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Abstract
Over the past few decades, major strides have adv-
anced the techniques for early detection and treat-
ment of cancer. However, metastatic tumor growth 

still accounts for the majority of cancer-related deaths 
worldwide. In fact, breast cancers are notorious for 
relapsing years or decades after the initial clinical treat-
ment, and this relapse can vary according to the type 
of breast cancer. In estrogen receptor-positive breast 
cancers, late tumor relapses frequently occur where-
as relapses in estrogen receptor-negative cancers or 
triple negative tumors arise early resulting in a higher 
mortality risk. One of the main causes of metastasis is 
tumor dormancy in which cancer cells remain concealed, 
asymptomatic, and untraceable over a prolonged period 
of time. Under certain conditions, dormant cells can 
re-enter into the cell cycle and resume proliferation 
leading to recurrence. However, the molecular and 
cellular regulators underlying this transition remain 
poorly understood. To date, three mechanisms have 
been identified to trigger tumor dormancy including 
cellular, angiogenic, and immunologic dormancies. In 
addition, recent studies have suggested that DNA repair 
mechanisms may contribute to the survival of dormant 
cancer cells. In this article, we summarize the recent 
experimental and clinical evidence governing cancer 
dormancy. In addition, we will discuss the role of DNA 
repair mechanisms in promoting the survival of dormant 
cells. This information provides mechanistic insight to 
explain why recurrence occurs, and strategies that may 
enhance therapeutic approaches to prevent disease 
recurrence. 
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Core tip: One of the main causes of metastasis is tumor 
dormancy in which cancer cells remain concealed, 
asymptomatic, and untraceable over a prolonged period 
of time. Recent studies have suggested that DNA repair 
mechanisms may contribute to the survival of dormant 
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cancer cells. Under certain conditions, dormant cells 
can re-enter into the cell cycle and resume proliferation 
leading to recurrence. Understanding the molecular and 
cellular regulators underlying the transition from tumor 
dormancy to metastatic disease may provide insight 
into how recurrence occurs and also discover strategies 
that may enhance therapeutic approaches to prevent 
metastatic cancer. 
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INTRODUCTION
Metastatic tumor growth can account for the majority 
of cancer-related deaths worldwide[1]. In fact, nearly 
30% of breast cancers will relapse years or decades 
after the initial treatment[2-4]. Different subtypes of 
breast cancer display different recurrence behaviors. 
For examples, late tumor relapses frequently occur 
in estrogen receptor-positive (ER+) breast cancers 
whereas relapses in estrogen receptor-negative breast 
cancers or triple negative breast tumors arise early 
resulting in a higher mortality risk[2,5]. Tumor dormancy, 
one of the main causes of metastasis, occurs when 
disseminated tumor cells remain concealed, asym-
ptomatic, and untraceable over a prolonged period of 
time. Cancer cells can become dormant at the onset of 
disease or after the initial therapeutic treatment, and 
can remain dormant for years or even decades after the 
first treatment[6]. Dormant cells can be characterized 
by exhibiting slow growth rates, having the ability to 
escape frontline treatment and the host’s immune 
system, and demonstrating the capability to self-renew. 
Multiple studies have shown that many cancers such 
as breast and prostate cancers, melanoma, B-cell 
lymphoma, leukemia, and carcinoma contain dormant 
cancer cells[7-15]. Therefore, it is important to understand 
the molecular mechanisms that govern the transition of 
dormant cells into metastatic disease. 

To date, three mechanisms have been identified to 
trigger tumor dormancy including cellular, angiogenic, 
and immunologic dormancies (Figure 1)[16]. Cellular 
dormancy is characterized as a state in which cells 
are quiescent and halted in the G0 phase of the cell 
cycle (Figure 1). The microenvironment of tumors can 
prompt cancer cells to enter into cellular dormancy 
like hypoxic environments, which is associated with 
malignancies, and causes cancer cell proliferation to 
decrease[17]. Under certain circumstances such as 
the addition of growth factor, cytokines, nutrients or 
chemical agents, dormant cells can re-enter into the cell 
cycle and resume proliferation. Many cancer therapeutic 
treatments target the cell cycle which permits the cells 
to enter into quiescence. This allows the cancer cells 

