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Abstract

Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs 

bone biology and pathology. Once confined to DNA methylation and a limited number of post-

translational modifications of histone proteins, the definition of epigenetic mechanisms is 

expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism 

for retaining phenotype identity during cell proliferation. Together these different levels of 

epigenetic control of physiological processes and their perturbations that are associated with 

compromised gene expression during the onset and progression of disease, have contributed to an 

unprecedented understanding of the activities (operation) of the genomic landscape. Here, we 

address general concepts that explain the contribution of epigenetic control to the dynamic 

regulation of gene expression during eukaryotic transcription.

Introduction

There is increasing appreciation for the contributions of genetic and epigenetic regulation to 

skeletal biology and evidence is accruing for perturbed epigenetic mechanisms in skeletal 

disease. Once principally restricted to DNA methylation and a limited series of post-

translational histone modifications, the repertoire of epigenetic mechanisms is rapidly 

expanding with growing insight into both molecular and biochemical parameters of 

biological processes that are epigenetically mediated. With comprehensive understanding 

for the scope of epigenetic impact on skeletal gene expression and compromised epigenetic 

mechanisms in congenital and acquired skeletal disorders, the potential for epigenetic-based 

therapeutic targets is precipitously emerging.
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There are a number of authoritative reviews on specific dimensions of epigenetic control 

that collectively provide a comprehensive treatment of epigenetic biochemistry and 

regulatory biology [1–7]. These reviews effectively consider the challenges and 

opportunities encountered when interrogating epigenetic mechanisms within the context of 

normal cells, skeletal genesis, bone remodeling and bone metabolic disorders that are 

directly linked to genetic or acquired perturbations or are consequential to a spectrum of 

diseases and/or treatments that are standards of care. Here, we will illustrate options for the 

power of epigenetic mechanisms to support transformative insight in to skeletal biology and 

pathology. We will emphasize the convergence of skeletal epigenetic mechanisms that can 

provide insight in to regulatory networks that are pivotal for regulation of gene expression. 

Epigenetic control will also be explained in relation to the dynamic architectural 

organization of regulatory machinery from the perspective of nuclear structure-gene 

expression relationships. Similarly, we will consider extrapolations from the biology of 

skeletal epigenetic control to paradigm shifting options with the diagnosis and treatment of 

bone disease.

I. Multiple Dimensions to Epigenetic Control

A. Histone Modifications—From a historical perspective, epigenetic control was initially 

confined to DNA methylation [Reviewed in 8, 9] and three post translational histone 

modification designated acetylation [Reviewed in 10, 11], methylation [Reviewed in 12, 13] 

and phosphorylation [Reviewed in 14] with the assumptions that acetylation and 

phosphorylation are reversible while methylation is not under biological conditions. In the 

past several years, there has been a significant expansion in understanding the scope of 

complexity to histone acetylation, methylation and phosphorylation, with compelling 

evidence for the reversibility of these three classes of histone modifications. Table 1 

summarizes the various enzymatic modifications that occur on specific histone protein 

residues and their functional implications in regulating transcription of a gene. Beyond 

expanded insight into the histone subtypes that are post-translationally modified and specific 

amino acid residues that undergo post-translational modifications, there has been significant 

progress in identification and characterization of the enzymology for histone modifications, 

both the addition and removal of acetate, methyl and phosphate groups [15, 16].

In addition to expanding understanding of the enzymology of the histone modifications, 

compelling evidence is emerging for association of particular histone modifications and 

specific histone modifying enzymes with specific biological circumstances, including 

developmental stages, cell cycle progression and disease-related changes [17–24]. The 

sequence of recruitment and engagement of the regulatory components remains to be 

determined and identification of the rate limiting factors for fidelity of histone modification 

is open ended. Stochastic relationships between components of the histone modification 

machinery can be mechanistically informative. Addressing these parameters of control will 

provide insight into the metabolism of histone modifications.

The recent observation of epigenetically bivalent genes in stem cells, that is, genes including 

both activation and suppression histone “marks” (H3K4me3 and H3K27me3, respectively), 

provide an additional dimension to histone-mediated epigenetic regulation [for a recent 
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review, see 25]. The restriction of bivalency to pluripotency is rapidly evolving to 

recognition of a broader presence. While the functional significance for bivalency needs to 

be further established, a viable possibility is that the simultaneous representation of 

activating and suppressing histone modifications at a particular promoter poises the 

downstream gene to subsequently acquire an epigenetic landscape. In response to 

developmental, phenotypic or physiological regulatory queues, conditions are established 

leading to either gene transcription or silencing and resulting in a committed cell phenotype. 

