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Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics
of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues.
The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and
clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc

formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can
model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation
of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do
not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion
incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur
during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion
amplification rate, adaptation to new species and strain interference where production and clearance of prions can
affect the outcome.

Introduction

Prion diseases are inevitably fatal neurodegenerative diseases
affecting animals. The prion agent is likely solely comprised of a
misfolded isoform of the prion protein, PrPSc, which is post-
translationally derived from the host encoded normal isoform of
the prion protein, PrPC.1,2,6 PrPSc can adopt a wide range of dif-
ferent conformations, which are thought to account for the vari-
ety of prion strains that can exist in a single PrP genotype in a
given species.10-12

Formation of PrPSc is thought to occur in a 3-step process.
First, PrPC binds to PrPSc likely through the N-terminal and cen-
tral polybasic domains.15-16 Although other docking sites have
been identified, they do not support formation of infectious
prions.18 Second, PrPSc directs the conversion of PrPC to the
PrPSc conformation by an unknown mechanism resulting in
elongation of the PrPSc fibril. Finally, fragmentation of the PrPSc

fibril results in the formation of new free ends for additional
PrPC binding to take place, thus completing the cycle. The rate
of increase in prion infectivity and PrPSc accumulation can differ
between strains and within a strain in different tissues.20-22

Fragmentation of PrPSc may contribute to the rate of prion for-
mation. Initial studies of Sup35 fibrils, from the yeast prion
[PSIC], have low conformational stability corresponding with
high conversion rates.24 Murine prion strains with short incuba-
tion periods correspond with PrPSc with low conformational

stability compared to strains with longer incubation periods.25,27

These data suggest that a decrease in conformational stability of
the protein aggregate results in an increase in fragmentation that
leads to an increase in prion formation. In both mammalian and
yeast prions, however, other studies indicate that this relationship
is not always true suggesting that additional factors are involved in
fragmentation.29-32

The net accumulation of PrPSc is controlled by the relation-
ship between the rate of PrPSc formation and degradation.
Elimination of neuronal PrPC expression during the course of
prion infection results in clearance of PrPSc in these cells and
subsequent reversal of a subset of prion-induced neuropathol-
ogy.44,46 Overexpression of PrPC results in shortened incuba-
tion periods, however, due to the dual role of PrPC in both
PrPSc formation and neurodegeneration, the exact mechanism
responsible for shortening of the incubation period is
unclear.1,3 The mechanism of PrPSc clearance is not fully
understood, but may occur in lysosomes and can be accelerated
by autophagy.5-8

Protein misfolding cyclic amplification (PMCA) is a powerful
technique that faithfully recapitulates PrPSc formation and prion
infectivity in a cell-free system. PMCA uses a repeated series of
incubation periods and sonication that leads to formation of
PrPSc and prion infectivity.9,11,13,32 The PMCA incubation
period is thought to allow for PrPC binding to PrPSc and subse-
quent conversion of PrPC to PrPSc. The sonication step is
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thought to shear the growing PrPSc fibril providing additional
free ends for PrPC to bind and convert to PrPSc.14 This process
of repeated elongation and fragmentation of PrPSc fibrils leads to
exponential PrPSc production.17

Relatively little is known about PMCA mediated prion clear-
ance. Several factors of the PMCA procedure have the potential
to inactivate prions. Sonication produces cavitation microbubbles
that can have extreme localized pressure and temperature that can
denature protein and has the potential to reduce prion infectiv-
ity.19 Additionally, endogenous proteases in brain homogenate
can truncate and degrade PrPSc over time.23 The effect of the
combination of heat, protease activity and detergent that is pres-
ent in the PMCA conversion buffer on prion degradation is
unknown.

In this study we investigated if PrPSc and/or prion infectivity
degradation occurred as a result of PMCA. To accomplish this
we performed PMCA under conditions that do not support
PrPSc formation. PrPSc degradation and an extension of prion
incubation period were not observed under the PMCA condi-
tions with the prion strains used. These data have significant
implications on the interpretation of PMCA based experiments.

Results

PMCA formation of PrPSc

To confirm that amplification via PMCA is working within
our standard parameters, either HY TME or DY TME-infected
brain homogenate was diluted into uninfected hamster brain
homogenate and subjected to one round of PMCA to serve as a
positive control. Western blot analysis of PK treated samples
demonstrated a significant (P < 0.05) increase in PK resistant
PrPSc in the PMCA treated samples compared to the untreated
controls and migration of the PMCA generated PrPSc maintained
strain-specific patterns (Fig. 1A and B). Consistent with previous
studies, HY PrPSc amplified to a significantly (P < 0.05) greater
amount (Fig. 1A, lanes 5–6; Panel B) compared to DY PrPSc

(Fig. 1A, lanes 9–10; Panel B). Formation of PrPSc was not
observed in the mock seeded negative control reactions (Fig. 1A,
lanes 11–12).

