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Abstract

Analysis of vocal expression is a critical endeavor for psychological and clinical sciences, and is 

an increasingly popular application for computer-human interfaces. Despite this, and advances in 

the efficiency, affordability and sophistication of vocal analytic technologies, there is considerable 

variability across studies regarding what aspects of vocal expression are studied. Vocal signals can 

be quantified in a myriad of ways and its underlying structure, at least with respect to 

“macroscopic” measures from extended speech, is presently unclear. To address this issue, we 

evaluated psychometric properties, notably structural and construct validity, of a systematically-

defined set of global vocal features. Our analytic strategy focused on: a) identifying redundant 

variables among this set, b) employing Principal Components Analysis (PCA) to identify non-

overlapping domains of vocal expression, c) examining the degree to which vocal variables 

modulate as a function of changes in speech task, and d) evaluating the relationship between vocal 

variables and cognitive (i.e., verbal fluency) and clinical (i.e., depression, anxiety, hostility) 

variables. Spontaneous speech samples from 11 independent studies of young adults (> 60 seconds 

in length), employing one of three different speaking tasks, were examined (N = 1350). 

Confounding variables (i.e., sex, ethnicity) were statistically controlled for. The PCA identified six 

distinct domains of vocal expression. Collectively, vocal expression (defined in terms of these 

domains) modulated as a function of speech task and was related to cognitive and clinical 

variables. These findings provide empirically-grounded implications for the study of vocal 

expression in psychological and clinical sciences.
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Our “perturbation” measures are conceptually similar to the measures of jitter and shimmer that are reported in the extant 
communication sciences literature in that they reflect variability on a temporally brief scale. For automation purposes, our measure 
was based on consecutive frames (10 ms.) as opposed to a “cycle” to “cycle” basis. In this regard, our measure is meant to reflect 
subtle perturbation/variability in signal as opposed to jitter and shimmer more generally.
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Vocal communication is a foundational tool for exchanging both explicit and implicit 

information between people, and is an important indicator of trait-related individual 

differences (Roy, Bless, & Heisey, 2000) and emotional and cognitive states (Cohen, Dinzeo, 

Donovan, Brown, & Morrison, 2014; Giddens, Barron, Clark, & Warde, 2010; Sobin & 

Alpert, 1999). Moreover, vocal communication is affected in a broad array of mental 

illnesses, such as schizophrenia (Cohen, Alpert, Nienow, Dinzeo, & Docherty, 2008), 

depression (Cannizzaro, Harel, Reilly, Chappell, & Snyder, 2004) and anxiety (Cohen, Kim, 

& Najolia, 2013; Laukka et al., 2008). For these reasons, vocal communication is important 

for both clinical and psychological sciences. Regarding the assessment of vocal 

communication, objective technologies that employ computerized acoustic analysis of 

digitized speech samples have existed for decades. The use of these technologies is a boom 

for many reasons, not the least of which involves near perfect “inter-rater” reliability 

(assuming similar analytic procedures), and high test-retest reliability (assuming similar 

recording conditions and speaking tasks) in healthy (Shriberg et al., 2010) and 

communication-disordered populations (Kim, Kent, & Weismer, 2011). Vocal analytic 

technologies are also important for computer-human interfaces – notably involving self-

automation, emotion-assessment applications and telemedicine software (Cohen & Elvevag, 

2014; Esposito & Esposito, 2012; Krajewski, Batliner, & Golz, 2009). At present, there is a 

lack of consensus regarding the optimal measures of vocal expression for psychological and 

clinical sciences. We sought to redress this issue by evaluating psychometric properties of 

key measures extracted from a large database of spontaneous speech procured from young 

adults.

Although a large literature on vocal expression exists, establishing a consensus on which 

measures to employ is quite difficult. In part, this reflects complexity in how vocal 

expression is conceptualized more generally. Consider that aspects of vocal expression vary 

considerably as a function of a wide range of contextual and individual difference variables, 

including: sex (Scherer, 2003), affective (Sobin & Alpert, 1999; Tolkmitt & Scherer, 1986; 
Batliner, Steidl, Hacker, & Nöth, 2008), arousal (Cohen, Hong, & Guevara, 2010; Johnstone 

et al., 2007), social (Nadig, Lee, Singh, Bosshart, & Ozonoff, 2010), speaking task (Scherer, 

2003; Huttunen, Keranen, Vayrynen, Paakkonen, & Leino, 2011) and cognitive (Cohen, 

Dinzeo, et al., 2014) factors. Thus, the importance of an isolated speech measure may be 

relegated to specific contexts or groups of individuals. In effect, there is no isomorphic 

measure of vocal expressivity.

