
Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s 
disease

Maryka Quik, Danhui Zhang, Matthew McGregor, and Tanuja Bordia
Center for Health Sciences, SRI International, 333 Ravenswood Ave, California 94025, USA

Abstract

Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are 

important targets for the development of therapeutic approaches for Parkinson’s disease. This 

progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as 

autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently L-

dopa is the gold standard treatment for Parkinson’s disease motor problems, particularly in the 

early disease stages. However, it does not improve the other symptoms, nor does it reduce the 

inevitable disease progression. Novel therapeutic strategies for Parkinson’s disease are therefore 

critical. Extensive pre-clinical work using a wide variety of experimental models shows that 

nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This 

observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying 

agents. Additionally, studies in several parkinsonian animal models including nonhuman primates 

show that nicotine reduces L-dopa-induced dyskinesias, a side effect of L-dopa therapy that may 

be as incapacitating as Parkinson’s disease itself. Work with subtype selective nAChR agonists 

indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic 

effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse 

responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against 

neurodegenerative effects and for the reduction of L-dopa-induced dyskinesias. Altogether, this 

work suggests that α7 nAChRs may be useful targets for reducing Parkinson’s disease progression 

and for the management of the dyskinesias that arise with L-dopa therapy.
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1. Introduction

The idea that nicotine may be useful as a therapy for Parkinson’s disease initially stemmed 

from the results of epidemiological studies [1–6]. An extensive literature demonstrated a 

reduced risk of Parkinson’s disease among current and former smokers, which correlated 

with smoking duration, intensity, and recentness [7, 8]. This decline in Parkinson’s disease 

was also observed with other forms of tobacco and with environmental smoke exposure [9, 

10]. Moreover, the incidence of Parkinson’s disease within twin pairs was less in the twin 

that smoked compared to the nonsmoker [11]. A recent report suggested that the apparent 

neuroprotective effect may be due to the propensity of Parkinson’s disease patients to quit 

smoking early rather than to neuroprotection [12]. However, the greater majority of studies 

are consistent with the idea that the reduced frequency of Parkinson’s disease is due to a true 

biological effect of tobacco use.

The results of the above studies, coupled with the finding that nicotine, a key component in 

tobacco products, stimulates dopamine release [13–16] led to the premise that nicotine may 

underlie the beneficial effect of smoking in Parkinson’s disease. Extensive studies now 

substantiate this hypothesis. Experimental evidence shows that nicotine partially protects 

against nigrostriatal and other forms of CNS damage. Moreover, nicotine administration 

reduces the abnormal involuntary movements or dyskinesias that arise as a side effect of L-

dopa treatment for Parkinson’s disease motor symptoms. Multiple nAChR populations exist 

in the brain, with several subtypes implicated in these beneficial effects of nicotine. This 

review will focus on the role of α7 nAChRs and discuss the potential utility of α7 nAChR 

agonists as a novel treatment strategy for Parkinson’s disease to reduce disease progression 

and alleviate L-dopa-induced dyskinesias (LIDs).

2. α7 nAChRs

Neuronal nAChRs are pentameric ligand-gated ion channels composed of diverse 

combinations of α and β transmembrane subunits [17–19]. There is a mandatory requirement 

for an α subunit, which binds the naturally occurring neurotransmitter acetylcholine and also 

exogenous agonists such as nicotine. In addition, β subunits may be present in the receptor 

complex; these do not express a neurotransmitter recognition site although they contribute 
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significantly to receptor properties. The main nAChR subtypes in the brain expressing both 

α and β subunits are the α4β2*, α6β2* and α3β4* populations, with the asterisk indicating 

the possible presence of other nAChR subunits in the receptor complex. Another primary 

nAChR subtype in the brain is one composed only of α7 subunits (Fig. 1). Not only are α7 

nAChRs structurally different from the other subtypes, they are also phylogenetically and 

functionally distinct [18, 20]. They display the lowest nicotine sensitivity and exhibit the 

fastest desensitization kinetics of all nAChRs, a property which initially made their 

functional characterization very difficult. They have a very high calcium permeability which 

allows them to regulate numerous calcium-dependent cellular mechanisms important for 

optimal CNS function [21, 22].