to escape treatment subsequently leading to disease 
recurrence[16,18-20]. Once dormant cancer cells exit 
G0 arrest, a second mechanism termed angiogenic 
dormancy can limit the tumor size by preventing angio-
genesis and therefore the tumor cannot obtain the 
nutrients required for continual growth. These cells can 
maintain a balance between proliferation and apoptosis 
resulting in the inability to detect the tumor[6,16] (Figure 
1). The immune system can also contribute to cancer 
cell dormancy by maintaining a balance between cleara-
nce and proliferation[16] (Figure 1). During immunologic 
dormancy, DTCs can be eliminated or they can stay 
in an equilibrium state and, over time, environmental 
factors and genomic instability can cause the cells to 
exit the equilibrium state resulting in tumor growth and 
recurrence[21]. 

The precise molecular mechanism in which cancer 
cells enter and exit dormancy remains to be elucid-
ated. One mechanism that plays a major role in cancer 
growth is the DNA repair pathways, and recently, 
studies indicate that the DNA repair pathways can lead 
to tumor dormancy[15,22]. Therefore, it may be possible 
to target dormant cancer cells through these pathways. 
Below, we will discuss the current understanding of the 
three mechanism of tumor dormancy and the role of 
double-strand breaks (DSBs) DNA repair pathways in 
dormant cancer cells. This information may improve 
the development of relevant study models and enhance 
therapeutic approaches to prevent disease recurrence. 

CELLULAR DORMANCY
Cellular dormancy or quiescence is a process that 
occurs naturally in normal adult stem cells such as 
hemopoietic and spermatogonial stem cells. These stem 
cells serve as a source for self-renewal and maintenance 
of tissues throughout a person’s lifetime. However, in 
a heterogeneous cancer cell population, dormancy can 
be disadvantageous because cancer cells can evade 
treatments leading to metastatic recurrence[16,18-20] 
(Figure 1). 

Several studies have demonstrated that the expr-
ession of the cellular proliferation, Ki-67, and apoptotic 
markers are significantly diminished in patients with 
clinical dormancy[23-27]. In addition, positive Ki-67 ex-
pression was correlated with breast cancer recurrence 
and poor prognosis[28]. The stepwise progression of the 
cell cycle is regulated by cyclins and cyclin-dependent 
kinases (CDKs). In particular, cellular quiescence is 
controlled either directly or indirectly by these regulators. 
Within the microenvironment, the interactions between 
the CDK inhibitors, p27 (Kip1) and p21 (Cip1, Waf1), 
maintain a balance between proliferative and dormant 
hematopoietic stem cells[29]. Recently, Fitzgerald et 
al[30] (2015) demonstrated that treatment of head and 
neck squamous cell carcinoma patients with radiation 
resulted in cellular quiescence via the upregulation of 
p21. In addition, the DREAM complex which consist 
of a Retinoblastoma (Rb)-like pocket protein, E2F, and 
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mutilvulval class B (MuvB) proteins, is a critical regulator 
of cell cycle arrest[31]. The MuvB protein is known to 
recruit, bind, and direct transcription regulators to the 
promoter of key cell cycle genes during various stages 
within the cell cycle[32]. During dormancy, MuvB binds 
to all of the components of the DREAM complex and 
represses the transcription of all cell cycle-dependent 
genes[32-34]. Disruption of various components of the 
DREAM complex results in the inability to repress the 
cell-cycle dependent genes and subsequently the cells 
re-enter the cell cycle[35,36]. Quiescence is also establi-
shed by the dual specificity tyrosine phosphorylation-
regulated kinase (DYRK). This protein activates the 
DREAM complex by phosphorylating a MuvB subunit, 
LIN52, which promotes the interaction of MutB with 
the other core components of the DREAM complex[31]. 
An isoform of DYRK, DYRK1B, can stabilize p27 (Kip1) 
which increases the turnover of cyclin D consequently 
inhibiting cell from entering into the cell cycle[37,38]. 
CDK4 and CDK6 inactivate the tumor suppressor, Rb, 
subsequently allowing cells to enter into the cell cycle. 
By pharmaceutically blocking these kinases, Rb-cells 
can exit the cell cycle and enter into a dormant state[39]. 
These results clearly demonstrate the need for balance 
between the DREAM and proliferative complexes in order 
to maintain cells in a quiescent state. 