Even the structure of vocal measures is complicated and likely varies depending on whether 

“microscopic” or “macroscopic” aspects of speech are examined. Acoustic analysis is a 

technology that generally focuses on “micro” or brief vocal samples (e.g., utterances), in 

part, because it provides “high resolution” information about the physical processes involved 

in communication (Kent & Kim, 2003; Shriberg, et al., 2010). Theoretical-based structural 

models of vocal expression at this “micro” level of analysis exist and generally focus on the 
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physical functions involved in speaking and on physical anomalies that occur as part of 

communication disorders (Kent & Kim, 2003). Conceptually driven taxonomies of 

emotional expression – for example, based on changes during relatively brief speaking 

epochs, have also been developed (Banse & Scherer, 1996; Scherer, 1986; Sobin & Alpert, 

1999). A complimentary, but different approach to understanding speech focuses on 

“macroscopic” features of vocal communication involving extended speech samples 

(generally > 30 seconds). This approach yields aggregate statistics characterizing how 

speech is produced and about absolute values and signal variability across entire speech 

samples. While the aforementioned “micro” approaches can provide much more nuanced 

information about the signal, the latter approach is indispensable for capturing more stable 

phenomenon, particularly those requiring extended sampling. For example, there is evidence 

to suggest that pause behavior may become longer and more erratic as a function of “on-

line” cognitive abilities being unavailable or restricted in some manner (Cohen, Dinzeo, et 

al., 2014). Hence, increased pause length may be a useful index of cognitive resource 

depletion due to fatigue (e.g., in airplane pilots; Huttunen, et al., 2011) or cognitive deficits 

more generally (e.g., in psychiatric or neurological disorders; Cohen & Elvevag, 2014; 

Cohen, McGovern, Dinzeo, & Covington, 2014). Given the dynamic nature of pause 

behavior, analysis of brief vocal samplings is inadequate for approximating an individual’s 

cognitive abilities. From a pragmatic perspective, “macro” analytic approaches are typically 

automated in a way that “microscopic” approaches aren’t, as they focus on vocal features 

that are less influenced by individual outliers (and hence, don’t typically require manual data 

inspection). For these reasons, automated “macroscopic” methods are important for a broad 

range of psychological and clinical applications, and are the focus of this study.

It is worth providing a brief primer on acoustic analysis for readers with limited familiarity 

on this topic. “Macroscopic” speech indices typically focus on four different physical 

properties or signals (Alpert, Merewether, Homel, & Marz, 1986; Cohen, et al., 2010; 
Cohen, Minor, Najolia, & Lee Hong, 2009), a) the fundamental frequency (i.e., F0) – the 

lowest frequency originating from the vocal folds that defines the subjectively-defined vocal 

“pitch”, b) the first formant frequency (F1) – important for vowel expression that is shaped 

by vertical tongue articulation, c) the second formant frequency (F2) – also important for 

vowel expression that is shaped by horizontal and back and forth tongue articulation, and d) 

intensity (i.e., volume). In terms of characterizing these variables, various measures of 

speech production – defined as the absence of signal (e.g., average pause length), the 

presence of signal (e.g., average utterance length), variability of the signal (e.g., standard 

deviation of pause or utterance length) and number of discrete signal events (e.g., number of 

pauses) can be computed. Similarly, a seemingly infinite number of measures regarding the 

signals can be computed (e.g., mean, standard deviation, range) for the F0, F1, F2 and 

intensity values. Moreover, variability statistics can be computed across different epochs, 

such that variability can be examined on small time scales (e.g., signal perturbation; change 

on the order of assessment “frames”; 10-50 milliseconds), within utterances (e.g., 

consecutive voiced frames; typically 250 – 1500 ms) or across key sections of the speech 

sample, or in its entirety.

It should be clear that a massive number of acoustic variables can be computed from speech. 

This is an issue in evaluating findings across literatures where inconsistency in variables is 
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likely the rule rather than the exception. Consider a recent meta-analysis of published studies 

evaluating vocal deficits in patients with schizophrenia versus nonpsychiatric controls 

(Cohen, Mitchell, & Elvevag, 2014). Across 13 studies appropriate for review, a total of 10 

different variables were reported. These variables appeared an average of 2.5 times across 

the thirteen studies, and each individual study reported an average of only 1.92 variables. 

