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ABSTRACT In prostate cancer, reactive oxygen species (ROS) are elevated and Ca2þ signaling is impaired. Thus, several
novel therapeutic strategies have been developed to target altered ROS and Ca2þ signaling pathways in prostate cancer.
Here, we investigate alterations of intracellular Ca2þ and inhibition of cell viability caused by ROS in primary human prostate
epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and
DU145 H2O2 induces an initial Ca2þ increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon
depletion of intracellular Ca2þ stores, store-operated Ca2þ entry (SOCE) is activated. SOCE channels can be formed by hex-
americ Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1
(Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In pros-
tate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs,
LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong corre-
lation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept
that store-operated Ca2þ channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased
Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca2þ signaling in prostate
cancer cells may contribute to the higher sensitivity of these cells to ROS.
INTRODUCTION
Numerous studies have demonstrated a contribution of reac-
tive oxygen species (ROS) to the development of cancer
hallmarks. In prostate cancer, ROS levels are elevated and
contribute to altered DNA and protein structures, enhanced
epithelial cell proliferation, and neoplasia (1–5). Remark-
ably, even though ROS production in cancer cells is elevated,
cancer cells (including prostate cancer cells) are more sensi-
tive to oxidative stress than nonmalignant cells—a phenom-
enon that is utilized in the development of novel anticancer
drugs (6,7). ROS-inducing substances and ROS scavengers
have been investigated as therapeutics; however, the
outcome and benefit of such strategies remain largely un-
clear (8). Therefore, a better understanding of the underlying
mechanisms and key players in redox-regulated signaling
pathways is required for future therapeutic approaches.

There are multiple links between ROS and the universal
second messenger Ca2þ (9–11). In prostate cancer cells,
ROS-induced signaling is well known to include elevated
Ca2þ. In PC3 prostate cancer cells, ROSwas shown to induce
an increase of intracellular Ca2þ levels, which is necessary
for ROS-induced apoptosis (12). In DU145 cells, ROS-acti-
vated cell apoptosis depends on elevated Ca2þ signaling for
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a full response (13). Several Ca2þ transporters, including
transient receptor potential (TRP) channels and inositol
1,4,5-trisphosphate receptors (IP3R), which are activated
and/or regulated by ROS, contribute to ROS-induced Ca2þ

signaling (14–17). The cell-type-specific subset of Ca2þ

transporters and the distinct and spatially complex regulation
of ROS by ROS-producing and -scavenging enzymes ensure
precise ROS-induced Ca2þ signaling patterns (14,18).

The main Ca2þ entry mechanism in nonexcitable cells is
known as store-operated Ca2þ entry (SOCE). Upon Ca2þ

release from internal Ca2þ stores, endoplasmic reticulum
Ca2þ sensor proteins (e.g., stromal interaction molecule 1
(STIM1)) cluster and activate Orai1 Ca2þ channels that
are located in the plasma membrane (19). The SOCE under-
lying current is referred to as Ca2þ release activated Ca2þ

current (ICRAC). Store-operated Orai1 channels have been
described as either tetramers (20–25) or hexamers (26–29)
in the past. Besides Orai1, Orai2 and Orai3 are ubiquitously
expressed and form heteromers with Orai1 (30–33).
Compared with homomeric Orai1 channels, heteromeric
store-operated Orai1/Orai3 channels differ in certain prop-
erties, such as the Ca2þ current amplitude, ion selectivity,
pharmacological profile, and ROS sensitivity (33–36).
A very recent report demonstrated that one Orai3 subunit
within a heteromeric channel complex is sufficient to
completely abrogate the ROS sensitivity of ICRAC (37).
http://dx.doi.org/10.1016/j.bpj.2015.08.006
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The ROS sensitivity of Orai1 has been attributed to the
oxidation of one cysteine (Cys-195). Since Cys-195 is
absent in Orai3, the Orai1/Orai3 expression ratio impacts
the ROS-mediated block of SOCE and cellular viability
upon ROS-mediated stress. In effector T cells, Orai3 is
upregulated, as reflected by a decreased mRNA ratio
(Orai1/Orai3 ratio ~70 in naive TH cells and ~25 in effector
TH cells) (35). Subsequently, the IC50 for the immediate
H2O2-induced block of SOCE is shifted from 7 mM
for naive TH cells to 51 mM for effector TH cells. As a phys-
iological consequence, the lowered Orai1/Orai3 ratio in-
creases the cellular viability upon oxidative stress (IC50 ¼
39 mM H2O2 in naive TH cells, and IC50 ¼ 199 mM H2O2

in effector TH cells) (35). These relatively high levels of
H2O2 seem to be physiologically relevant. Based on our
recent findings (38,39), and taking into account previous
concepts regarding the existence of ROS microdomains
(40–42), it seems very likely that in inflamed tissues the
levels of H2O2 might well exceed 200–300 mM.