Mis-regulation of cell cycle proteins can result in 
tumor formation, dormancy, and recurrence. Prostate 
cancer, breast cancer, and renal cell carcinoma are linked 

to the loss of p27 (Kip1)[40-42]. In addition, reduction in 
p27 (Kip1) is used as a strong prognostic marker for 
recurrence and poor outcomes in renal cell carcinoma 
patients[42]. Loss of p53, the upstream regulator of p21, 
was correlated with drug resistance and recurrence 
in colorectal cancer[43]. Overexpression of cyclin D 
is associated with recurrence of multiple neoplasms 
including breast, lymphomas, prostate, and non-small 
cell lung cancers[44-46]. Overexpression of cyclin D1 can 
occur via a multitude of different mechanisms including 
genetic rearrangements, amplification of the gene locus, 
oncogenic signaling, and mutation in the gene that 
result in the inability to degrade the protein[44]. Recently, 
Kim et al[47] (2014) reported that overexpression of 
the cell cycle regulators CDK4, CDK6, pRB, and cyclin 
D1 was correlated with the recurrence of atypical 
meningioma. Furthermore, some evidence suggested 
that overexpression of CDK4 may be connected to 
nasopharyngeal carcinoma tumor aggression and serve 
as a diagnostic biomarker[48]. Clearly, these results 
demonstrate the importance in controlling the cell 
cycle and how aberrant regulation may lead to tumor 
recurrence and poor prognosis.

ANGIOGENIC DORMANCY
The majority of tumors require the recruitment of blood 
vessels to support continual growth. When tumors fail 
to establish a sufficient vasculature, then they enter into 
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Figure 1  Mechanisms of human tumor dormancy. Schematic depicting three mechanisms that lead to tumor dormancy after the initial clinical treatment. 
Tumor dormancy can result from cell cycle arrest (cellular dormancy), tumor size limitation due to a lack of functional blood vessels (angiogenic dormancy), or 
immunosurveillance (immunologic dormancy). Figure adapted from Almog[16] (2010) and Wang and Lin[6] (2013).
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high levels of the OPN receptor, VLA-4, which permits 
the cells to adhere to stroma-derived OPN secreted 
by osteoblasts within the bone marrow niche[14]. 
This interaction drives leukemia blast into dormancy 
and this causes the cells to escape chemotherapy 
and/or radiation treatment[14]. In addition, antibody 
neutralization of OPN resulted in leukemia blast to exit 
dormancy and re-enter the cell cycle[14]. Taken together, 
these data support the notion that communication 
between cancer cells and cells associated with the 
tumor microenvironment is important for controlling the 
transition between dormancy and angiogenesis. 

IMMUNOLOGIC DORMANCY
Tumor dormancy can be established by preserving 
equilibrium between immune response and tumor cells 
(Figure 1). The mechanism of how tumor cells enter 
and exit immunologic dormancy is not well understood. 
The immune system can control dormancy via three 
different methods including elimination, equilibrium, and 
escape. The innate and adaptive immune systems work 
together to detect and eliminate transformed cancer 
cell prior to the host becoming clinically symptomatic. If 
the tumor cells are not completely eliminated, then the 
host’s immunity can restrict tumor growth resulting in the 
continuance of cells within a dormant state. Over time, 
the tumor cells can adapt to the immune environment 
causing cells to exit dormancy leading to recurrence[60-62] 
and tumor metastasis (Figure 1). For example, DTC can 
reduce T-cell activation which weakens the cytotoxic 
T-lymphocyte response thus cells escape apoptosis[63]. 
Direct tumor immunosuppression can mediate the es-
cape from dormancy by driving the overexpression of 
B7 homolog 1 (B7-H1) which inhibits T-cell activation 
and the cytotoxic T lymphocyte (CTL) response[63]. 
In addition, cancer cells can escape tumor dormancy 
by inhibiting antigen presentation and by methylating 
cytokine signaling 1 thus leading to resistance to CTL-
induced apoptosis[63]. Furthermore, loss of CD4+ or CD8+ 
T-cells can result in tumor cell dormancy escape[64]. 
Several cell types within the immune system can indir-
ectly regulate the escape from dormancy by secreting 
proteins that promote angiogenesis. Interleukin 23, 
produced by macrophages, suppresses anti-tumor 
effectors responses, whereas interleukin 12 represses 
tumor growth[65,66]. The glycoprotein, macrophage 
stimulating 1 (MS1) can bind to its receptor, MS1 re-
ceptor (MST1R), thus suppressing antitumor immune 
response and promoting cell proliferation, survival, and 
chemotaxis. The loss of MST1R increases antitumor 
CD8+ T-cell responses resulting in higher levels of 
secreted tumor necrosis factor α subsequently leading 
to the inability of micrometastatic cancer cells to 
generate macrometastases[67,68]. In addition, myeloid-
derived suppressor cells, regulatory T-cells, and tumor-
associated macrophages can also indirectly promote 
tumor cells to escape dormancy[63]. These cells can 
secrete mitogens and proangiogenic molecules which 