Even more importantly, there were dramatic differences in effect sizes reported across 

variables, even among those that were conceptually related, suggesting that some but not all 

variables are important for understanding this disorder.

Recent efforts employing sophisticated data reduction strategies have been conducted 

focusing on “macroscopic” level speech data. Of particular note, Batliner (2011) employed 

feature vector analysis of 4,000 speech (acoustic and linguistic) features from a large corpus 

of speech samples from child-robotic interactions to derive a more modest set of variables 

(e.g., duration of speech, intensity, pitch, formant spectrum, voice quality). Other similar 

efforts, employing a range of statistical strategies, have been conducted (e.g., Schuller, 

Seppi, Batliner, Maier & Steidl, 2007a; Vogt and Andre, 2005), and ongoing exchanges have 

been established to aid in organizing analytic approaches (e.g., Eyben, Weninger, Groß,, 

Schuller, 2013; Schuller, Batliner, Seppi, Steidl, Vogt, & Amir, 2007b; Schuller, Steidl, 

Batliner, Vinciarelli, Scherer, Ringeval, & Kim, 2013). While providing critical insight for 

the application of acoustic technologies, information regarding the psychometrics of these 

variables, notably in terms of the incremental validity of individual variables, internal 

consistency and factor structure, is not explicitly clear. Moreover, most prior studies focus 

on predictive power of acoustic variables in classifying emotional states – an important 

endeavor in that emotional expression is closely tied to vocal expression. However, vocal 

expression is a function of a wide range of contextual, cognitive and clinical variables as 

well, and exploring how vocal expression is tied to these variables is a critical compliment to 

understanding their validity.

In the present study, we sought to evaluate the psychometric properties of global acoustic 

features of spontaneous speech as a function of speech task (i.e., tapping different cognitive 

and contextual functions) and clinical (i.e., hostility, depression, anxiety) and 

neuropsychological (i.e., verbal fluency) variables. We focused on global vocal signals, 

involving F0, F1, F2 and intensity, and vocal production variables, using a systematically-

defined and limited set of variables. Our selection process is elaborated on in the methods 

section. It is noteworthy that the number of variables examined is not necessarily important 

(Batliner, Steidl, Schuller, Seppi, Laskowski, & Aharonson (2006); performance of a 

classification system using 32 vocal features was similar to that using 1000 features. Our 

focus on a limited set of features facilitated a more qualitative evaluation of the potential 

overlap, independence and redundancy of variables than could be achieved in studies 

analyzing large variable sets (e.g., by reporting zero-order correlation matrices). We 

subjected non-redundant vocal variables to Principal Components Analysis (PCA) for data 

reduction purposes. PCA was used because it is a relatively straightforward and interpretable 

analytic strategy that has been employed in studies of brief vocal utterances (Slavin & 

Ferrand, 1995; Yamashita et al., 2013). The resulting factors were subjected to validity 

analysis – examining a) the degree to which the factor scores changed as a function of 

different speaking tasks, b) their relative associations to a clinical neuropsychological test of 
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speech production (i.e., semantic verbal fluency test), and c) their associations with 

measures of clinical symptomatology (i.e., depression, anxiety and hostility).

Method

Participants

Data were aggregated from 11 separate studies conducted at large public universities. As 

part of these studies, participants were asked to provide spontaneous speech samples. 

Descriptive statistics and study data are provided in Table 1. In total, data were available for 

1350 undergraduate students who reported English was their primary language. 

Approximately two-thirds of this sample was female (i.e., 65.58%) and three-quarters was 

Caucasian (i.e., 78.65%). Each of the studies was approved by the appropriate Institutional 

Review Boards and all subjects provided written informed consent prior to beginning the 

study.

Speaking Tasks

Across studies, participants were asked to produce speech as one of three different tasks that 

varied in topical scope, involving: 1) “Superficial” – discussing daily routines, hobbies 

and/or living situations, 2) “Restricted” – discussing experiences and reactions to neutral 

images from the International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 

2005) (e.g., door, lamp), and 3) “Introspective” – discussing autobiographical memories that 

were neutral in tone (e.g., life events or changes that were not inherently pleasant or 

unpleasant). For all tasks, instructions and stimuli presentation (e.g., IAPS slides) were 

automated on a computer and participants were encouraged to speak as much as possible. 