Recently, we reported an outstandingly low Orai1/Orai3
mRNA ratio (~4) in primary human prostate epithelial cells
(hPECs) from healthy tissue and a downregulation of Orai3
in prostate cancer cell lines (Orai1/Orai3 ratio ~26 in
lymph node carcinoma of the prostate (LNCaP) and ~17
in DU145) (34).

Here, we sought to determine whether ROS-induced Ca2þ

signaling and SOCE in cells under oxidative stress are
altered in prostate cancer. In addition, we investigated
whether the low Orai1/Orai3 ratio in hPECs is associated
with a low redox sensitivity of SOCE, and whether this
sensitivity might be increased in prostate cancer cells.
MATERIALS AND METHODS

Cell culture

This study was approved by the local ethics review board (approval

No. 168/05, Ärztekammer des Saarlandes) and performed in accordance

with the Declaration of Helsinki. Informed consent was obtained from

all patients. Prostate tissue was obtained from prostectomy specimens,

and hPECs obtained from healthy tissue were isolated and cultured

according to Gmyrek et al. (43) with slight modifications (34). The

prostate cancer lines LNCaP, DU145, and PC3 were purchased from

the American Type Cell Culture Collection (ATCC, Rockville, MD).

Cell lines were cultured with RPMI Medium 1640 (Life Technologies)

supplemented with 10% fetal calf serum and 1% penicillin/streptomycin

(Life Technologies).
Small interfering RNA transfection

Small interfering RNA (siRNA) transfections were performed as described

previously (34). We performed the siRNA transfections with 0.12 nmol of

siRNA using the Nucleofector II Transfection Kit R for hPECs and LNCaP,

the Nucleofactor IV Kit SE for DU145, and the Kit SF for PC3 (all from

Lonza) according to the manufacturer’s instructions. All siRNAs were

obtained from Qiagen or Microsynth and were partially modified according

to Mantei et al. (44). The Orai1 siRNAs were Hs_TMEM142A_1,

#SI03196207 (sense: 50OMeC-OMeG-GCCUGAUCUUUAUCGd (UCU)
OMeU-OMeT-OMeT30; antisense: 30OMeG-OMeC-CGGACUAGAAAUA

GCAGAd (A)50) and Hs_TMEM142A_2, #SI04215316 (sense: 50OMeC-

OMeA-ACAUCGAGGCGGUGA) d(GCA) OMeA-OMeT-OMeT30;
antisense: 30OMeG-OMeT-UGUAGCUCCGCCACUCGUd (U)50). The

Orai3 siRNAs were Hs_TMEM142C_2, #SI04174191 (sense: 50OMeC-

OMeA-CCAGUGGCUACCUCCd(CUU) OMeA-OMeTOMeT30; antisense:
30OMeG-OMeT-GGUCACCGAUGGAGGGAAd(U)50) and Hs_TMEM

142C_5, #SI04348876 (sense: 50OMeT-OMeC-CUUAGCCCUUGAAAU)

d(ACA) OMeA-OMeT-OMeT30; antisense: 30OMeA-OMeG-GAAUCGG

GAACUUUAUGUd(U)50). The STIM1 siRNAs were Hs_STIM1_5,

#SI03235442 (sense: 50OMeU-OMeGAGGUGGAGGUGCAAUd (AUU)

dOMeA-dOMeT-dOMeT30; antisense: 30OMeA-OMeC-UCCACCUCCAC

GUUAUAAd (U)50) and Hs_STIM1_6, #SI04165175 (sense: 50OMeC-

OMeU-GGUGGUGUCUAUCGUd (UAU) OMeU-OMeT-OMeT30; anti-

sense: 30OMeG-OMeA-CCACCACAGAUAGCAAUAd (A)50).
Control cells were transfected with nonsilencing RNA MS_control_mod

(sense: 50OmeA-OMeA-AGGUAGUGUAAUCGCd(CUU) OMeG-OmeT-

OMeT30; antisense: 30OmeT-OmeT-UCCAUCACAUUAGCGGAAdC 50).
Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) was performed as previously

described (34). Total RNA from LNCaP, DU145, PC3, and hPECs was iso-

lated with TRIzol Reagent (Life Technologies). For reverse transcription,

0.8 mg of isolated total RNA was used.

The QuantiTect SYBR Green Kit (Qiagen) was used with 0.5 mL of com-

plementary DNA and 300 nM of primer. The PCR conditions were as fol-

lows: 15 min at 95�C; 45 cycles, 30 s at 95�C; 45 s at 58�C; and 30 s at

72�C, and finally a cycle (60 s, 95�C; 30 s 55�C; 30 s 95�C) to determine

specificity by a dissociation curve using the MX3000 cycler (Stratagene).