a state of avascular or angiogenic dormancy (Figure 
1). Tumor dormancy via angiogenesis requires the 
interaction between the microenvironment and cell cycle 
regulators including p21, p27, Myc, urokinase receptor 
(u-PAR), extracellular regulated kinase (ERK), and 
p38[49]. Blockage of the metastasis-associated u-PAR, 
intergrins, focal adhesion kinase or epithelial growth 
factor receptor can result in tumor suppression and 
induction of tumor dormancy[49]. U-PAR can also regulate 
tumor dormancy by favoring p38 activation over ERK 
activation[50]. In addition, the activation of the PI3K/c-Myc 
pathway controls the level of thrombospondin (TSP), a 
vital factor of tumor dormancy[16]. Troyanovsky et al[51] 
(2001) also discovered that the expression of angiostatin 
can control tumor dormancy by suppressing tumor 
growth, and one mediator of angiostatin, angiomotin, 
was highly elevated in dormant cells.

The transition from avascular tumor to a highly vascu-
larized tumor is termed the “angiogenic switch”[16,21]. 
Balancing the pro-angiogenic and anti-angiogenic 
factors is vital in regulating the angiogenic switch. 
Satchi-Fainaro et al[52] (2012) discovered that dormant 
glioblastoma cells express high levels of anti-angiogenic 
factors including TSP, angiomotin, and insulin-like 
growth factor binding protein 5, and low levels of pro-
angiogenic proteins (endothelial cell-specific marker 
1 and epithelial growth factor receptor). Furthermore, 
TSP-1 and endothelial-derived perlecan were found 
to maintain breast cancer cells in a dormant state 
therefore suppressing tumor growth[53,54]. Another key 
protein that plays a role in controlling the switch from 
dormancy to tumor growth is heat shock protein 27 
(HSP27)[55]. Decreased expression of HSP27 in breast 
cancer cells resulted in reduced cell proliferation and 
migration caused by lower levels of secreted vascular 
endothelial growth factor (VEGF) and basic fibroblast 
growth factor, known pro-angiogenic factors[55]. Re-
cently, the hypoxia inducible factor, HIF-2α, was shown 
to promote angiogenesis in hepatocellular carcinoma[56]. 
HIF-2α increased plasminogen activator inhibitor 1 
which lowered active plasmin concentrations resulting in 
increased angiogenesis[56].

The formation of dormant cell niches can be contr-
olled by the microenvironment. Several proteins such 
as latent transforming growth factor β (TGF-β) binding 
protein (LTBP), bone morphogenetic protein 7 (BMP7), 
and osteopontin (OPN) all influence the establishment 
of quiescent cell niches[57-59]. Overexpression of LTBP 
in nasopharyngeal carcinoma induced cancer cell dor-
mancy and reduced VEGF expression thus inhibiting the 
migration and angiogenesis of tumor cells[57]. BMP7, a 
member of the TGF-β superfamily, signaling facilitates 
the balance between dormant prostate cancer cells 
and metastasis[58]. Administration of BMP7 in mice 
significantly reduced tumor growth whereas inhibition 
of BMP7, via the secreted antagonist COCO, resulted 
in metastasis[58,59]. Leukemic dormancy occurs within 
bone marrow niches and is influenced by the expression 
of OPN[14]. Acute lymphobaslic leukemia blasts express 
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promote cell proliferation, angiogenesis and imm-
unosupression causing the cells to exit dormancy[63]. 
These results demonstrate the importance in controlling 
the immune system to prevent tumor recurrence and 
metastasis. 

