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Candida albicans, one of the pathogenic Candida species,
causes high mortality rate in immunocompromised and
high-risk surgical patients. In the last decade, only one new
class of antifungal drug echinocandin was applied. The
increased therapy failures, such as the one caused by multi-
drug resistance, demand innovative strategies for new
effective antifungal drugs. Synergistic combinations of
antifungals and anti-virulence agents highlight the
pragmatic strategy to reduce the development of drug
resistant and potentially repurpose known antifungals,
which bypass the costly and time-consuming pipeline of
new drug development. Anti-virulence and synergistic
combination provide new options for antifungal drug
discovery by counteracting the difficulty or failure of
traditional therapy for fungal infections.

Introduction

Candida albicans, one of the leading opportunistic fungal
pathogens, caused high mortality rate especially in immunocom-
promised and high-risk surgical patients.1,2 C. albicans locate in
the oral cavity, digestive tract and genital region as the commen-
sal flora in more than half of the healthy population. When given
pathogenic opportunity, C. albicans is responsible for more than
50% of human candidiasis, including 2 major types of infections,
superficial infections (nonlethal), such as oral or vaginal candidia-
sis; and systemic infections (»40% mortality).3,4 Systemic infec-
tions caused by C. albicans have become a serious public health
threaten in immunocompromised patients, organ transplanta-
tions, non-trauma emergency surgery, massive chemotherapy
and implantable medical devices during the past several decades.3-
6 The development of antifungal drug discovery is relative slower
than antibacterial antibiotics, and antifungal drug resistance

reduce the efficacy of known antifungals.7 The lack of new anti-
fungal drugs and the limited therapeutic options call for new
strategies to find novel antifungal candidates.

Synergistic drug combination has been proved to be a
valid and pragmatic strategy to seek drugs with novel mode
of actions. It can potentially reduce the dose of single drug
usage with increased drug-efficacy, and subsequently lower
the drug toxicity. The practice of targeting 2 or more drug
targets simultaneously is consistent with the philosophy that
a disease is a systematic and complicated outcome caused by
multi-effects. Furthermore, the development of drug resis-
tance can be slowed down by the multi-target strategy. There
are 3 different phases for synergistic antifungal drug combi-
nations, in vitro testing, in vivo animal model validations,
and the clinical trials. Using two or more antifungal drugs to
control severe invasive fungal infections has been adopted in
clinic for a long time. The first application of synergistic
therapy forinvasive candidiasis is flucytosine and amphotericin
B. The flucytosine monotherapy usually caused drug resis-
tance and unexpected side effects, while amphotericin B
compromised these problems.8,9 This combination was rec-
ommended by Infectious Diseases Society of America (IDSA)
guidelines for the treatment of candidiasis among patients in
selected situations, including those with serious and deep-
seated candidal infections involving the central neuron system
(CNS) infections, endovascular infections and serious intra-
abdominal candidiasis.10 There are also some cases which are
well and widely used in clinic (Table 1).

An alternative approach of antifungals is to target virulence fac-
tors which opens a new pipeline for antifungal drug discovery.11 It
extends the range of potential drug targets from “essential pro-
cesses (growth)” to “virulence processes (pathogenesis)”. The strat-
egy of targeting pathogen specific virulence can also help to
preserve the host normal commensal microbiome.12 In addition,
the effective synergistic combinations between anti-virulence agents
and low dose of toxic antifungal drugs provide more potent con-
trols against fungal infections, which are more efficacious but less
toxic than the use of single drugs. In this review, we summarized
the mode of actions of antifungals and fungal drug resistance,
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Table 1. *Selected synergistic combinations against C. albicans in vitro and in vivo.

Data from Wild type or resistance# Synergistic combination Reference

In vitro Animal Wild type and Resistance BeauvericinC Clotrimazole, or Fluconazole, or Itraconazole, or Ketoconazole, or Miconazole Unpublished
In vitro Wild type and Resistance Rapamycin C peptides Unpublished
In vitro Wild type and Resistance Ketoconazole C Avilamycin Unpublished
In vitro Wild type and Resistance Ketoconazole C Spinosad Unpublished
In vitro Wild type and Resistance Nitroimidazoles C Amphotericin B 83

In vitro Wild type and Resistance Histatin 5 and its analogs Amphotericin B 84

In vitro Wild type and Resistance Tetrandrine C Ketoconazole 85

In vitro Wild type and Resistance Fluconazole C Thymol, or Carvacrol 86

In vitro Wild type and Resistance GeldanamycinC Fluconazole 87

In vitro Wild type and Resistance Pure polyphenol curcumin I C Fluconazole, or Miconazole, or Ketoconazole, or Itraconazole, or
Voriconazole, or Nystatin or Amphotericin B

88

In vitro Wild type and Resistance BerberineC Fluconazole 89-91

In vitro Wild type and Resistance Fluconazole C alverine citrate, or Caspofungin, Latrunculin-A, or Wortmannin, or Fenpropimorph 92

In vitro Wild type and Resistance TunicamycinC FK506, or Cyclosporine-A 92

In vitro Wild type and Resistance WortmanninC Tunicamycin, or FK506 92

In vitro Wild type and Resistance Posaconazole C Caspofungin, or FK506 93

In vitro Wild type and resistance Amphotericin B C Terbinafine 94

In vitro Wild type and Resistance FlucytosineC Econazole, or Miconazole 95

In vitro Wild type and Resistance FluvastatinC Fluconazole, or Itraconazole 96

In vitro Wild type and Resistance FK506 C Fluconazole, or Voriconazole, or Itraconazole 97