Recent evidence supports cell cycle-stage specific bivalency that can reinforce regulatory 

competency for responsiveness to regulatory signals required for establishing, sustaining 

and/or modifying phenotype [26, 27, and Grandy R et al., submitted manuscript].

Mechanistic contributions of histone modifications to biological control are emerging from 

developments in technologies able to analyze whole genomes. These approaches include 

chromatin immunoprecipitation using well characterized antibodies to most histone 

modification, followed by massive parallel sequencing (ChIP-Seq) or a ChIP-on-chip 

procedure to identify interacting proteins with the enzyme that mediates the histone 

modification. The RNA-seq identifying the cell’s gene expression profile allows 

determining histone modifications profiles on genes or for genome-wide screens to 

comprehensively establish histone modifications associated with individual genes or cohorts 

of genes [28, 29]. The availability of web-based programs to align GWAS data and SNP 

sequences with epigenetic profiles are leading to possible mechanisms for their deregulated 

activity of the linked gene with the epigenetic modification as a potential therapeutic target 

[30].

From another perspective, histone modifications combined with strategic time course 

approaches both in vitro and in vivo, are increasing capabilities to dissect temporal 

sequences of epigenetic and histone modifications. It is feasible to visualize association of 

modified histones with specific genes or particular sets of genes in response to multiple 

physiological stimuli. Combining the capabilities of these approaches with genomic and 

proteomic analyses provides the basis for defining epigenetic control within a three 

dimensional context of the cell nucleus where this regulatory machinery is architecturally 

organized. The composite perspective that results from cellular, biochemical, molecular and 

genomic analysis is a platform for understanding and experimentally addressing epigenetic 

engagement in regulatory networks, the dynamics of assembly and activity of epigenetic and 

regulatory machinery and the integration of specific epigenetic pathways with the 

components of nuclear structure and function.

B. Epigenetic Control beyond Histone Modifications—The pivotal contributions of 

epigenetic regulation to control of gene expression is illustrated by expansion of 

understanding for epigenetic control that is provided by DNA methylation, non-coding 

RNAs and mitotic bookmarking.

1. DNA Methylation: There is appreciation for the importance to functionally define 

mechanisms that support cross talk between DNA and histone modifications. In part, DNA 

methylation establishes competency for protein-DNA interactions that are obligatory for 

selectively modifying histones associated with target genes in response to endogenous and 
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exogenous regulatory signals. DNA methylation provides long-term “regulatory directions” 

for transcriptional control and generally “instructions for responsiveness”. In contrast, 

histone acetylation generally governs gene activation while histone methylation can activate 

or suppress transcription in a context-depended manner. DNA methylation contributes to the 

context in which histones are modified by establishing conditions where genes and 

associated histones, become effective substrates for the addition or removal of acetate, 

methyl and phosphate groups [31, 32].

DNA methylation has been studied in skeletal disorders, largely for osteoporosis and 

osteoarthritis. In general many genes that are silenced by methylation in CpG islands that are 

needed for homeostasis of bone and cartilage tissues. As a consequence, the tissues undergo 

degeneration [33–35]. The ageing process itself appears to involve an “epigenetic drift ” 

where gradual demethylation occurs across the genomic, while hypermethylation is 

observed in CpG islands in promoter regions [36].

The DNA methylation/demethylation associated with diseased states is further contributing 

to changes in the histone modifications that regulate gene expression, but a better 

understanding of these mechanisms are needed.

2. Non-coding RNAs: There is extensive and far reaching knowledge of contributions by 

non-coding RNAs (ncRNAs) to biological control as well as to compromised gene 

expression that is associated with numerous diseases [37–39]. A paradigm for understanding 

ncRNA-mediated control is provided by XIST that is responsible for X-chromosome 

inactivation [40]. During the past several years there has been extensive investigation of 

micro-RNAs as post-transcriptional inhibitors and more recently, long non-coding RNAs 

(lncRNAs) that exhibit both positive and negative control are being increasingly studied 

[41–44]. The regulatory involvement of small and long non-coding RNAs in skeletal 

biology, is reviewed in the article by Hassan and colleagues in this series.