Expression of target genes were normalized to the expression of the

reference genes RNA polymerase II (RNAPol, NM_000937) and/or

TATA box binding protein (TBP, NM_003194). The primer sequences

were as follows: Orai1, 50atgagcctcaacgagcact30 (forward) and 50gtgggtagt
cgtggtcag30 (reverse); Orai3, 50gtaccgggagttcgtgca30 (forward) and 50ggta
ctcgtggtcactct30 (reverse); STIM1, 50 cagagtctgcatgaccttca 30 (forward)

and 50 gcttcctgcttagcaaggtt 30 (reverse); TBP, 50 cggagagttctgggattgt 30 (for-
ward) and 50 ggttcgtggctctcttatc 30 (reverse); and RNAPol, 50 ggagattgagtc
caagttca 30 (forward) and 50 gcagacacaccagcatagt 30 (reverse).
Ca2D imaging experiments

Cells were loaded with the ratiometric dye Fura-2AM (hPECs: 1 mM/37�C/
20 min; LNCaP and DU145: 2 mM/37�C/15 min; and PC3: 4 mM/room tem-

perature/45 min). Excitation light alternated between 340 nm and 380 nm,

and emitted light was detected every 5 s at an emission wavelength of

440 nm. Data were analyzed with TILLVision software (TILL Photonics)

and IGOR Pro (WaveMetrics), and intracellular Ca2þ concentrations

were determined as described previously (45,46).

The bath solution contained (in mM) 155 NaCl, 4.5 KCl, 2 MgCl2,

10 glucose, and 5 HEPES (pH 7.4 with NaOH). H2O2, CaCl2, and 1 mM

thapsigargin (Tg) were added as indicated.
Electrophysiology

Cells (LNCaP and DU145) were patched in a whole-cell configuration as

described previously (47,48). The pipette resistance was 2–4 MU. Every

2 s, 50 ms spanning ramps from �150 to þ100 mV were delivered from

a holding potential of 0 mV by a HEKA EPC-10 patch-clamp amplifier

and the data were filtered (2.9 Hz), recorded, and analyzed with the use

of Patchmaster and Fitmaster software (HEKA). The liquid junction poten-

tial was corrected for 10 mV. For analysis, currents were extracted

at �80 mV, normalized to the cell capacity, averaged, and plotted versus
Biophysical Journal 109(7) 1410–1419
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time. Current was plotted versus ramp voltage (I/V), and current density

(CD) was plotted versus H2O2 dose and fitted with a Hill function. The

pipette solution contained (in mM) 120 Cs-glutamate, 10 BAPTA, 10

HEPES, 3 MgCl2, and 0.05 IP3. The bath solution contained (in mM) 95

NaCl, 2.8 KCl, 20 CaCl2, 2 MgCl2, 10 HEPES, 10 TEA-Cl, 10 CsCl, and

10 glucose. The pH was adjusted with NaOH to 7.2 and the osmolarity

was 300 mosmol/L. H2O2 was added as indicated and cells were incubated

for 10–30 min before patch-clamp experiments were conducted.
Cell viability

hPEC, LNCaP, DU145, and PC3 cells were seeded to ~80% density in

96-well cell culture plates (BD) and incubated at 37�C, 5% CO2, and

95% humidity. Living cells were detected by means of a CellTiter-Blue

assay (Promega). The sample size was n ¼ 12 for LNCaP, n ¼ 9 for

DU145, n ¼ 3 for PC3, and n ¼ 22 from three donors of hPECs.
Data analysis

Data were analyzed using TILLVision, Fitmaster, Igor Pro, and Microsoft

Excel. Data are given as the mean 5 SE. (For the data plotted in Fig. 7,

Pearson’s coefficient was calculated and is indicated as the R value.)
RESULTS

hPECs and prostate cancer cells differ in Ca2D

signaling upon incubation with H2O2

We first tested the effect of H2O2 on Ca2þ signaling in a
Fura-2-based Ca2þ imaging assay in hPECs and the
cancer cell lines LNCaP and DU145. For the later anal-
ysis of previously published data and data from this
study, we exactly followed the procedure published earlier
(35). Cells were incubated with different concentrations
of H2O2, and SOCE was activated with the SERCA inhib-
itor Tg.

Average Ca2þ responses with different H2O2 concentra-
tions are shown in Fig. 1, A–C. Incubation of hPECs,
LNCaP, and DU145 with H2O2 first induced an initial
increase of intracellular Ca2þ. Upon application of Tg,
intracellular Ca2þ increased (Fig. 1, A–C). To test the contri-
FIGURE 1 ROS dependence of Ca2þ signaling in hPECs, LNCaP, and DU

Ca2þ imaging assay when hPECs were incubated with different concentratio

50 mM H2O2, n ¼ 67 for 500 mM H2O2, and n ¼ 180 for 1 mM H2O2). (B) S

H2O2, n ¼ 70 for 100 mM H2O2, and n ¼ 46 for 1 mM H2O2). (C) Same as (A

n ¼ 57 for 5 mM H2O2, and n ¼ 55 for 15 mM H2O2).
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bution of STIM/Orai-mediated signaling, we next analyzed
the dependence of the initial Ca2þ increase and the Tg-
induced intracellular Ca2þ increase on the main molecular
components of SOCE, STIM1 and Orai1.
Dependence of the initial Ca2D increase
and the Tg-induced intracellular Ca2D

increase on STIM1 and Orai1

To investigate whether the initial Ca2þ increase and the
Tg-induced intracellular Ca2þ increase depend on SOCE,
we performed an siRNA-based knockdown of the main
molecular components of SOCE, STIM1 and Orai1.