α7 nAChRs are uniquely localized throughout the brain, although there is substantial 

overlap in their distribution with other nAChR subtypes. α7 nAChRs are very widespread, 

with a dense localization in regions such as the hypothalamus, geniculate nuclei, colliculi, 

hippocampus, medial habenula, thalamus, cortex, amygdala, and sparse expression in 

striatum, forebrain, medulla and various brain nuclei (Fig. 1) [23–29]. Consistent with their 

extensive CNS localization, α7 nAChRs are implicated in numerous functions including 

development, maintenance, survival, synaptic plasticity, neurotransmitter release and/or 

immune responsiveness. Their acute and long term effects on these cellular processes may 

modulate behaviors such as anxiety, attention, learning, memory, movement and sensory 

gating, with consequent implications for Alzheimer’s disease, Parkinson’s disease, 

schizophrenia, traumatic brain injury, autism, addiction, pain and immune/inflammatory 

disorders [30–36].

3. α7 nAChRs and neuroprotection

3.1. Trophic role and protection against toxic insults

A trophic role for α7 nAChRs was originally suggested several decades ago [37, 38]. 

Studies using cultured cells showed that drugs acting at α7 nAChRs modulated neuritic 

outgrowth via α7 nAChR-mediated alterations in intracellular calcium [39–41]. Further 

support for a trophic action stemmed from experiments in intact animals, which 

demonstrated that α7 nAChR expression was modified with neuronal development, growth, 

maintenance and survival [42–45].

The idea that α7 nAChRs had a role in neuroprotection initially arose from results showing 

that α7 nAChR antagonists prevented nicotine, choline or acetylcholinesterase inhibitor-

mediated protection against toxic insults in neuronal cell cultures (Table 1). α7 nAChR 

antagonists such as methyllycaconitine (MLA) or α-bungarotoxin (α-BTX) attenuated 

nAChR-mediated protection against amyloid-β, glutamate and NMDA toxicity, as well as 

growth factor and oxygen-glucose deprivation in cell lines and primary neuronal cultures 

[46–58].

Conversely, α7 nAChR agonists afforded neuroprotection. For example, the α7 nAChR 

allosteric modulator galantamine decreased amyloid-β and glutamate-induced toxicity in cell 

lines or cortical cultures [48, 59, 60]. Additionally, the α7 nAChR agonist TC-1698 reduced 

amyloid-β toxicity in pheochromocytoma (PC12) cells, while PNU-282987 protected SH-
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SY5Y cells against oxidative stress and okadaic acid-induced toxicity [61–63]. Another 

agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) attenuated amyloid-β and 

ethanol-induced toxicity, as well as growth factor deprivation, in both cell lines and primary 

cultures [47, 64–66]. Furthermore, DMXB protected cholinergic neurons against 

septohippocampal axotomy in mice, demonstrating effectiveness in vivo [67].

The use of α7 knockout mice also proved valuable in demonstrating a protective role for α7 

nAChRs. Nicotine failed to protect against oxygen-glucose deprivation in hippocampal 

slices from α7 knockout mice and against NMDA toxicity in cortical cultures from 

transgenic mice expressing dominant-negative α7 nAChRs [68–70]. In addition, while 

combined neostigmine/anisodamine treatment was protective in a mouse model of ischemia, 

no effect was observed in α7 nAChR knockout mice [71]. Deletion of α7 nAChRs also 

worsened ethanol-induced toxicity in primary cortical cultures and exacerbated early-stage 

cognitive declines in a mouse model of Alzheimer’s disease [72, 73].

Overall, results using several different approaches including the use of receptor targeted 

drugs and genetically modified mice implicate α7 nAChRs in neuroprotection against 

varying toxic insults in multiple neuronal systems.

3.2. Protection against nigrostriatal damage in parkinsonian animal models

A role for α7 nAChRs in protection against dopaminergic degeneration initially stemmed 

from studies using the general nAChR agonist nicotine [74–76]. The first of these by Janson 

and coworkers showed that nicotine administered before or at the time of lesioning 

significantly improved both striatal and nigral dopaminergic markers in rats with a hemi-

transection of the medial forebrain bundle [77–79]. Since then the neuroprotective effect of 

nicotine has been demonstrated in numerous rodent models of dopaminergic nigrostriatal 

damage. This includes protection against 6-hydroxydopamine (6-OHDA)-induced 

nigrostriatal damage in rats [80–83] and against MPTP-induced nigrostriatal degeneration in 

mice. However, neuroprotection in this latter animal model did not consistently occur 

raising questions about nicotine’s protective potential [76, 84–88]. Subsequent work in 

parkinsonian nonhuman primates again showed that nicotine improved various striatal 

dopaminergic measures, including tyrosine hydroxylase, the dopamine transporter, the 

vesicular monoamine transporter and dopamine levels [89, 90]. These latter findings in a 

model exhibiting symptoms closely resembling those of the human disease, coupled with the 

rodent work, provide strong evidence for nicotine’s neuroprotective potential.