Research assistants read all instructions to the participants, but were not allowed to speak 

while the participant was being recorded. Additional information regarding the tasks is 

provided in Table 1. We expected systematic differences in vocal expression across the three 

tasks. Based on prior research from our lab using these tasks (Cohen, et al., 2010) and from 

the extant literature more generally (Scherer, 2003; Huttunen, et al., 2011), we reasoned that 

the Restricted task was a particularly challenging task, at least cognitively, in that 

participants were asked to produce speech that was restricted in topic and in response to 

stimuli that was artificial in nature. Thus, we expected that vocal production and signal (e.g., 

F0) variability within speech would be shortest/lowest for this task. Conversely, the 

Superficial and Introspective tasks involved content that was general and more automatic 

(i.e., content that is relatively easy to retrieve from autobiographical stores) in nature, so we 

expected vocal production and signal for these tasks to be greater/higher than for the 

Restricted task.

Acoustic Analysis of Speech

The Computerized Assessment of Natural Speech protocol (CANS), developed by our lab to 

assess vocal expression from spontaneous speech, was employed here. Speech was digitally 

recorded at 16 bits per second at a sampling frequency of 44,100 Hertz using headset 

microphones. The CANS protocol takes advantage of Praat software (Boersma & Weenink, 

2013), a shareware program that has been used extensively in speech pathology and 

linguistic studies, as well as Macros developed by our lab. Sound files are organized into 
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“frames” for analysis, which for the present study was set at a rate of 100 per second. During 

each frame, F0, F1, F2 and intensity is quantified. Based on prior research examining 

optimization filters for measuring fundamental frequency in automated research (Vogel, 

Maruff, Snyder, & Mundt, 2009), we applied a low (i.e., 75 Hertz) and high (i.e., 300 Hertz)-

pass filter. All frequency values were converted to semi-tones due to their non-linear nature. 

As noted in the introduction, there are a near limitless number of acoustic variables that can 

be computed. We employed a systematic approach to defining our acoustic variables. This 

approach to characterizing vocal signals was informed by work from studies of clinical 

populations both from our lab (Cohen, et al., 2008; Cohen, et al., 2010; Cohen, et al., 2009; 
Cohen, Morrison, Brown, & Minor, 2012) and others (e.g., Cannizzaro, et al., 2004; Alpert 

1986; Laukka, et al., 2008), and is utilized in communication sciences more generally (e.g., 
Johnstone, et al., 2007; Tolkmitt & Scherer, 1986). Furthermore, this approach is consistent 

with the larger theoretical speech prosody literature (Huttunen, et al., 2011; Scherer, 2003; 
Sobin & Alpert, 1999), and provides a straightforward conceptual framework for 

understanding signal properties. It is not, by any means, exhaustive (see discussion section 

for potential limitations).

For each of the F0, F1, F2 and intensity signals, we computed mean and variability values. 

Variability was defined at three different temporal levels, in terms of 1) “frame” (i.e., 

“Perturbation”) - signal change in consecutive frames [Insert link to footnote 1 here]), 2) 

“local” - variability within utterances, and 3) “global” variability across utterances (i.e., 

across the speech sample). Local and global variability was defined in terms of two 

commonly-used computations: involving standard deviation and range scores (i.e., average 

difference between the highest and lowest values within utterances.). Additionally, speech 

production was examined in terms of the presence (i.e., utterance) or absence (i.e., pause) of 

signal – what we collectively refer to as speech production. “Utterances” were defined as an 

epoch of F0 signal greater than 150 milliseconds in length with no contiguous pause greater 

than 50 milliseconds, whereas “Pauses” were defined in terms of 50 milliseconds of signal 

absence. Both mean and standard deviation values were computed for these variables. An 

additional summary variable of speech production (i.e., percent silence), was included in this 

study. These variables are listed in Table 2.

Verbal Fluency

Measures of verbal fluency were included in three of the studies examined and were 

included here to evaluate the convergent validity of our speech production measures. For two 

of these studies, semantic fluency tests (i.e., fruits and vegetables) from the Repeatable 

Battery for the Assessment of Neuropsychological Status (Randolph, 1998) were 

administered. For the third study, a different semantic fluency (e.g., animal naming) test was 

used (Green et al., 2004). Data for other types of verbal fluency (e.g., phonological fluency) 

and other speaking tasks more generally (e.g., repetition tests) were not collected as part of 

these studies, and hence were not available for analysis here. Scores were standardized by 

study to account for potential differences in raw scores across tests. Based on evidence that 

speech rate has been significantly associated with increased verbal fluency in children and 

adolescents (Martins, Vieira, Loureiro, Santos, 2007), we predicted that greater verbal 

fluency ability would be associated with shorter pauses in speech. Note that empirical 
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support for this notion is not overwhelming, particularly in that Martins, Vieira et al., (2007) 

reported that verbal fluency was not associated with number of extended pauses (> 4000 

ms).