In LNCaP cells, knockdown of STIM1 and Orai1 effi-
ciently reduced the mRNA levels of STIM1 and Orai1
(Fig. 2 A). We then performed the same Fura-2-based imag-
ing experiment shown in Fig. 1 in cells that were transfected
with control RNA or siRNA targeting STIM1 and Orai1
(Fig. 2 B), and were either not treated with H2O2 or incu-
bated with 10 mM of H2O2. We found that 10 mM of
H2O2 induced an initial Ca2þ increase in both control
transfected cells and cells transfected with STIM1/Orai1
siRNA (Fig. 2 B). The initial Ca2þ increase was analyzed
as the average intracellular Ca2þ concentration at 1180 s
(before application of Tg) and plotted for each condition
(Fig. 2 C). Upon incubation with 10 mM of H2O2, the initial
Ca2þ increase remained unchanged after knockdown of
STIM1 and Orai1 (Fig. 2 C). Therefore, we conclude that
the initial Ca2þ increase is independent of STIM1/Orai1-
mediated signaling.

In addition, this experiment demonstrates that the initial
Ca2þ increase is not based on Ca2þ release from intra-
cellular Ca2þ stores. Ca2þ release from intracellular Ca2þ

stores leads to an activation of SOCE. Therefore, STIM1
and Orai1 knockdown would result in a reduction of the
initial Ca2þ increase, which we did not observe.

To analyze the Tg-induced Ca2þ increase for each cell,
we subtracted the Ca2þ level before application of Tg
145. (A) Average [Ca2þ]i responses (mean 5 SE) from a Fura-2-based

ns of H2O2 and 1 mM Tg was added (n ¼ 93 for 0 H2O2, n ¼ 146 for

ame as (A) for LNCaP cells (n ¼ 144 for 0 mM H2O2, n ¼ 69 for 10 mM

) and (B) for DU145 (n ¼ 172 for 0 mM H2O2, n ¼ 43 for 100 mM H2O2,



FIGURE 2 Dependence of the initial Ca2þ increase and Tg-induced intracellular Ca2þ increase on the STIM1/Orai1 machinery in LNCaP cells. (A) qRT-

PCR analysis of Orai1 and STIM1 expression levels in LNCaP cells transfected with control RNA or siRNA targeting STIM1 and Orai1 normalized to TBP.

(B) Average [Ca2þ]i responses (mean5 SE) from a Fura-2-based Ca2þ imaging assay when cells from (A) were not treated with H2O2 or were incubated with

10 mM of H2O2 and 1 mMof Tg was added (n¼ 135 for control RNA, 0 H2O2; n¼ 98 for control RNA and 10 mMH2O2; n¼ 74 for siRNA STIM1 and Orai1

and 0 H2O2; n¼ 49 for siRNA STIM1 and Orai1 and 10 mMH2O2). (C) Average [Ca
2þ]i responses (mean5 SE) from cells in (B) at t¼ 1180 s. (D) For each

cell, the Ca2þ before application of Tg was subtracted from the maximal Ca2þ after application of Tg. The average DCa2þ values for cells in (B) are plotted.
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from the maximal Ca2þ level after application of Tg. The
average DCa2þ is plotted for each condition in Fig. 2 D.
When STIM1 and Orai1 were knocked down or cells were
incubated with 10 mM of H2O2, or both, DCa

2þ was signif-
icantly reduced to the same level (Fig. 2 D). When cells
were incubated with 10 mM of H2O2, knockdown of
STIM1 and Orai1 did not significantly reduce the remaining
Ca2þ elevation. Consequently, this remaining Ca2þ eleva-
tion is independent of the STIM1/Orai1 machinery and for
the most part is based on Tg-induced Ca2þ release from
intracellular Ca2þ stores, as shown in a previous study
(34). As the remaining Ca2þ elevation was the same in all
three conditions (when STIM1 and Orai1 were knocked
down or cells were incubated with 10 mM of H2O2, or
both), we conclude that our further analysis of the H2O2-
induced block of SOCE may include a small offset, but
half minimal inhibitory concentrations were not affected.
We performed the same set of experiments in DU145 and
obtained very similar results (Fig. S1 A in the Supporting
Material). Taken together, these results suggest that the
initial effect is independent of Ca2þ release from intracel-
lular stores and SOCE. Next, to investigate the H2O2-
induced block of SOCE, we analyzed DCa2þ.
FIGURE 3 Initial H2O2-induced Ca2þ increase in hPEC and cancer cell