With respect to the nAChR subtypes involved in neuroprotection against nigrostriatal 

damage, pharmacological studies showed that the α4β2* nAChR agonist ABT-089 protected 

against 6-OHDA-induced nigrostriatal damage in rats (Table 2) [91]. By contrast, nicotine-

mediated protection against nigrostriatal damage was not observed in α4 nAChR knockout 

mice, which lack α4β2* nAChRs (Table 2) [81]. Thus, drug and genetic studies support the 

idea that β2* nAChRs are important. Nicotine may exert its neuroprotective effect by 

chaperoning β2* nAChRs to the surface of the cell. This may induce changes in the structure 

and function of the endoplasmic reticulum, the Golgi apparatus and secretory vesicles of 

cells thereby reducing ER stress and enhancing cell survival [92, 93].
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The use of subtype selective α7 nAChR agonists and antagonists also supports a protective 

role for α7 nAChRs (Table 2) [74, 75, 94]. Drugs with varying agonist properties, such as 

the α7 nAChR allosteric modulator galantamine, and the α7 agonists DMXB and ABT-107 

all protected against 6-OHDA-induced nigrostriatal damage in rats [95–97]. Additionally, 

the α7 agonist PNU-282987 protected against nigrostriatal damage in the MPTP-lesioned 

mouse [98], while α7 nAChR antagonists such as methylycaconitine blocked the 

neuroprotective effect of nicotine [99]. These studies with α7 nAChR agonists and 

antagonists provide compelling evidence for a role for these receptors in protection against 

nigrostriatal damage.

In summary, both α7 and β2* nAChR agonists reduce nigrostriatal damage in several 

parkinsonian animal models, suggesting that drugs targeting these receptors may be useful 

for attenuating progression of the motor symptoms that arise in Parkinson’s disease. As 

mentioned earlier, nicotine and nAChR agonists also reduce numerous other forms of 

neuronal toxicity. nAChR drugs may therefore also ameliorate non-motor symptoms that 

arise with Parkinson’s disease by reducing/halting other neurodegenerative processes in the 

brain.

4. α7 nAChR agonists reduce L-dopa-induced dyskinesias (LIDs)

In addition to a putative neuroprotective role, nicotine treatment may also be useful in the 

management of LIDs. These are debilitating abnormal involuntary movements that occur 

with L-dopa administration, the gold-standard therapy for Parkinson’s disease [100–103]. 

Although L-dopa very successfully treats Parkinson’s disease motor symptoms, LIDs 

develop in the majority of patients by 10 years on L-dopa treatment. The only approved 

pharmacological therapy is with amantadine; however, the beneficial effects of this drug are 

variable across patients and are generally lost with sustained treatment [103–105]. Although 

new drugs are under study, effective treatments for LIDs remain elusive.

Recent preclinical work in rodents and nonhuman primates indicates that drugs interacting 

with nAChRs may be of benefit in reducing LIDs (Table 3) [34]. Initial studies with the 

general nAChR agonist nicotine showed a 60% reduction in LIDs in parkinsonian monkeys 

and rodents, indicating effectiveness across species [106–111]. Importantly, nicotine’s 

effects persisted with long term treatment, with one study in nonhuman primates carried out 

for over a year [108]. Nicotine reduced LIDs whether given orally via the drinking water, by 

systemic injection or by minipump, showing the effect is independent of treatment mode. 

Varenicline, another general nAChR agonist [112–114] also reduced LIDs by ~50% (Table 

3) [115]. At least a month was required for the antidyskinetic effect of nicotine to maximally 

develop [108]. Notably, such a time period was also required for the nicotine-mediated 

antidyskinetic effect to dissipate after drug discontinuation [115]. These combined 

observations suggest that long term molecular changes are most likely involved in the 

nicotine-mediated reduction in LIDs.

