (A11)

d
dv

L
�
dn+1,v, f n,X n

�
= µ

�
X n−dn+1�, (A12)

vn+1= vn+δ1(X n−dn+1), (A13)

where δ1 is the product of the regularization parameter µ and
a new rate constant. When δ is chosen to equal 1 (as in Fig. 2),
the dual definition of v as a Lagrange multiplier variable and a
residual in the add-residual-back strategy is clear, since vn+1 is
set equal to the residual computed between the input, X n+vn,
and output, dn+1, of the regularization operation [Eq. (A10)].
A similar update is applied to f ,
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f n+1= f n+δ2Q(AX n−Y ). (A14)

Again, δ2 is chosen to equal 1 (Fig. 2, step 7).
The last step of each Bregman iteration updates the estimate

of the reconstructed image, X , at each time point and energy
(Fig. 2, step 8),

X n+1= argmin
X

L
�
dn+1,vn+1, f n+1,X

�
, (A15)

X n+1 = argmin
X

1
2
�

AX −Y + f n+1�2
Q

+
µ

2
�
X −dn+1+ vn+1�2

2, (A16)

where L in Eq. (A15) evaluates and reduces to the expression
in Eq. (A16). Taking the derivative of Eq. (A16) and setting it
equal to zero yields the following:

ATQAX+ µX = ATQ
�
Y − f n+1�+ µ(dn+1− vn+1), (A17)

which we solve for X using the biconjugate gradient stabilized
method36 to yield X n+1. We note that Eq. (A17) suggests
appropriate values for the user-specified regularization param-
eter, µ. Specifically, effective values of µ are a small fraction
(here,∼2%) of

�
ATQY

�
2/∥X ∥2 for each time point and energy.

As shown in Fig. 2, the four update steps [Eqs. (A10), (A13),
(A14), and (A16)] are iterated until convergence.

3. Bilateral total variation

As defined in this work, several applications of the bilateral
filter to X n+ vn minimizes the following cost function:

dn+1= argmin
d

1
2
∥X n+ vn−d∥2

2+
λ

µ
∥WKd∥BTV. (A18)

This equation is derived in previous work from a general
expression for a single iteration of weighted least squares
solved with the Jacobi method.33 Here, we adapt the nota-
tion and assume that X , v , and d have a single column for
simplicity,

dn+1 = argmin
d

1
2
∥X n+ vn−d∥2

2

+
λ

µ


l


m

E(l,m)(d (l)−d (l−m))2. (A19)

E(l,m) represents the weight assigned to the squared intensity
difference between d(l) and d(l − m) computed within the
valid domain of the offsets, m, and at all spatial positions,
l. Depending on the domain size and the choice of weights,
Eq. (A19) describes the first iteration of several popular de-
noising algorithms (weighted least squares, anisotropic diffu-
sion, and robust estimation).33 When the weights are chosen to
be

E (l,m) = D(m)R(l,m)
|d (l)−d (l−m)|∗

m
D(m)R(l,m)

=
D(m)R(l,m)

|W d(l,m)|∗
m

D(m)R(l,m) , (A20)

Equation (A19) reduces to the following:

dn+1 = argmin
d

1
2
∥X n−d+ vn∥2

2

+
λ

µ


l


m

D(m)R(l,m) |W d(l,m)|
m

D(m)R(l,m) . (A21)

The second term of Eq. (A21) is equivalent to our definition of
BTV [Eq. (17)] for a single column, aside from the absence of
our resampling kernel in the gradient computation [Eq. (14)
vs Eq. (15)]. We note that the computation of BTV with a
resampling kernel can cause the denominator of BTV (BF) to
approach zero, resulting in numerical instability. In practice,
this is not an issue since RSKR is applied once per iteration of
the split Bregman method, immediately after the noise resid-
uals (v) are added back in. In general, however, instability can
be addressed by introducing a constant additive term into the
denominator as in the Jacobi method.33 We call our approach
BTV after previously published work which used a similar
weighted intensity gradient penalty.34
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