Mental Health Symptoms

Clinical symptoms were measured using the Brief Symptom Inventory (BSI; Derogatis & 

Melisaratos, 1983), which measures a broad range of psychopathology during the past seven 

days. We were particularly interested in depression (i.e., “feeling no interest in things”), 

anxiety (i.e., “feeling tense or keyed up”) and hostility (i.e., “having urges to break or smash 

things”) from this instrument, as these symptoms and emotional conditions have been 

related to vocal expression in other studies. Specifically, we predicted that both depression 

and anxiety would be associated with less speech production and speech variability 

(Cannizzaro, et al., 2004; Cohen, Kim, & Najolia, 2013); that anxiety would also be 

associated with greater F0 perturbation variability (Laukka et al., 2008); and that hostility 

would be associated with greater signal variability (Sobin & Alpert, 1999). The BSI has 

well-documented psychometric properties and has been used in hundreds of published, peer-

reviewed studies to date.

Analyses

Analyses were conducted in five steps. First, we evaluated demographic (i.e., sex, ethnicity) 

variables in their relationship to each of the 28 vocal variables in order to evaluate their 

potential impact on consequent analyses. Non-Caucasian groups were collapsed into a single 

group due to their relatively small sample sizes. Second, we computed a zero-order 

correlation matrix between the 28 vocal variables to identify redundancies (defined as r 
values > .85) that could be excluded from further analyses. Third, the remaining variables 

were subjected to Principal Component Analysis (PCA) to further reduce the number of 

items. Because our data were potentially inter-correlated, oblique rotations (i.e., Promax) 

were used. Variables with notable cross-loading (weights > .40 on multiple factors) or 

without loading (weights < .40 on any factor) were excluded from the final PCA solution – 

though were examined in subsequent analyses. We reran the PCA in men and women and in 

Caucasians and non-Caucasians to ensure that the structure was not grossly invariant across 

sex and ethnicity groups. Fourth, we evaluated the degree to which vocal variables changed 

as a function of speaking task using both ANOVAs and Logistic Regression. For the latter 

analyses, the speaking task was entered as a dichotomous dependent variable (i.e., 

Superficial versus Restricted, and Introspective versus Restricted) in two separate 

regressions, and PCA factors identified above were entered in a first (and single) step. In a 

second step, we entered the non-redundant vocal variables excluded from the final PCA 

solution. This second step allowed for the evaluation of whether the excluded vocal variables 

contribute meaningful variance to speaking task above that made by the factor scores. 

Pseudo-R values (i.e., Cox & Snell) were used to evaluate the relative contributions of each 

step. Finally, we employed hierarchical regressions to determine the relative contributions 

that vocal factors (step 1) and excluded vocal items (step 2) made to cognitive (i.e., verbal 

fluency) and clinical (i.e., depression, anxiety, hostility) variables. For normalization 

purposes, all “extreme scores” (i.e., <> 3.5 standard deviations (SD) from the mean) were 

converted to values of 3.5, and all variables were normalized (i.e., skew statistic < 2.0) prior 
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to being included in the PCA. Because of the large sample size (and hence, high degree of 

statistical power), effect sizes are reported and evaluated when appropriate. For the fourth 

and fifth steps, vocal variables were transformed to statistically control for sex and ethnicity 

(using standardized residuals computed from linear regressions). Unless otherwise noted, all 

variables are normally distributed.

Results

Demographic Variables

Of the 28 variables examined, six were statistically different between men and women – 

though only four of these differences exceeded a small effect size (d > .20). Women versus 

men had higher mean F0, F1 and F2 values (d’s > .50), less F0 perturbation (d = .42) and 

longer and more variable utterances (d’s < .20) (all p’s < .05).

Caucasians versus non-Caucasians were statistically different on 17 of the 28 variables, 

though none of the consequent group differences exceeded a small effect size. Caucasians 

showed less variability in virtually all F0, F1, F2 and intensity variables (p’s < .05). Sex and 

ethnicity were considered potential confounds for this study.

Redundancy Analysis

Across the F0, F1, F2 and intensity variables, the Range Local variables were redundant 

with the relevant SD Local scores and were excluded from the PCA as they were judged to 

be less stable indicators of variability compared to the SD scores (e.g., computed based on 

two versus all data points in an utterance). Pause and Utterance SD scores were also 

redundant with their relevant Mean scores, and the Intensity Range Global score was 

redundant with the Intensity SD Global. These scores were also excluded from the PCA. 