lines. (A) Initial increase of intracellular Ca2þ when hPECs were incu-

bated for 1000 s with H2O2 (before Tg was added). Same cells as in

Fig. 1 A; n ¼ 71 for 10 nM H2O2, n ¼ 46 for 100 nM H2O2, n ¼ 133

for 1 mM H2O2, n ¼ 158 for 10 mM H2O2, n ¼ 160 for 100 mM

H2O2, and n ¼ 157 for 300 mM H2O2. (B) Initial increase of Ca2þ

when LNCaP or DU145 was incubated for 1000 s with H2O2 (before

Tg was added). For LNCaP, same cells as in Fig. 1 B; n ¼ 67 for

30 mM H2O2, and n ¼ 61 for 3 mM H2O2. For DU145, same cells

as in Fig. 1 C; n ¼ 29 for 1 mM H2O2, n ¼ 32 for 3 mM H2O2,

n ¼ 64 for 10 mM H2O2, n ¼ 84 for 12.5 mM H2O2, and n ¼ 45 for

20 mM H2O2.
hPECs and prostate cancer cells differ in the
initial increase of Ca2D upon incubation with H2O2

Upon incubation with H2O2, the initial increase of Ca
2þ var-

ied among the tested cells. Incubation of hPECs with H2O2

concentrations of R100 mM induced an initial increase of
intracellular Ca2þ levels, up to ~150 nM when cells were
incubated with 1 mM of H2O2 (Fig. 3 A). In LNCaP and
DU145, incubation with H2O2 induced an initial increase
of intracellular Ca2þ (Fig. 3 B), and we detected maximal
intracellular Ca2þ upon incubation with 300 mM and
1 mM of H2O2, respectively. Incubation of LNCaP and
DU145 with H2O2 concentrations exceeding these maxima
blocked the initial Ca2þ increase.
hPECs and prostate cancer cells differ in DCa2D

upon incubation with H2O2

Addition of the SERCA inhibitor Tg depleted intracellular
Ca2þ stores and activated SOCE. The H2O2 dose depen-
dency of DCa2þ in hPECs, LNaP, and DU145 is shown in
Fig. 4, A and B.

In hPECs, DCa2þ was increased by incubation with H2O2

up to a concentration of 500 mM.When cells were incubated
with 1 mM H2O2, the increment was reduced but DCa2þ

was still elevated compared with DCa2þ at low H2O2

concentrations (Fig. 4 A). Upon incubation with H2O2

concentrations above 1 mM, hPECs started to detach during
the measurements; however, from our data, we conclude
that the IC50 of the H2O2-induced block of DCa2þ is above
1 mM.
Biophysical Journal 109(7) 1410–1419



FIGURE 4 DCa2þ in hPEC and cancer cell lines. (A) DCa2þ after

addition of Tg in hPECs upon incubation with different H2O2 concen-

trations, showing the same cells as in Figs. 1 A and 3 A. The line was

drawn to guide the eye. (B) DCa2þ in LNCaP and DU145 cells after

addition of Tg upon incubation with different H2O2 concentrations.

Average DCa2þ values (mean 5 SE) are plotted versus H2O2 concentra-

tion; same cells as in Figs. 1, B and C, and 3 B; n ¼ 44 for 7.5 mM

H2O2 for DU145. Data were fitted with a Hill function (please see text

and Table 1 for IC50 values).

FIGURE 5 Inhibition of ICRAC by H2O2 in cancer cell lines. (A) ICRAC in

LNCaP cells incubated with different concentrations of H2O2 (black curve,

n¼ 14, 1 nMH2O2; dark gray curve, n¼ 8, 100 mMH2O2; light gray curve,

n ¼ 9, 10 mM H2O2) and corresponding I/V (inset). (B) Dose responses

for H2O2-induced block of ICRAC in LNCaP (same cells as in A; n ¼ 15 for

10 nM H2O2, n ¼ 14 for 100 nM H2O2, n ¼ 12 for 1 mM H2O2, n ¼ 15 for

10 mM H2O2, and n ¼ 9 for 1 mM H2O2) and DU145 (n ¼ 10 for 1 nM

H2O2, n ¼ 8 for 100 nM H2O2, n ¼ 5 for 1 mM H2O2, n ¼ 8 for 10 mM

H2O2, n ¼ 5 for 1 mM H2O2, and n ¼ 4 for 10 mM H2O2).
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Upon addition of Tg, the maximal increase in DCa2þ was
detected with 30 mM and 300 mM of H2O2 in LNCaP and
DU145, respectively. The dose-response curves for the
H2O2-induced inhibition of DCa2þ in LNCaP and DU145
are shown in Fig. 4 B. The data were fitted with a Hill equa-
tion, and the IC50 values for H2O2-induced inhibition of
DCa2þ were 114 mM and 5.1 mM for LNCaP and DU145
cells, respectively.
FIGURE 6 Fluorescence-based viability assay of hPECs and cancer cell

lines upon incubation with different concentrations of H2O2. Fluorescence

intensity is plotted versus H2O2 concentration for LNCaP (-), DU145

(C), PC3 (;), and hPEC (:). The sample size was n ¼ 12 for LNCaP,

n ¼ 9 for DU145, n ¼ 3 for PC3, and n ¼ 22 from three donors for hPEC.
Upon incubation with H2O2, LNCaP and DU145
differ in ICRAC

As DCa2þ includes a small offset that is mainly caused by
Ca2þ release from intracellular stores, we challenged our
concept and directly assessed the H2O2-induced block of
CRAC channels. For this purpose, we incubated LNCaP
and DU145 cells with various concentrations of H2O2

and performed a whole-cell patch-clamp analysis. Under
these conditions, we detected Ca2þ currents via ICRAC
channels without any contribution of Ca2þ from intracel-
lular stores.