These data with nicotine prompted work to investigate the nAChR subtypes that contributed 

to the antidyskinetic effect. Two approaches that proved valuable included the use of 

genetically modified mice and drugs targetting the different nAChR subtypes. Genetic 
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deletion of α7 nAChRs increased LIDs in L-dopa-treated parkinsonian mice compared to 

wildtype littermates suggesting that α7 nAChRs exert an inhibitory influence on expression 

of these abnormal movements [116]. However, nicotine still reduced LIDs in α7 nAChR 

null mutant mice, indicating that α7 nAChRs are not essential for nicotine’s antidyskinetic 

action. Similar studies with mice lacking the β2, α4 and α6 nAChR subunits yielded 

somewhat different results. Nicotine exerted no antidyskinetic effect in any of these 

knockout mice, suggesting that the α4β2* and α6β2* nAChRs are essential. In addition, 

mice lacking the β2 or α6 nAChR subunits expressed fewer LIDs compared to their 

wildtype littermates. Overall, the results indicate that α7 and β2* nAChRs regulate the 

expression of LIDs but in somewhat unique manners.

Pharmacological studies also support the idea that drugs interacting at α7 or β2* nAChR 

subtypes influence the occurrence of LIDs. Drugs that selectively act at α7 nAChRs 

decreased LIDs, with no change in parkinsonism when the animals were administered L-

dopa (on L-dopa) or in the absence of the drug (off L-dopa) (Table 3). This includes work in 

Saimiri sciureus in which the α7 agonist ABT-107 reduced LIDs ~60% (Table 3, Fig. 2). 

The decrease persisted with several months of treatment [115]. Notably, the ABT-107-

induced antidyskinetic effect persisted for about a month after its discontinuation suggesting 

that long term molecular changes were involved. A study with another α7 agonist ABT-126 

yielded similar results (Table 3) [117]. Administration of the α7 nAChR agonist AQW051 

to Macaca fascicularis also resulted in ~60% decrease in LIDs, with no worsening of 

parkinsonism [118], demonstrating the effectiveness of α7 nAChR agonists in another 

nonhuman primate.

The antidyskinetic effect was not unique to α7 nAChRs drugs, as β2* nAChR agonists also 

improved LIDs (Table 3). This includes TC-8831, which reduced LIDs by 50% in macaques 

and squirrel monkeys without affecting parkinsonism, although a drawback of this drug was 

induction of emesis [119, 120]. Another β2* nAChR agonist AZD1446 also attenuated LIDs 

in macaques, although it was not as effective with only a 30% decline possibly due to a 

lower nAChR affinity [121]. In addition, the β2* nAChR agonists ABT-089 and ABT-894 

decreased LIDs, with the most pronounced effect with ABT-894 which resulted in a 60% 

decline in LIDs in squirrel monkeys (Table 3) [122]. Neither ABT-089 nor ABT-894 was 

associated with emesis. Like ABT-107, the decline in LIDs was dose dependent, did not 

diminish with time and required about a month to washout [122].

Notably, the reduction in LIDs observed with either an α7 or β2* nAChR drug on its own 

was not increased by administration of both nAChR subtype drugs together. Combined 

administration of ABT-894 with the α7 agonist ABT-107 resulted in a reduction in LIDs 

similar to that observed with either drug alone (Fig. 2). These findings suggest that drugs 

acting at either α7 or β2* nAChRs are sufficient to achieve the antidyskinetic effect 

observed with general agonists such as nicotine. These data also indicate that α7 and β2* 

nAChR agonists reduce LIDs via some final common mechanism.

In summary, both α7 and β2* nAChR drugs reduce LIDs up to 60% with no detrimental 

effects on parkinsonism. Because α7 nAChR agonist appear to be associated with few side 
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effects and are linked to positive effects on cognition (which may be deficient in Parkinson’s 

disease), they may represent ideal candidate drugs to improve LIDs in Parkinson’s disease.

5. Mechanisms underlying α7 nAChR-mediated effects in the brain

A question that arises is the molecular and cellular mechanisms whereby an interaction at α7 

nAChRs modulates behaviors. One of the first steps in α7 nAChR-mediated transduction 

involves changes in calcium signaling (Fig. 3). α7 nAChRs exhibit a greater relative calcium 

permeability than other nicotinic receptors and readily flux calcium [40, 45, 123, 124]. 

Resultant changes in intracellular calcium may enhance cholinergic transmission in the short 

term, with consequent long term changes in neuronal plasticity.