Genomic instability may facilitate the escape of 
dormant cancer cells from immunological dormancy. 
Over time, if cancers cells do not have the capability 
to repair their DNA, they can accumulate mutations 
allowing the cells to evade anti-tumor immunity leading 
to recurrence. Therefore, understanding how DNA 
repair mechanism function in dormant cells may lead to 
new developments to detect and treat dormant cancer 
cells. 

DNA REPAIR MECHANISMS
Many cancer drugs induce high levels of DNA lesions 
both single-stranded (SSB) and double-stranded, which 
results in the death of proliferating cells. Mechanism 
involved in SSB and DSBs break repair significantly 
affect the cancer cells ability to evade radiation and 
chemotherapy treatments. SSBs are repair through 
the base excision repair pathway. The damaged base 
is recognized and excised by DNA glycosylases which 
generates abasic sites. PARP1 and PARP2 proteins sense 
the SSB and recruit other factors such as XRCC1 to the 
damaged region[69]. Loss of heterozygosity of OGG1, 
a DNA glycosylase, is associated with papillary thyroid 
cancer[70]. 

DSBs are considered to be the most toxic form of 
DNA lesions[71-73]. When DNA lesions occur, cells can 
utilize DNA damage repair pathways to restore the 
DNA and maintain the genomic integrity of the cell. 
Two of the major DSBs repair pathways are homo-
logous recombination (HR) and non-homologous end 
jointing (NHEJ). HR utilizes the DNA sequence from 
the homologous sister chromatid to repair the DSBs, 
and occurs predominately in the S and G2 phases of 
the cell cycle. HR is a major mechanism to ensure the 
high fidelity of genetic information and because this 
process uses the homologous sequence as a template, 
it is considered to be a more error-free repair pathway. 
Once the HR process is initiated, the DSB is resected to 
create a 3’ overhang that becomes coated with ssDNA-
binding protein RPA. Once this filament is formed, RPA 
is replaced by RAD51 in an ATM/CHK2/BRCA1/BRCA2/
PALB2-dependent manner[69]. RAD51 is a key HR repair 
protein with recombinase activity. One of the main 
functions of RAD51 is to invade the sister chromatid and 
identify the template sequence, and reduced RAD51 
expression is associated with decreased HR activities[74]. 

In contrast to HR pathway, NHEJ takes place throu-
ghout the cell cycle and involves the direct ligation of 
broken ends without the need of homologous templates 
which results in more errors being incorporated within 
the DNA sequence[75]. Upon initiation of NHEJ, Ku70 
and Ku80 form heterodimers that detect and bind the 
DNA ends. The Ku proteins will then recruit the catalytic 

subunit, DNA-Protein Kinase (DNA-PK). This step is 
required for XRCC4 and Lig4-mediated rejoining of the 
damaged DNA ends during NHEJ[69]. DNA-PK complex 
acts as a molecular sensor for NHEJ repair[76,77], and 
cells lacking DNA-PK function fail to show proper 
NHEJ[78-84]. Additionally, PARP1 may compete with Ku 
protein to bind the DSB ends resulting in an alternative 
NHEJ pathway.