PMCA induced degradation of PrP is not observed
To investigate if conversion buffer and temperature induced

PrP degradation, uninfected hamster brain homogenate alone
and HY TME or DY TME-infected brain homogenates diluted
in uninfected MoPrP0/0 brain homogenate were incubated at
37�C for 24 hours without sonication. The abundance of PrP
before (Fig. 2A, lanes 1–3) and after (Fig. 2A, lanes 4–6) the
37�C incubation did not differ significantly (P> 0.05) (Fig. 2B).

To investigate the effect of sonication on PrP degradation, HY
TME or DY TME-infected brain homogenates were diluted in
either DPBS (without conversion buffer components i.e. EDTA,
Triton X-100 and protease inhibitors) or uninfected MoPrP0/0

brain homogenate and subjected to one round of PMCA. The
abundance of PrPSc in samples subjected to one round of PMCA
or unsonicated samples in either MoPrP0/0 brain (Fig. 3A, lanes
1–4) or DPBS (Fig. 3A, lanes 5–8) did not differ significantly (P
> 0.05) (Fig. 3B). To study the effect of temperature and sonica-
tion on PrPC, uninfected brain homogenate was subjected to one
round of PMCA. The abundance of PrPC did not differ signifi-
cantly (P < 0.05) from the unsonicated control samples.
(Fig. 3C and D). As a negative control, uninfected hamster brain
homogenate diluted in MoPrP0/0 brain homogenate was sub-
jected to one round of PMCA. In these samples, Western blot
analysis failed to detect PrPSc (data not shown).

Reduction of prion infectivity is not mediated by PMCA
To investigate the effect of PMCA on prion infectivity, HY

TME-infected brain homogenate was diluted in MoPrP0/0 brain
homogenate and was subjected to either one round of PMCA,
incubated at 37�C without sonication or left untreated as a posi-
tive control. These samples were i.c. inoculated into Syrian ham-
sters to determine if these treatments affected the incubation
period of disease. All of the hamsters (nD 5) in each group devel-

oped clinical signs of hyper-
excitability and ataxia.
Animals inoculated with
either the sonicated HY
TME in MoPrP0/0, HY
TME in MoPrP0/0 incu-
bated at 37�C for 24 hours
or the HY TME positive
control had similar (P >

0.05) incubation periods of
72 § 2, 71 § 8 and 71 § 3
d respectively (Fig. 4A).
Western blot analysis of PK
treated brain homogenates
from clinically ill animals
demonstrated the accumula-
tion of PrPSc, confirming
the clinical diagnosis
(Fig. 4B, lanes 3–6). The

Figure 1. In vitro amplification of hamster adapted TME. (A) HY TME and DY TME were diluted in hamster brain
homogenate and subjected to 144 cycles of 5-second sonication and 10 minute incubation. Following PK diges-
tions, Western blot analysis show amplification of PrPSc when compared to their unsonicated controls (lanes 3–4 vs.
5-6 for HY TME and lanes 7-8 vs. 9-10 for DY TME). HY TME amplifies more efficiently than DY PrPSc (compare lanes
5-6 vs. 9-10). Mock: mock infected negative control (lanes 11–12). The migration of the 19 and 21 kDa unglycosy-
lated PrPSc polypeptides is indicated on the left of panel A. (B) Bar graph comparing the relative PrPSc intensity
before and after PMCA using HY TME or DY TME as a PrPSc seed (n D 5 per experimental group).
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electrophoretic migration of
PrPSc from either the soni-
cated HY TME or HY TME
incubated at 37�C for
24 hours were similar to that
of control HY TME PrPSc

(Fig. 4B). None (n D 5) of
the hamsters inoculated with
sonicated mock-uninfected
brain homogenate developed
clinical signs of prion infec-
tion up to 360 d post infec-
tion, when the experiment
was terminated (Fig. 4A).
This was confirmed by West-
ern blot of the PK digested
brain tissue, which failed to
detect the presence of PrPSc

(Fig. 4B, lanes 7 and 8).