The non-redundant correlation values were included in a zero-order matrix (see Table 3).

Factor Structure

An initial PCA was conducted with 21 variables; yielding 6 factors with Eigen values 

greater than 1 explaining 71% of the variance. Inspection of the Pattern Matrices yielded six 

cross-loaded (i.e., multiple beta-weights > .40) or non-fitting items (i.e., all beta-weights < .

40) (i.e., Silence Percent, F0, F1, F2, and Intensity Mean and Utterance M), for which 

removal yielded a better fit. This yielded a six-factor solution explaining 78.55% of the 

variance. Separate PCA computed on men versus women (e.g., six factors explaining 

77.78% and 76.26% of the variance respectively), Caucasians and Non-Caucasians (e.g., six 

factors explaining 78.77% and 77.15% of the variance respectively) revealed identical 

structures, suggesting that the factor structure is invariant across sex and ethnicity. These 

data are included in Table 4. The component correlation matrix suggested that the factors 

were relatively independent, with only two of 21 possible correlations exceeding a value of .

20 (r = .31, F1 & F2 Variability; r = .29, F0 & F2 Variability).

Vocal Variables Across Speaking Tasks

Each of the PCA-based vocal domain scores was significantly different between the 

Restricted versus Superficial and Introspective speaking tasks (see Figure 1). The effect sizes 
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for the Pause, F1, F2 and Intensity variables were in the large range (d’s > 1.56), whereas 

those for the F0 and Perturbation were more modest (d’s > .39). Logistic regressions are 

presented in Table 5. The Chi-square values for all steps were significant, though inspection 

of the pseudo R square values suggests that the six PCA domains explained the lion’s share 

of the variance. As a function of Restricted topical conditions, Pauses got shorter and F1 and 

Intensity Variability decreased. F2 and F0 Variability also decreased as compared to the 

Introspective and Superficial speech respectively. In the second step, F1 Mean decreased 

during the Restricted condition for both regressions. Compared to the Introspective speech 

conditions, Utterance Means got longer, and Intensity increased.

Clinical & Verbal Fluency Correlates of Vocal Variables

Table six contains the results of the hierarchical regressions. The PCA–based domains made 

significant contributions to the variance in verbal fluency, depression and hostility, whereas 

the contributions of the additional vocal scores were only significant for the hostility 

measure. Inspection of the beta weights revealed that increased pauses were associated with 

better verbal fluency performance, that increased vocal perturbation was associated with 

more severe depressive symptoms, and that no specific vocal factor was associated with 

hostility – though perturbation increased at a trend level as a function of increased hostility. 

With respect to the additional variables, higher F1 Mean scores were associated with more 

hostility. In sum, the PCA-based factors explained a modest but meaningful amount of 

variance in clinical and cognitive variables.

Discussion

Computerized measures of spontaneous speech are improving in sophistication and their 

presence in psychological and clinical science is increasing. Despite this, studies of their 

psychometric properties, notably in terms of incremental and structural validity, have been 

lacking. In a large corpus of speech samples from young adults, we evaluated 28 

systematically-defined variables that have been used in the literature. Through redundancy 

analysis and PCA, we identified six broad domains tapping distinct aspects of vocal 

expression. These domains were robust across both sex and ethnicity. Validity analysis 

suggested that each of these variables were important in some fashion, either because they 

changed as a function of contextual factors (i.e., speech topic) or via their significant 

association with verbal fluency or clinical symptom measures. Going forward, our 

recommendation is that future studies of “macroscopic”-levels of vocal expression include 

measures of each major vocal signal, notably F0, F1, F2 and intensity as well as the lack of 

signal (i.e., pauses).

With one notable exception (i.e., Perturbation; see below), specific measures of variability 

within a single signal provided little incremental validity over other signal-matched 

measures. Measures of signal variability based on range scores were generally redundant 

with those computed using standard deviation scores. Moreover, measures focused on local 

versus global features were highly correlated as well, and in the case of the F0 and intensity 

signals, were almost redundant. Conceptually speaking, local and global measures tap 

different phenomenon, as, for example, an individual may show considerable variability 
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within utterances with high levels of consistency across utterances. Nonetheless, the present 

findings suggest that, at least in studies of extended spontaneous speech, “macroscopic” 

measures of signal variability need not be separately reported or evaluated. Given the 

importance of F0 and intensity variability in clinical and psychological studies (e.g., 
Cannizzaro, et al., 2004; Cohen, et al., 2013; Laukka, et al., 2008), further research 

confirming their potential redundancy is warranted.