ICRAC was evoked with 50 mM of IP3 and 10 mM of
BAPTA in the patch pipette. For LNCaP, the CD was plotted
versus time (Fig. 5 A; corresponding current-voltage curves
are shown in Fig. 5 A, inset).

With increasing H2O2 concentrations, CD development in
LNCaP and DU145 cells was blocked in a dose-dependent
manner (Fig. 5 B). For the H2O2-induced block of ICRAC,
the dose-response curves exhibit an IC50 of 26.6 mM for
LNCaP cells and 2.5 mM for DU145 cells (Fig. 5 B). This
analysis shows that a higher ratio of Orai3/Orai1 is accom-
panied by a higher IC50 for the H2O2-induced block of
ICRAC. In our hands, a gigaseal could not be formed with
hPECs upon incubation with H2O2; therefore, under these
conditions, ICRAC could not be detected via the patch-clamp
technique in these cells.
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hPECs, LNCaP, DU145, and PC3 differ in cell
viability upon incubation with H2O2

To compare the viability of hPECs and prostate cancer cell
lines upon incubation with H2O2, we performed fluores-
cence-based viability assays. The H2O2-induced decrease
of cell viability exhibited an IC50 of ~6 mM in hPECs,
~2 mM in PC3, 871 mM in DU145, and 422 mM in LNCaP
(Fig. 6). These findings clearly support the concept of higher
ROS sensitivity in prostate cancer lines than in hPECs.
Analysis of Orai3/Orai1 ratios and the H2O2-
dependent block of SOCE and cell viability

We next combined our data and previous findings (34,35)
regarding Orai1/Orai3 mRNA ratios and the dependence
of SOCE and cell viability on H2O2 in different cell types
(summarized in Table 1).



TABLE 1 Orai1/Orai3 Ratio, SOCE, and cell viability

Cell Type Orai1/Orai3

IC50 H2O2-Induced

Block of SOCE (mM)

IC50 H2O2-Induced

Block of ICRAC (mM)

IC50 H2O2-Dependent

Viability (mM)

Naive TH cell 70 (35) 7 (35) ND 39 (35)

Effector TH cell 25 (35) 51 (35) ND 199 (35)

LNCaP 26 (34) 114 26 422

DU145 17 (34) 5114 2500 871

PC3 8 ND ND 2085

Primary prostate epithelial cells 4 (34) >1000 ND 5947

The table lists the Orai1/Orai3 ratios of the indicated cell types and IC50 values for the H2O2-induced block of SOCE, H2O2-induced block of ICRAC, and

H2O2-dependent cell viability.
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We analyzed the correlation between the H2O2-dependent
block of SOCE (DCa2þ) and dependence of viability on the
Orai1/Orai3 ratio. For this purpose, we decided to use the in-
verse Orai1/Orai3 ratio and instead plot Orai3/Orai1. For
prostate-derived cells, a detailed representation of Orai1
and Orai3 mRNA levels and the corresponding Orai3/
Orai1 ratios is given in Fig. S2.

In Fig. 7 A, the logarithmic IC50 of the H2O2-induced
block of SOCE is plotted against different Orai3/Orai1 ra-
tios expressed by several types of cells. When we analyze
the correlation between the Orai3/Orai1 ratio and the loga-
rithmic IC50 for the H2O2-induced block of SOCE, we
find a Pearson’s coefficient of 0.97, reflecting the very
strong correlation between the two parameters. Fig. 7 B
demonstrates the relationship between Orai3/Orai1 ratios
and cell viability. Here, we included data from PC3 cells
without analyzing Ca2þ signaling in these cells in depth.
With our protocol, we cannot determine IC50 for the
H2O2-induced block of SOCE because in PC3 the initial
effect depends on STIM1/Orai1, whereas the Tg-induced
Ca2þ is nearly independent of STIM1/Orai1 (Fig. S3). The
Pearson’s coefficient between the Orai3/Orai1 ratio and
cell viability is 0.99, reflecting the very strong correlation
between the Orai3/Orai1 ratio and H2O2-induced inhibi-
tion of cell viability. When the IC50 of the H2O2-induced
FIGURE 7 Correlation between the Orai3/Orai1 ratio and the H2O2-dependen

induced block of SOCE is plotted against the Orai3/Orai1 ratio in different cell t

cells (34)). Data were fitted with an exponential fit function and Pearson’s coef

of viability is plotted against the Orai3/Orai1 ratio of the same cell types as in (A

fit function and Pearson’s coefficient is indicated as the R value. (C) The IC50 of

induced block of SOCE. Data were fitted with a Hill function and Pearson’s co
block of cell viability is plotted against the H2O2-induced
block of SOCE, the dependency can best be described
with a Hill function (Fig. 7 C). The Pearson’s coefficient
for the logarithmic data is 0.91, reflecting the strong corre-
lation between the H2O2-induced block of SOCE and cell
viability.
Effect of a siRNA-based knockdown of Orai3
on Ca2D signaling and cell viability