Discussion

PMCA can efficiently amplify large amounts of PrPSc and
prion infectivity in an in vitro system.11,26 Several aspects of
prion biology have been
accurately recapitulated
using PMCA such as inter-
species transmission, adapta-
tion, replication co-factors,
strain formation and envi-
ronmental interac-
tions.18,26,28,30,32-42 While
PMCA effectively recapitu-
lates in vivo prion formation
in many respects, little is
known about the role of
prion clearance during
PMCA. Under conditions
that do not support prion
formation, we failed to find
evidence of a reduction of
PrPSc abundance or a change
in incubation period due to
the PMCA process. These
observations are consistent
with reports indicating that
PrPSc can survive high levels
of heat and proteolytic activ-
ity.43,45,47 While not directly
measured, it is likely that
protease sensitive forms of
PrPSc survive the PMCA
process since the abundance
of PrPC, which is also sensi-
tive to protease digestion, is

unaltered. Overall, this data indicates that the net increase in
PrPSc and infectivity in PMCA is due solely to PrPSc formation,
and is not the result of a dynamic balance between formation
and clearance in contrast to what occurs in vivo. This observation
affects the interpretation of PMCA based experiments and might
contribute to the ability of PMCA to amplify PrPSc amounts that
are below the limit of detection in bioassay.

Figure 2. Temperature does not facilitate degradation of PrP. (A) HY TME and DY TME diluted in MoPrP0/0 brain
homogenate and uninfected hamster brain homogenate incubated at 0�C without sonication (Lanes 1–3) and at
37�C without sonication (Lanes 4–6). The migration of the 19 and 21 kDa unglycosylated PrPSc polypeptides is indi-
cated on the left of panel A. (B) Bar graph comparing the relative intensities of the Western blot analysis of each
sample before and after incubation (n D 3 per experimental group).

Figure 3. Clearance of PrP is not supported by PMCA. (A) Western blot of HY TME and DY TME showing an absence
of PrPSc clearance during PMCA. HY TME and DY TME diluted in MoPrP0/0 brain homogenate without sonication
(Lanes 1–2); HY TME and DY TME diluted in MoPrP0/0 brain homogenate subjected to PMCA (Lanes 3–4); HY TME
and DY TME diluted in DPBS without sonication (Lanes 5–6); and HY TME and DY TME diluted in DPBS subjected to
PMCA (Lanes 7–8). (B) Bar graph comparing the relative intensity of each sample before and after sonication (n D 4
per experimental group). (C) Western blot of uninfected hamster brain homogenate showing the absence of PrPC

clearance during PMCA. Uninfected brain homogenate without PMCA (Lanes 2–4) and after PMCA (Lanes 5–7). (D)
The relative average intensities of PrPC as quantified from the Western blot analysis of each sample before and after
PMCA (nD 3 per experimental group). The migration of the 19 or 21 kDa unglycosylated PrPSc polypeptides is indi-
cated on the left of panels A and C.
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Accurate measurements of prion formation in vivo have not
been made. In animals both prion formation and clearance con-
tribute to the net accumulation of PrPSc and infectivity.48-50

Studies utilizing PMCA have been used to calculate the efficiency
of PrPSc formation, however, the possibility that prion clearance
contributed to the net accumulation of PrPSc and infectivity
could not be excluded.13,32,38,40 The results of this study indicate
that PMCA provides an accurate measurement of prion forma-
tion. Strain specific differences in PMCA PrPSc formation effi-
ciency have been observed and must be due to strain-specific
differences in prion formation and not clearance.32

Adaptation of prions to a new host species using PMCA can
effectively overcome the species barrier. This process can also
result in the identification of novel prion strains when transmit-
ted to the new host species.33,51-54 One possibility for this obser-
vation is that PMCA allows for the formation of PrPSc

conformations (i.e., sub strains) that are not favored in vivo.
Alternatively, identical populations of PrPSc conformations are
produced both in vivo and in PMCA, but a subpopulation of
PrPSc conformations are cleared in vivo that are not cleared in
PMCA. This could result in the evolution of PrPSc conforma-
tions that gain the ability to survive in vivo clearance mechanisms
or can alter the balance of prion strains in a mixture, which has
been shown to influence strain emergence consistent with the
prion quasispecies hypothesis.2,4,55-61

Prion strains in a mixture do not act independently but rather
interfere with each other.6,62 The mechanism(s) for strain inter-
ference are only beginning to be understood.10,12,30,63 One unex-
plored possibility is that infection with one prion strain can
facilitate the clearance of a second strain and contribute to strain
interference. This has not been possible to investigate in vivo.
Strain interference can occur using PMCA and the same experi-
mental parameters that influence strain interference in vivo apply
to PMCA strain interference.15,16,30 Based on the observation of
a lack of clearance of PrPSc in PMCA in combination with the
ability of PMCA to accurately model strain interference in vivo,
we hypothesize that prion clearance is not involved in strain
interference. Overall, the inability of PMCA to support prion

clearance is an important var-
iable to fully interpret
PMCA based studies and can
be exploited to explore the
relationship between prion
formation and clearance.