3. Mitotic Bookmarking: Retention of transcription factors at target gene loci of mitotic 

chromosomes accompanies transcriptional regulatory machinery from parental to progeny 

cell during cell division [45]. This process designated mitotic bookmarking, epigenetically 

supports gene expression by two mechanisms. While genes are transcriptionally inactive 

during mitosis, retention of transcription factors at target gene loci supports competency for 

resumption of cell type specific transcription in G1. Also, the chromatin organization of 

mitotic chromosomes epigenetically poises bookmarked genes for post-mitotic 

transcriptional reactivation [46, 47].

II. The Dynamic Architectural Organization of Skeletal Epigenetic Regulatory Machinery

A. Strategic Localization of Epigenetic Domains

1. Epigenetically Responsive Promoter Sites: A wealth of studies have shown that 

epigenetic regulation of gene expression plays a key role in lineage commitment and 

maintenance. For example, epigenetic control of bone tissue-specific gene expression is 

principally mediated by the RUNX2 transcription factor at multiple sites on target gene 

promoters and enhancers (or cis-regulatory modules) where this regulatory protein provides 
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a scaffold for the strategic localization of regulatory machinery for histone modifications 

and chromatin remodeling [48–51]. Developmental and Vitamin D responsive regulation of 

the chromatin organization for the bone-specific osteocalcin gene promoter directly 

illustrates functional linkage of chromatin organization with requirements for skeletal gene 

expression. The necessity for epigenetic integrity of the osteocalcin gene promoter elements 

that support basal tissue-specific transcription and vitamin D-responsive enhancement 

directly establish the requirement of epigenetic mechanisms for biological control in bone 

[52–54].

The complexity of organization and activity for regulatory complexities that epigenetically 

control skeletal gene expression is biologically and mechanistically relevant. The RUNX 

transcription factors that occupy the proximal and upstream promoter sites, as well as 

intragenic regions of bone-specific genes (e.g., osteocalcin), interact with cohorts of co-

regulatory proteins that are both similar and different, supporting physiologically responsive 

requirements for epigenetic control of transcription [48–51, 55]. Obligatory relationships 

between epigenetically mediated chromatin remodeling of bone-specific promoters and 

transcriptional responsiveness to developmental and homeostatic cues have been 

demonstrated experimentally in vitro and in vivo with systematically constructed mutations 

to directly establish functionality.

The strategic placement of epigenetic regulatory complexes at multiple sites of bone target 

gene promoters is not confined to the osteocalcin gene. A similar regulatory landscape for 

physiologically responsive epigenetic control has been established for several skeletal genes 

and for tissue-specific gene expression in general [see 56].

2. Intranuclear Domains: The mammalian nucleus is a highly organized cellular 

compartment where genetic and epigenetic regulatory machineries interact with each other 

in a precise and timely fashion for physiologically relevant outcome. Several subnuclear 

compartments have been described and extensively studies. For example, RNA Polymerase 

II is organized in punctate nuclear foci that interact with actively transcribing genes, thus 

resulting in the formation of transcription factories. Similarly, DNA replication takes place 

at defined sites within the nucleus, where the DNA replication machinery resides. Splicing 

of nascent messenger RNA is often confined to Splicing Speckles as characterized by 

localization of SC-35 splicing factors to specific nuclear domains. Nucleolus, the site of 

ribosomal RNA synthesis, is yet another nuclear entity that offers a paradigm for 

understanding the nuclear structure-function relationship. We and others have shown that 

several lineage restricted transcription factors are also confined to punctate nuclear 

microenvironments where they interact with and regulate target genes.

Fluorescence analysis of bone cells with antibodies for the RUNX2 bone tissue-specific 

transcription factor strikingly illustrates a punctate organization [57, 58]. The 150–300 foci 

exhibit resistance to high salt and detergent extraction indicating that the regulatory 

machinery for bone tissue-specific transcription is architecturally associated. This is not a 

unique observation. Rather, the punctate intranuclear organization of RUNX2 transcription 

factors is consistent with growing evidence for compartmentalization of regulatory 

machinery for transcription, replication and repair within the nucleus [59–61]. Confirmation 
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of the punctate intranuclear localization of the RUNX transcription factor by time-lapse 

fluorescence microscopy of cells with a fluorescent-tagged RUNX protein provides in situ 

validation of the punctate intranuclear organization [62]. Similar punctate intranuclear 

distribution has been confirmed for the vitamin D receptor (VDR) and co-regulatory 

molecules in bone-related cells [63, 64], indicating that transcriptional control of 

osteoblastic genes in response to vitamin D is also architecturally organized.