To directly determine the role of Orai3 in the H2O2-induced
block of SOCE and cell viability, we performed a siRNA-
based knockdown of Orai3. Upon knockdown, Orai3
mRNA was reduced (Fig. 8 A). Upon knockdown of
Orai3, no specific effect on the IC50 of H2O2-induced inhi-
bition of DCa2þ (Fig. 8 B) and cell viability (Fig. 8 C) could
be detected. The cell transfection led to a general shift in
the IC50 for the H2O2-induced inhibition of DCa2þ and
cell viability.
DISCUSSION

Our data on H2O2-dependent cell viability support the
concept that hPECs are less sensitive to ROS than LNCaP
and DU145. This finding is in line with an earlier study
t block of SOCE and cell viability. (A) The logarithmic IC50 of the H2O2-

ypes (naive T cells (35), effector T cells (35), LNCaP cells (34), and DU145

ficient is indicated as the R value. (B) The IC50 of the H2O2-induced block

), as well as in PC3 and hPEC. Data were fitted with a stretched exponential

the H2O2-induced block of viability is plotted versus the IC50 of the H2O2-

efficient is indicated as the R value.
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FIGURE 8 Effect of a siRNA-based knockdown of Orai3 on Ca2þ signaling and cell viability. (A) qRT-PCR analysis of Orai3 expression levels in LNCaP

cells transfected with control RNA or siRNA targeting Orai3 normalized to TBP. (B) Average DCa2þ from a Fura-2-based Ca2þ imaging assay when cells

were nontransfected (same data as in Fig. 4 B), control transfected (n¼ 76 for 0.01 mMH2O2, n¼ 144 for 0.1 mMH2O2, n¼ 164 for 0.3 mMH2O2, n¼ 159

for 1 mM H2O2, n ¼ 157 for 3 mM H2O2 and n ¼ 82 for 10 mM H2O2), or transfected with siRNA targeting Orai3 (n ¼ 84 for 0.01 mM H2O2, n ¼ 146 for

0.1 mM H2O2, n¼ 165 for 0.3 mMH2O2, n¼ 182 for 1 mM H2O2, n¼ 152 for 3 mM H2O2, and n¼ 94 for 10 mMH2O2). (C) Viability assay of cells in (B)

(n ¼ 2); for nontransfected cells, the same data as in Fig. 6 were used.
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that demonstrated that cells derived from prostate cancer tu-
mors are more sensitive to arsenic-trioxide-induced ROS
compared with normal prostate epithelium cells (49). It
was shown that blocking the ROS-scavenging system of
prostate cancer cells shifted the IC50 for arsenic-trioxid-
induced cell death in prostate cancer cells to clinical achiev-
able concentrations, with a negligible cytotoxicity for
normal cells. It is known that in prostate cancer cells,
ROS induce elevations of intracellular Ca2þ (12,13). Here,
we investigated the H2O2-induced initial rise of intracellular
Ca2þ, the H2O2-induced amplification of DCa2þ, the block
of SOCE, and cell viability upon incubation with ROS in
hPECs and prostate cancer cell lines. The ROS-induced
initial increase of Ca2þ is independent of the STIM1/
Orai1 machinery and may be caused by Ca2þ channels,
e.g., TRP channels that are activated or modulated by
ROS, including TRPM2, TRPC5, TRPV1, and TRPA1
(14,16). The initial H2O2-induced increase of intracellular
Ca2þ is maximally activated at lower concentrations of
H2O2 in LNCaP cells than in hPECs and DU145 (300 mM
vs. 1 mM H2O2). In prostate cancer cell lines, these values
reflect the maxima, and the initial Ca2þ increase is blocked
upon incubation with higher concentrations of H2O2. In
hPECs, 1 mM of H2O2 induces the maximal initial increase
of intracellular Ca2þ. The detection of Ca2þ signals from
cells incubated with higher concentrations of H2O2 was
technically not feasible. It is known that ROS-induced tran-
scription factors that activate ROS-scavenging systems
(e.g., NF-E2-related factor 2) (50) depend on elevation of
intracellular Ca2þ (51). Hence, the block of initial ROS-
induced Ca2þ signaling in cancer cell lines may contribute
to their higher sensitivity to ROS.

SOCE is activated during proliferation; however, elevated
SOCE signals can drive cells into apoptosis (52). When cells
were preincubated with different H2O2 concentrations, the
maximal amplification of DCa2þ occurred with 500 mM of
H2O2 in hPECs, 30 mM of H2O2 in LNCaP, and 300 mM
Biophysical Journal 109(7) 1410–1419
of H2O2 in DU145. Thus, in cancer cell lines, these maxi-
mally amplified DCa2þ signals at lower H2O2 concentra-
tions may contribute to the overall higher sensitivity of
cell viability to ROS.