Many cancers have abnormalities in the DNA 
repair pathways, therefore several therapeutics have 
been developed to exploit these defects. The NHEJ 
catalytic subunit, DNA-PK, is considered to be up-regul-
ated in radiation-resistant glioblastoma and prostate 
cancers[85,86]. Recently, clinical trials have shown that 
inhibitors of DNA-PK have increased the sensitivity of 
cancer cells to DNA damaging agents however these 
drugs have been avoided due to the toxicity to normal 
cells[87]. Small molecular inhibitors of DNA ligase Ⅳ, 
which is involved in NHEJ, have also been used to decre-
ase cell proliferation and increase the tumor inhibitory 
effect of chemotherapeutics that cause DSBs[88]. The 
mis-regulation of genes associated with HR, RAD51, 
BRCA1, ERCC1, APE1, and PARP1, are also observed in 
various cancers and are associated with resistance to 
chemotherapies[87]. Specifically, mutations in BRCA1, 
BRCA2, ATM, CHEK2, and RAD50 have been identified 
in several cancers including lung, ovarian, pancreatic, 
and leukemia[69]. Besides drugs that target RAD51, 
currently there are very little therapeutics that target 
other proteins involved in HR[87]. Alternatively, targeting 
the alternative NHEK pathway via PARP1 inhibitors 
have been used to treat BRCA1 or BRCA2-defected 
cancers[69]. 

DNA repair pathways have been shown to play a 
vital role in the survival of dormant cancer cells after 
the initial therapeutic treatments. In hepatocellular 
carcinoma, the stem cell population switches from 
actively dividing to dormant after the first round of che
motherapy, which allows for the survival of malignant 
cells[89,90]. The dormant cells contain less DSBs after 
chemotherapy treatment, and Nishikawa et al[15,22] 
(2012) demonstrated that these cells activated the NHEJ 
pathway to repair the DNA damage[15,22]. Furthermore, 
our unpublished data indicates that the NHEJ pathway 
is important in facilitating DSBs repair in ER+ dormant 
breast cancer cells after exposure to chemotherapy or 
radiation. In addition, we discovered that when these 
cells were treated with chemotherapeutics and exited 
dormancy, genomic instability increased leading to more 
aggressive phenotypes and chemotherapy resistance 
(Lin, unpublished data).

HR may also be involved in DNA repair of dormant 
cancer cells. The human Fanconi anemia monoubiqui-
tination pathway has been implicated in promoting 
DNA repair via HR[91]. Recently, defects in this pathway 
resulted in the accumulation of DNA damage causing 
hematopoietic stem cells to exit their dormant state. 
The repeated activation of the hematopoietic stem cells 
out of their quiescent state can lead to the complete 
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collapse of the hematopoietic system triggering diseases 
such as Fanconi anemia and leukemia[92].

CONCLUSION
One of the most difficult clinical challenges that we face 
today is the effective treatment of malignant diseases 
due to the inability to detect dormant cancer cells[93]. 
Recently, Kim et al[94] (2012) established a dormancy 
gene signature in ER+ breast cancer cells. When two of 
these genes, BHLHE41 and NR2F1, are knocked-down in 
the breast cancer cells, in vivo cell growth increased[94]. 
While these data are promising in identifying dormant 
cells, it has yet to be used diagnostically. Therefore, it is 
important to continue investigating the mechanism that 
control cancer dormancy. Targeting pathways involved 
in cellular, angiogeneic or immunologic dormancy may 
provide a way to detect dormant cells as well as treating 
metastatic cancer. 

A possible mechanism to target dormant cancer 
cells is through the DNA repair pathways, and recent 
studies have suggested that DNA repair mechanisms 
may contribute to the survival of dormant cancer cells. 
In particular, the NHEJ pathway may cause a high 
frequency of spontaneous mutagenesis subsequently 
resulting in genomic instability and tumor progression[75]. 
However, more studies need to be performed to de-
termine if other DNA repair mechanism facilitate the 
maintenance and survival of dormant cells. In addition, 
these pathways are not intrinsic to dormant cancer 
cells. Therefore, understanding the mechanisms of how 
dormancy is involved in recurrence is urgent for the 
prevention of secondary tumors. Several advancements 
have been made to characterized dormant cancer 
cells, however, to date, there is a lack of suitable model 
systems to detect and maintain cells in a dormant state. 
Development of in vivo and in vitro model systems are 
imperative to identify key molecular determinants of 
dormancy, which may lead to strategies for detecting 
and eliminating dormant cancer cells thus preventing 
recurrence and reducing cancer mortality.
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