Several intracellular mechanisms have been shown to mediate protective effect of α7 

nAChR activation against toxic insults (Fig. 3). For instance, nicotine reduces Aβ-induced 

toxicity by enhancing phosphatidylinositol 3-kinase to lead to increased levels of 

phosphorylated AKT, and also Src, B-cell lymphoma (Bcl) 2 and Bcl-x with a consequent 

protection [51, 125]. The mitogen-activated protein kinase/extracellular signal-regulated 

kinases pathway and the JAK2/STAT3 pathway have also been implicated in α7 nAChR-

mediated neuroprotection against a variety of toxic insults in PC12 cells, spinal cultures and 

keratinocytes [126–129]. Other downstream mechanisms associated with α7 nAChR-

mediated protection include increases in phospholipase C [126], nerve growth factor [130], 

hemeoxygenase [61] and proinflammatry cytokines (tumor necrosis factor-α and 

interleukin-1β) [131], while nitric oxide [49], caspases, reactive oxygen species [61] are 

linked to toxicity.

With respect to α7 nAChR-mediated protection against nigrostriatal damage, the first step 

appears to be an increase in calcium influx via the α7 nAChR and also voltage-gated 

calcium channels [132]. This may then result in activation of a survival pathway involving 

the calcium effector protein calmodulin, phosphatidylinositol 3-kinase and phosphorylated 

AKT with subsequent upregulation of Bcl-2 [132, 133]. In addition, α7 nAChRs on 

astrocytes may contribute to nicotine’s protective effect against nigrostriatal damage. α7 

nAChRs have been identified on astrocytes and shown to mediate changes in intracellular 

calcium mobilization [134, 135]. α7 nicotinic cholinergic signaling may subsequently alter 

expression of a variety of astrocytic transduction mechanisms including extracellular signal-

regulated kinase1/2, p38, tumor necrosis factor-α, glial derived neurotrophic factor, glial 

fibrillary acidic protein, CD68, and caspase 9 [96, 99, 136] to modulate nigrostriatal 

plasticity.

The mechanisms linked to the α7 nAChR-mediated improvement in LIDs are less studied 

but probably include long and short term molecular and cellular changes. One of these may 

consist of alterations in striatal dopamine release. It is well established that LIDs are 

associated with an aberrant dopamine release from striatal terminals [137]. Nicotine 

decreases dopamine release via β2 nAChR-mediated nAChR desensitization and down 

regulation [138]. Striatal α7 nAChRs on glutamatergic afferents from the cortex may be 

similarly involved. Stimulation of these α7 nAChRs increases glutamate release, which in 

turn acts at glutamate receptors on dopamine terminals to modulate dopamine release/
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turnover [139]. Additionally, α7 nAChRs in the substantia nigra may influence the release 

of striatal dopamine [140].

Long term mechanisms most likely also play a role in the nAChR-mediated antidyskinetic 

effect. This possibility is based on findings that one to two months of treatment with 

nicotine or nAChR drugs are required for an optimal antidyskinetic effect and also for its 

decline with drug discontinuation [107, 108]. LIDs have been associated with structural 

changes in spine morphology in the striatum. This includes the appearance of aberrant 

spines, the development of new spines or a loss of existing spines in neurons of the 

corticostriatal, direct and/or indirect pathways [141–144]. Nicotine may restore aberrant 

signaling that contributes to LIDs by modulating spine formation/morphology as it is well 

known to modulate neuronal morphology via an interaction at α7 nAChRs [39, 41, 145].

6. Summary

Emerging studies suggest that α7 nAChR drugs may be useful in the management of 

Parkinson’s disease. Of particular importance is the finding that α7 nAChR agonists have 

disease modifying potential as they protect against nigrostriatal deficits in parkinsonian 

nonhuman primate and rodent models. In addition, α7 nAChRs mediate neuroprotective 

effects against numerous other toxic insults and thus be of benefit against some of the other 

CNS deficits associated with Parkinson’s disease. Preclinical studies in nonhuman primates 

also show that α7 nAChR agonists reduce LIDs, a serious side effect of L-dopa therapy. 

Altogether, these data suggest that α7 nAChR agonists, which may exhibit fewer side effects 

than other subtype selective nAChR agonists [146, 147], may be useful for reducing 

Parkinson’s disease progression and also decreasing LIDs.
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Abbreviations

Bcl B-cell lymphoma

α-BTX α-bungarotoxin

DMXB 3-[2,4-Dimethoxybenzylidene]anabaseine

LIDs L-dopa-induced dyskinesias

MLA methyllycaconitine

nAChR nicotinic acetylcholine receptor

PC pheochromocytoma

* indicates the possible presence of other subunits in the receptor complex
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Fig. 1. 
Schematic representation of α7 nAChR structure and localization. The α7 nAChR subunit 

consists of a large extracellular N-terminal region, four transmembrane (TM) domains and 

an extracellular carboxy-terminal (A). The α7 receptor is membrane bound and composed of 