There are important regulatory implications for the observed compartmentalization of 

RUNX and VDR transcription regulators that are applicable to in situ mechanistic 

understanding of regulatory mechanisms supporting transcription, replications and repair in 

nuclei of intact cells. Focal organization and endogenous levels of regulatory proteins that 

can be directly observed without amplification or overexpression suggests focal 

concentrations at a limited number of sites within the nucleus. Such focal concentrations of 

proteins is consistent with threshold levels to facilitate binding at promoter sites on target 

gene loci that mediate the organization and assembly of factors to support histone 

modifications and chromatin remodeling for epigenetic mechanisms that conformationally 

poise genes for transcription and support recruitment of factors and co-regulatory proteins 

that directly control transcription. Such reasoning is in agreement with co-localization of 

RUNX foci with antibodies to active (hyper phosphorylated) RNA polymerase II, BrUTP-

labeled regions and co-regulatory proteins that support transcription [65, 66]. Important for 

epigenetic control, the factors that are responsible for histone modifications have been 

shown to be punctately organized, architecturally associated and co-localized with genes 

that are transcriptionally active [61]. The emerging perspective is a multidimensional 

“nucleome” with the components for genetic and epigenetic parameters of control 

architecturally configured.

More than observations that are documented by molecular, cellular and biochemical criteria, 

there is in vitro and in vivo genetic evidence for a RUNX intranuclear trafficking signal that 

is necessary and sufficient to support fidelity of RUNX regulatory protein localization at 

intranuclear sites that support transcription [62].

III. Epigenetic Crosstalk

A. Intrachromosomal—Components of epigenetic control are temporally, spatially and 

architecturally integrated to support physiologically responsive regulation of gene 

expression. The three dimensional organization of the bone-specific osteocalcin gene 

provides a paradigm for conceptually understanding and experimentally defining the 

integration of epigenetic components to control within the multiple levels of nuclear 

organization [53]. Conceptually direct, but difficult to mechanistically address, is the 

functional organization of the cohorts of co-regulatory proteins that associate with the active 

transcription factors at the proximal (basal, transcriptional control) and immediate upstream 

(enhancer) sites. There are requirements to support histone modifications within and 

between the basal transcriptional and enhancer promoter domains. While formidable 

challenges, recent advances and rapidly evolving strategies in genomic chromatin 

immunoprecipitation analysis are increasing our capabilities to functionally characterize 

epigenetic control that is confined to specific promoter domains and operative through 
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communication between genomic sites. Recent analysis of genome-wide binding profiles of 

the bone specific RUNX2 protein using ChIP-seq has identified numerous regulatory sites 

that may have implications for epigenetic regulation of commitment [51, 55]. In addition 

analysis of the Runx2 gene locus, by chromatin capture approaches [67], has provided 

insight into higher order architectural organization that contributes to control a gene 

expression and provides a roadmap for exploring long-range components of architectural 

genomic organization that can be informative. The power of chromatin capture approaches 

includes the options to employ candidate strategies that are designed for addressing specific 

interactions and to utilize unbiased screens for identifying interactions that can provide 

novel insight into regulatory crosstalk.

B. Interchromosomal Communication—There is emerging evidence from chromatin 

capture strategies for functional connectivity that can contribute to “collaborative control” of 

gene expression. Unbiased screens can identify interactions that are not intuitively evident. 

Candidate approaches may be particularly important to interrogate crosstalk within the 

repeated copies of the ribosomal genes that reside on five acrocentric chromosomes and 

address context-based communications between the ribosomal gene clusters residing on the 

five acrocentric chromosomes. Interchromosomal communication can enhance 

understanding of interphase chromosomal translocations and provide an unbiased approach 

to identify interphase translocations [68, 69]. Examining nuclear localization of 

chromosomes that frequently undergo reciprocal translocations can expand regulatory 

insight into the molecular etiology of leukemias.

IV. Sustaining the Epigenetic Landscape

Contributions of histone modifications and DNA methylation to epigenetic control of gene 

expression are well documented. A recently described epigenetic mechanism – mitotic 

bookmarking, which is retention of transcription factors at target gene loci on chromosomes 

during mitosis – provides long sought insight into mechanisms that sustain competency for 

tissue-specific gene expression during cell division [45]. The initial observation that 

provided a basis for establishing mitotic bookmarking as an epigenetic mechanism for 

retaining transcriptional regulatory complexes with target genes during mitosis was a 

doubling of RUNX protein content and the number of RUNX regulatory foci during the cell 

cycle [70]. Equivalent distribution of RUNX proteins and RUNX foci from parental to 

progeny cells was observed at the completion of mitosis. Visualization of RUNX foci on 

chromosomes provided a direct indication that phenotypic transcription factors are 

mitotically inherited. Expression profiling, together with chromatin immunoprecipitation 

analysis, established RUNX foci that are symmetrically associated with chromosomal foci 

on sister chromatids are complexed with target gene loci. These findings accommodate 

stringent criteria for epigenetic control, establishing mitotic bookmarking by the RUNX 

transcription factor as a novel dimension to epigenetic regulation.