Within the last few years, several reports have demon-
strated a role for Orai3 in breast cancer (53–56). Two very
recent studies reported controversial results regarding the
role of Orai3 in prostate cancer. Dubois et al. (57) found
elevated Orai3 expression levels in prostate cancer tissue
samples. In their study, elevated levels of Orai3 led to
increased formation of arachidonic-acid-induced Ca2þ

channels by Orai1/Orai3 heteromers and a lower number
of homomeric Orai1 SOCE channels. Thus, the elevated
Orai3 levels may act as a switch and lead to increased arach-
idonic-acid-induced proliferation and decreased Orai1-
dependent apoptosis (57,58). In contrast to Dubois et al.
(57), we found a downregulation of Orai3 in prostate cancer
tissue samples, an outstandingly low Orai1/Orai3 ratio of ~4
in hPECs, and elevated Orai1/Orai3 ratios in prostate cancer
cell lines, with consequences for SOCE signaling in the
membrane androgen receptor pathway and the pharmaco-
logical profile of ICRAC (34). The H2O2-dependent block
of SOCE (DCa2þ) differs among hPECs (IC50 > 1 mM),
DU145 (IC50 ~5 mM), and LNCaP (IC50 ~114 mM). In com-
bination with previous findings (34,35), our results demon-
strate a strong correlation between the Orai3/Orai1 ratio and
the ROS sensitivity of SOCE and cell viability. Taken
together, these findings support the concept of heteromeric
store-operated Orai1/Orai3 channels. However, upon cell
transfection, the IC50 values of the H2O2-induced block
of SOCE and cell viability exhibited unspecific shifts, as
described previously (35). This unspecific shift may cover
specific effects of Orai3 knockdown and thus prevent the
acquisition of direct evidence. The correlation between the
ROS-dependent block of SOCE and cell viability demon-
strates that cells need functional SOCE Ca2þ signaling
for survival and that the ROS-induced block of SOCE
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contributes to decreased cell viability when ROS are
increased. The apparent IC50 of the H2O2-induced block
of SOCE in DU145 (~5 mM) and hPECs (>1 mM) points
to a blocking mechanism that could be independent of
Orai3/Orai1 ratios. In these cells, all ICRAC channels may
be Orai3/Orai1 heteromeric channels, and one Orai3
subunit is sufficient to abolish the ROS sensitivity of
SOCE (37). An alternative explanation is that increasing
H2O2 levels lead to intracellular acidification (59) and
CRAC channels are inhibited by intracellular acidifi-
cation (60). It has been suggested that STIM1/Orai1 uncou-
ple at low intracellular pH and Ca2þ influx via Orai
channels is abolished (61). To test this hypothesis, we
performed patch-clamp experiments to determine whether
the H2O2-induced block was still apparent when we used
pH 8 in the patch pipette (Fig. S4). Indeed, the block
was not abolished, pointing to a channel-specific mecha-
nism rather than an unspecific block. On the other
hand, it was previously demonstrated in snail neurons
that even under buffering conditions, pH microdomains
below the plasma membrane could be formed (62). Thus,
we cannot exclude the possibility of a channel-unspecific
mechanism such as acidic pH, decoupling of STIM/Orai
complexes, induction of high Ca2þ levels, and/or mem-
brane depolarization.

In the future, therapeutic strategies based on ROS induc-
tion may include the appropriate concentrations of drugs
targeting SOCE channels to reduce the viability of prostate
cancer cells without affecting nontransformed cells, as
there is a clear role for Ca2þ in ROS-mediated signaling
in prostate cancer. Finally, the overall high Orai3/Orai1
ratios in hPEC and androgen-insensitive cancer cells
contribute to their ROS resistance and thereby may have
a share in making the prostate one of the most prominent
cancer susceptible organs.
CONCLUSIONS

In this study, we investigated H2O2-dependent Ca2þ

signaling in hPECs from healthy tissue and prostate cancer
cell lines (LNCaP, DU145, and PC3). ROS-induced
changes in Ca2þ signaling reflect the contributions of
very different enzymes, including Ca2þ transporters and
ROS-producing and -scavenging enzymes. Our findings
suggest that the block of ROS-induced initial Ca2þ eleva-
tions in prostate cancer cells, as well as the amplification
of DCa2þ and the H2O2-dependent block of SOCE at lower
concentrations of H2O2, could contribute to the higher
sensitivity of prostate cancer cells to ROS-induced cell
death. In addition, our findings regarding the H2O2-depen-
dent block of SOCE in hPECs and cancer cell lines support
our concept of heteromeric store-operated Orai1/Orai3
channels in hPECs and store-operated Orai channels char-
acterized by elevated Orai1/Orai3 ratios in prostate cancer
cells.
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