The exception to the aforementioned redundancy between variability measures involved 

Signal Perturbation – a measure of signal variability occurring at the “frame” level. 

Generally, measures of F0 and Intensity perturbation were not highly correlated with their 

respective local and global variability measures, and perturbation measures emerged as a 

distinct factor in the PCA. Moreover, the perturbation factor was associated with clinical 

measures in a relatively unique way. Of note, increasing signal perturbation was associated 

with both depression (significantly) and hostility (at a trend level). Interestingly, F0 

perturbation has been associated with anxiety, or the so-called “jittery” voice (Fuller, Horii, 

& Conner, 1992). The reason for our null findings in this regard are not clear. Significant 

correlations notwithstanding, several factors likely attenuated the magnitude of these 

relationships. First, insofar as the samples examined here were not clinical in nature, 

depression, anxiety and hostility levels were likely restricted in range. Second, our measure 

of clinical symptoms were based on self-report, an important, but relatively circumscribed 

domain of assessment. It is likely that depression, anxiety and hostility ratings derived from 

clinical interviews would yield more comprehensive estimates of symptom severity. Finally, 

the clinical measure tapped symptoms from a one week epoch, so clinical scores did not 

necessarily reflect symptomatology at the time of the vocal assessment.

Additional redundancies were observed between the mean and variability values for both 

Pause and utterance length. Similarly, Silence Percent was considered redundant (or at least, 

superfluous) in that it was correlated with a number of speech production and variability 

measures, and its inclusion in the PCA complicated the structure (i.e., contributing to dual 

loadings). Interestingly, Silence Percent, was not related to speaking task and cognitive or 

clinical correlates above and beyond the PCA factors, suggesting that this variable provides 

little incremental validity beyond other vocal measures.

The degree to which mean values of F0, F1, F2 and intensity signals are informative above 

and beyond vocal variability and pause measures is a bit unclear. There were some isolated 

significant findings, such that F1, Intensity and Utterance Means changed as a function of 

speech topics. Collectively however, the mean values explained very little variance above 

and beyond the vocal factors identified in the PCA. F0 values tended to be higher in people 

with greater self-reported hostility. Generally speaking, F0 and Intensity mean values are 

associated with emotional and clinical states in many studies of vocal expression (Batliner et 

al., 2008; Batliner et al., 2006; Cannizzaro, et al., 2004; Cohen, et al., 2010; Cohen, et al., 

2013; Johnstone, et al., 2007; Laukka, et al., 2008; Sobin & Alpert, 1999; Tolkmitt & 

Scherer, 1986), so it is a bit surprising that these measures weren’t more highly associated in 

this study. Many prior studies have not controlled for sex and ethnicity in the same manner 

we did, and it is the case that Mean F0 values are generally much higher in women. It is also 

the case that many prior studies employed a “microscopic” level of analysis or did not 
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examine spontaneous speech. In this manner, concerns can be raised that the relationship 

between these variables is confounded by demographic variables or is attenuated in speech, 

particularly involving extended speech samples.

Several limitations warrant mention. First, the sample was relatively homogeneous with 

respect to age, ethnicity and education. Given that culture, age, and education can affect 

speech, it would be important to replicate the present findings in a more diverse sample. 

Second, our measures of convergent validity were by no means comprehensive. That is, our 

use of three different speech tasks does not begin to approximate the variety of contextual 

and speech factors that potentially influence speech outside the laboratory setting. Third, all 

of the speech samples examined in this study were conducted as part of a laboratory study 

with limited opportunities for interaction with the research assistant. It would be important 

to evaluate the psychometric properties of spontaneous speech under more ecologically valid 

conditions. Finally, the acoustic measures examined in this study were by no means 

exhaustive, and it is possible that the factor structure and clinical correlates would differ if 

other measures were used. The variables examined here covered the major conceptual 

components of vocal analysis discussed in the literature (i.e., five signals across varying 

temporal levels) – though it remains an empirical question as to whether variables computed 

using other means may show different results.