Mitotic bookmarking is not confined to the bone specific RUNX transcription factor, but has 

been similarly observed for other transcriptional regulatory proteins including translocation-

fusion proteins that control aberrant gene expression in leukemia cells [71]. Another 

dimension to mitotic bookmarking that extends beyond traditional thinking about 
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mechanisms that govern transcription is the observation that phenotypic transcription 

factors, including the RUNX regulatory proteins (RUNX 1, 2 and 3), MyoD (controls 

myogenesis), CEBP (controls adipogenesis) and AML/ETO (controls the leukemia 

phenotype) co-regulate RNA polymerase II target genes as well as ribosomal genes that are 

transcribed by RNA polymerase I. An epigenetic mechanism for coordinate control of cell 

growth and phenotype is indicated that includes regulation of normal biological processes as 

well perturbations in gene expression that are associated with acquisition of a transformed 

phenotype in cancer cells [45, 72, 73].

While mitotic bookmarking increases the cellular options to sustain epigenetic management 

of the transcriptional regulatory machinery, there are open-ended components of control that 

require resolution. The extent that the complete cohort of complete co-regulatory proteins is 

retained in mitotic bookmarking complexes remains to be comprehensively determined. 

And, from a biological perspective, the modifications in mitotic bookmarking to comply 

with requirements for asymmetric cell division is open-ended and relevant to mitotic 

division of pluripotent stem cells during development as well as to lineage committed stem 

cells during tissue remodeling, repair and replacement.

Concluding Remarks

Here, we have presented an overview of how bone-related gene expression is controlled at 

multiple levels of epigenetic regulation. We have discussed the contributions of histone 

modifications and DNA methylation – two well established mechanisms of epigenetic 

regulation – within the context of bone cell differentiation. Contributions of nuclear 

organization of gene regulatory machinery is a recently recognized key parameter of gene 

regulation that we have discussed. Finally, we have described an emerging epigenetic 

mechanism – mitotic bookmarking – that ensures sustained lineage commitment of 

mesenchymal stem cells to osteoblast lineage. It is necessary to establish a complete 

landscape of various epigenetic mechanisms in osteoblasts for a comprehensive 

understanding of bone-related gene expression. An integrated approach to establishing the 

osteoblast epigenome within the three-dimensional nuclear architecture will provide avenues 

for targeted therapies in osteopathologies where epigenetic mechanisms have been 

compromised.
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Table 1

Transcripcion-associated covalent histone modifications

Residue Modification Relation with gene expression Localization

Histone H3

K4 me1 Inactive or active [74] Widespread[75]; Enhancers[74, 76]

me2 Active[77, 78] TSS[75]

me3 Active[75–80]; Inactive(Poised)[81, 82] TSS[75, 76, 80]

R8 Me Inactive [83, 84]

K9 Ac Active[75, 77, 79, 80, 85–87] TSS[75, 80, 85]

me3 Inactive[79, 82, 88, 89] Heterochromatin [90]

S10 P Active[91, 92] TSS [92]

K14 Ac Active[75, 77, 85–87] TSS[75, 85]

K16 Ac Active[79]

R17 me1/me2-asym Active [93]

K18 Ac Active[87, 93]

K20 me1 Inactive [88]

K23 Ac Active[87, 93]

K27 Ac Active [74] Enhancer [74]

me3 Inactive[79, 81, 82, 88, 89]

K36 me3 Active[80, 82, 85]; Hallmark of elongation[79, 85] Coding[80]

K79 me1 Inactive[94] TSS or Intergenic[94]

me2 Active[94] Coding[80]; TSS[94]

me3 Active[94] TSS[94]

Histone H4

R3 me2 (sym) Inactive[83, 95, 96] TSS[95]

K5/K8/K12/K16 Ac Active[78] Widespread[75]

K20 me3 Inactive [82]

Abbreviations: ac: acetylation; K: lysine residues; me: methylation, where me1, 2, 3 denotes mono-, di-, or trimethylation; P: phosphorylation; R: 
arginine residue; (a) sym: (a) symmetrical; TSS: Transcription Start Site
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