5 identical α subunits, with five agonist binding sites, with (B) depicting a top view and a 

side view of the receptor in the cell membrane. α7 nAChRs are very widely distributed in 

numerous brain regions (C). The smaller font size represents a lower density of α7 nAChRs 

in the various brain areas.
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Fig. 2. 
The α7 nAChR agonist ABT-107 reduces LIDs in parkinsonian monkeys. MPTP-lesioned 

monkeys were gavaged with L-dopa plus carbidopa twice daily 5 days per week, with the α7 

nAChR agonist ABT-107 given orally 30 min before L-dopa. The left panel (A) shows that 

ABT-107 significantly reduced LIDs by 60%. The middle panel (B) shows that the 

reduction in LIDs with combined ABT-107 plus ABT-894 treatment was similar to that with 

ABT-107 or ABT-894 alone. The right panel (C) shows ABT-107 discontinuation leads to a 

return of LIDs to vehicle-treated levels by 6 wk. Values are the mean ± SEM of 5–6 

monkeys. Significance of difference from vehicle, *p < 0.05, **p < 0.01, ***P < 0.001 

using two-way ANOVA. Taken in modified form from [149].
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Fig. 3. 
Various intracellular signaling pathways have been linked to α7 nAChR activation as 

described in the text. These lead to secondary events within the same cell or others, with 

consequent alterations in synaptic plasticity, development, maintenance, survival, apoptosis, 

neurotransmitter release, immune responsiveness or others. These subsequently modulate 

movement, addiction, anxiety, attention, learning, memory, sensory gating, inflammation, 

and neuroprotection. Bcl, B-cell lymphoma; CaMK, Ca2+/calmodulin-dependent protein 

kinase; ERK, extracellular signal-regulated kinases; MEK, mitogen-activated protein kinase; 

PI3K, phosphatidylinositol 3-kinase; p-AKT, phosphorylated AKT.
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Table 1

α7 nAChR-mediated protection against induced toxicity in culture and in vivo.

Toxic insult Model Cholinergic drug Neuroprotection prevented by References

Amyloid-β Rat cortical cultures Nicotine α-BTX, MLA [47, 48, 51, 52]

Rat cortical cultures DMXB --- [47]

SH-SY5Y cell line Galantamine α-BTX, MLA [59, 60, 148]

PC12 cell line TC-1698 --- [62]

Glutamate Rat cortical cultures Nicotine α-BTX, MLA [48, 49, 51, 55]

Rat spinal cultures Nicotine α-BTX [53]

Rat cortical cultures Galantamine --- [48]

Rat cortical cultures Donepezil MLA [46, 57]

NMDA Rat hippocampal cultures Nicotine α-BTX, MLA [56]

Mouse cortical cultures Nicotine Dominant negative α7 knockin [70]

Growth factor deprivation PC12 cell line Nicotine MLA [54]

PC12 cell line DMXB MLA [64]

PC12 cell line Pyrrolidinecholine MLA [58]

Ethanol Rat hippocampal cultures DMXB MLA [65, 66]

Mouse cortical cultures --- α7 knockout [72]

Oxygen-glucose deprivation Mouse hippocampal slices Nicotine α7 knockout [69] [68]

Okadaic acid SH-SY5Y cell line PNU-282987 PNU-120596 [63]

Oxidative stress SH-SY5Y cell line PNU-282987 MLA [61]

Amyloid-β Mouse in vivo --- α7 knockout [73]

Ischemia Mouse in vivo Neostigmine + anisodamine α7 knockout [71]

Septohippocampal axotomy Mouse in vivo 4OH-GTS-21 --- [130]

Not done (---)
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Table 2

α7 and β2* nAChR-mediated protection against nigrostriatal toxicity in vivo

nAChR subtype Model system Neuroprotection induced by 
nAChR agonist

Neuroprotection prevented by 
nAChR antagonist

References

β2* 6-OHDA lesioned rat ABT-089 --- [91]

Methamphetamine-treated α4 
knockout mice

Nicotine --- [81]

α7 MPTP-treated mouse Nicotine Methylycaconitine [99, 136]

MPTP-treated mouse PNU-282987 --- [98]

6-OHDA lesioned rat DMXB Methylycaconitine [95, 96]

6-OHDA lesioned rat ABT-107 --- [95]
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