The human voice offers an important window into the state of many psychological 

operations of an individual. Insofar as vocal samples can be easily obtained and their 

analysis can be automated, application of vocal analysis, particularly involving spontaneous 

speech has a near unlimited potential. A major obstacle in implementing vocal technologies 

involves analyzing and interpreting vocal signal – that is, which of the many variables that 

can be extracted from vocal signal should be used? The present data suggest that a limited 

number of domains are important for vocal analysis of extended speech samples, and offers 

an importantly empirically-derived structure for future research and technological 

applications.
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Figure 1. 
Standardized differences in vocal domains as a function of speaking task
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Table 2
Vocal variables examined in this study

Variable Description Variable Description

Pause Variables

Silence Percent Percentage of time
without F0 signal

Pause Number Total number of pauses

Pause SD Standard deviation
of pause length
excluding the first
and last pauses.

Pause Mean Average pause length in
milliseconds (ms), excluding
the first and last pauses.

Utterance Variables

Utterance mean Average utterance
length in
milliseconds (ms)

Utterance.SD Standard Deviation of
utterance length in
milliseconds (ms)

Fundamental Frequency (F0) Variables

F0 Mean M computed within
each utterance and
averaged across all
utterances

F0 SD Local Average of SDs computed
within each utterance.

F0 SD Global SD of SDs
computed within
each utterance.

F0 Range Local Average of range scores
computed within each
utterance.

F0 Range Global SD of range scores
computed within
each utterance.

F0 Perturbation Absolute value of average
change in consecutively
voiced frames within
utterance

First Formant (F1) Variables

F1.Mean M computed within
each utterance and
averaged across all
utterances

F1 SD Local Average of SDs computed
within each utterance.

F1 SD Global SD of SDs
computed within
each utterance.

F1 Range Local Average of range scores
computed within each
utterance.

F1 Range Global SD of range scores
computed within
each utterance.

Second Formant (F2) Variables

F2 Mean M computed within
each utterance and
averaged across all
utterances

F2 SD Local Average of SDs computed
within each utterance.

F2 SD Global SD of SDs
computed within
each utterance.

F2 Range Local Average of range scores
computed within each
utterance.

F2 Range Global SD of range scores
computed within
each utterance.

Intensity Variables

Intensity Mean M computed within
each utterance and
averaged across all
utterances

Intensity SD
Local

Average of SDs computed
within each utterance.

Intensity SD Global SD of SDs
computed within

Intensity Range
Local

Average of range scores
computed within each
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Variable Description Variable Description

each utterance. utterance.

Intensity Range
Global

SD of range scores
computed within
each utterance.

Intensity
Perturbation

Absolute value of average
change in consecutively voiced
frames within utterance,

Note – M = mean; SD = standard deviation; Range = Maximum – Minimum
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Table 5
Logistic Regressions evaluating the relative contributions of vocal domains (identified 
from the PCA) and additional vocal variables (excluded from the PCA) to speaking task

DV = Introspective v Restricted
Task

DV = Superficial v. Restricted Task

B (BSE) Wald Exp(B) B (BSE) Wald Exp(B)

Step 1. Vocal Factors χ2 = 387.83*; ΔR2 = .58 χ2 = 461.99*; ΔR2 = .37

 Pause 2.11 (0.32) 44.30* 8.24 1.27 (0.18) 49.75* 3.55

 F0 Variability 0.98 (0.32) 9.33* 2.65 −0.16 (0.20) 0.61 0.85

 F1 Variability 0.65 (0.34) 3.59 1.92 0.78 (0.21) 14.16* 2.18

 F2 Variability 0.63 (0.34) 3.38 1.88 1.06 (0.21) 25.60* 2.90

 Intensity Variability 0.87 (0.38) 5.13* 2.38 0.72 (0.22) 11.10* 2.06

 Perturbation 0.02 (0.26) 0.00 1.02 −0.23 (0.18) 1.66 0.80

Step 2. Additional
Vocal Variables χ2 = 31.32*; ΔR2 = .03 χ2 = 86.25*; ΔR2 = .06

 Silence Percent 1.31 (0.60) 4.80 3.71 −0.16 (0.45) 0.13 0.85

 Utterance Mean 0.71 (0.43) 2.77 2.04 −0.80 (0.36) 4.79* 0.45

 F0 Mean −0.95 (0.59) 2.62 0.39 −0.05 (0.30) 0.03 0.95

 F1 Mean 1.59 (0.44) 13.28 4.92 1.51 (0.29) 27.82* 4.54

 F2 Mean −0.23 (0.40) 0.34 0.79 −0.17 (0.28) 0.36 0.84

 Intensity Mean 0.07 (0.33) 0.04 1.07 −0.61 (0.25) 6.13* 0.54

Note - ΔR2 = Cox and Snell pseudo R-squared

*
= p < .05
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