Materials and Methods

Prion strains and negative
controls

Brains from terminally-ill
hamsters inoculated with
either biologically cloned HY
or DY TME agents were
homogenized to 10% w/v in
Dulbecco’s phosphate buff-

ered saline (DPBS) (Mediatech, Herndon, VA). Uninfected
hamster brain or PrPC knock-out mice brain MoPrP0/0 was
homogenized to 10% w/v in PMCA conversion buffer (phos-
phate buffer saline containing 1% v/v Triton-X100, 5 mM
EDTA with protease inhibitors).64 All homogenates were stored
at ¡80�C prior to use.

Protein misfolding cyclic amplification
PMCA was performed as described previously.65 Briefly, we

used a Misonix 3000 sonicator (Farmingdale, NY) coupled to a
96-well plate titanium cup-horn. The sonicator output was set to
level 6. With the sonicator cup horn filled with distilled water at
37�C the average power output was 160 W. One round of
PMCA consisted of 144 cycles of 5 seconds sonication and 10
minutes incubation per cycle. The PMCA reactions contain
20 ml of 10% w/v brain homogenates from either HY TME or
DY TME-infected hamsters diluted into 80 ml of 10% w/v unin-
fected hamster or mouse PrP0/0 brain homogenate in PMCA
conversion buffer or DPBS and were subjected to one round of
PMCA. The negative control PMCA reaction consisted of unin-
fected hamster brain homogenate. All PMCA reactions were rep-
licated a minimum of 3 times.

SDS-PAGE and Western blot analysis
The PMCA reactions were digested with 0.4 U/ml of pro-

teinase K (PK) at 37�C for 30 minutes with constant agita-
tion (Roche Diagnostics Corporation, Indianapolis, IN). The
PK digestion was terminated by incubating the samples at
100�C for 10 minutes in gel loading buffer (4% SDS, 2%
b-mercapto ethanol, 40% glycerol, 0.004% Bromophenol
blue, and 0.5 M Tris buffer pH 6.8). SDS-PAGE and West-
ern blot analysis were performed as described previously using
the anti-PrP antibody 3F4 (final concentration of 0.1 mg/ml;
Chemicon; Billerica, MA) to recognize hamster prion pro-
tein.30 The Western blot was developed with Pierce supersig-
nal west femto maximum sensitivity substrate according to
manufacturer instructions (Pierce, Rockford, IL) and imaged
on a Kodak 4000R Imaging Station (Kodak, Rochester, NY).

Figure 4. PMCA treatment of HY TME does not affect its infectivity. (A) Survival of Syrian hamsters following i.c.
inoculation of HY TME control (&) HY TME in MoPrP0/0 subjected to one round of PMCA (4) HY TME in MoPrP0/0 at
37�C without sonication (}) and Mock inoculated hamster (�) (n D 5 per experimental group). (B) Western blot
analysis of brain homogenate from hamsters inoculated with sonicated HY TME in MoPrP0/0 (lanes 3–4); HY TME in
MoPrP0/0 incubated at 37�C without sonication (lanes 5–6); and mock uninfected (lanes 7–8). The migration of the
19 and 21 kDa unglycosylated PrPSc polypeptides is indicated on the left of panel B.
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The abundance of PK resistant PrPSc was determined using
the Kodak molecular imaging software v.5.0.1.27 (New
Haven, CT) as described previously.30

Animal bioassay
All procedures involving animals were approved by the

Creighton University Institutional Animal Care and Use Com-
mittee and were in compliance with the Guide for the Care and
Use of Laboratory Animals. Intracerebral inoculations were per-
formed on 3–4 week old male Syrian hamsters (Harlan-Sprague-
Dawley, Indianapolis, IN) as previously described.66 Groups of 5
hamsters were intracerebrally inoculated with 25 ml of the
PMCA treated and unsonicated samples diluted to 1% w/v in
DPBS. Hamsters were observed 3 times per week for the onset of
clinical signs of prion disease and the incubation period was cal-
culated as the number of days between inoculation and onset of
clinical signs.67

Statistical analysis
Student’s t test analysis was performed using Prism 6 for Mac

(GraphPad Software Inc., La Jolla, CA).
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