In vitro Wild type and Resistance Retigeric acid B C Fluconazole, or Ketoconazole, or Itraconazole 98

In vitro Wild type and Resistance Lactoferrin C Fluconazole, or Itraconazole 99

In vitro Wild type and Resistance Farnesol C Fluconazole, or Ketoconazole, or Miconazole, or Amphotericin B 100

In vitro Wild type and Resistance AmiodaroneC Fluconazole, or Voriconazole, or Itraconazole 101

In vitro Resistance Eugenol C Amphotericin B, or Fluconazole 102

In vitro Resistance Honokiol C Fluconazole 103

In vitro Resistance Glabridin C Fluconazole 104

In vitro Resistance TioconazoleC Butylated hydroxyanisole 105

In vitro Resistance Baicalein C Amphotericin B 106

In vitro Resistance CurcuminC R6G, or Ketoconazole, or Itraconazole, or Miconazole 107

In vitro Resistance Anidulafungin C Posaconazole, or Amphotericin B 108

In vitro Resistance CaspofunginC Posaconazole, or Micafungin 108

In vitro Resistance MinocyclineC Fluconazole 109

In vitro Resistance Baicalein C Fluconazole 110

In vitro Resistance OfloxacinC Fluconazole 111

In vitro Biofilm and Planktonic cells Fluconazole C FK506, or Cyclosporine A 112

In vitro Biofilm and Planktonic cells BerberineC Miconazole 113

In vitro Biofilm and Planktonic cells Aspirin C Amphotericin B 114

In vitro Biofilm Tyrocidines C Amphotericin B, or Caspofungin 115

In vitro Biofilm Amphotericin B C Drospirenone, or Perhexiline, or Toremifene 116

In vitro Biofilm CaspofunginC Drospirenone, or Perhexiline, or Toremifene 116

In vitro Biofilm Amphotericin B C N-acetylcysteine, or EDTA, or Ethanol, or Talactoferrin 117

In vitro Biofilm Fluconazole C N-acetylcysteine, or EDTA, or Ethanol, or Talactoferrin 117

In vitro Biofilm Terpenes C Fluconazole 118

In vitro Biofilm DoxycyclineC Fluconazole 119

In vitro Biofilm Silver nanoparticles C nystatin, or chlorhexidine digluconate 120

In vitro Biofilm DoxycyclineC Fluconazole 121

In vitro Biofilm Shearinines D (3) and E (4) C Amphotericin B 122

In vitro Biofilm VerapamilC Fluconazole, or Tunicamycin 123

In vitro Biofilm Cyclosporine A C Fluconazole, or Voriconazole, or Amphotericin B, or Caspofungin 124

In vitro Biofilm Amphotericin B C Rifampicin, or Clarithromycin 125

Animal Wild type and resistance Posaconazole C Caspofungin, or FK506 126

Animal Resistance Amphotericin B C Caspofungin 127

Animal Resistance Tetrandrine C Ketoconazole 128

Animal Wild type BerberineC Amphotericin B 129

Animal Wild type Cilofungin C Amphotericin B 130

Animal Wild type Antimicrobial peptidesC Caspofungin 131

Animal Wild type Nikkomycin Z C R 3783 132

Animal Wild type Amphotericin B C Ketoconazole, or 5-Fluorocytosine 133

Animal Wild type 5-Fluorocytosine C Fluconazole, or Itraconazole 133

(continued on next page)
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highlighted the synergistic screening for new antifungal agents, we
also introduced the recent progress on anti-virulence factor
research in antifungal drug discovery and prospected the strategy
to fight against C. albicans with synergistic combinations of anti-
fungals and anti-virulence agents.

Mode of Actions of Antifungals
and Drug Resistance

Currently, the clinical anti-candidiasis therapeutic drugs
are limited to few classes including polyenes, azoles, allyl-
amines and echinocandins. These antifungal drugs usually tar-
get essential processes of C. albicans which cause the
evolution of drug resistance rapidly such as azoles and echini-
candins, while the resistance to amphotericin B (a polyene
antifungal) is rare. The antifungal drug targets can be con-
fined to the following distinct pathways (Fig. 1): a) ergosterol
and ergosterol biosynthesis. Ergosterol is a key component in
fungal cell membrane and similar to human cholesterol. It
plays an important role in fungal cell growth. Polyene drugs,
such as amphotericin B, can bind to ergosterol and lethally
cause leak of cell components by forming channels on the
fungal cell membranes.13,14 Azoles are another class of anti-
fungals targeting ergosterol biosynthesis. Fluconazole, for
instance, functions through targeting lanosterol 14a-demethy-
lase, which is a core enzyme encoded by ERG11 in ergosterol
biosynthesis.15,16 b) b(1 3)-D-glucan synthesis. Fungal cell
wall containing mannan, chitin, and a- and b-glucansis
another attractive drug target because there is no counterpart
in mammalian cells. Echinocandins can lead to cell death by
inhibiting b(1 3)-D-glucan synthesis and consequently dis-
rupting the fungal cell wall integrity.17 c) Nucleic acids syn-
thesis. Biosynthesis of macromolecules, such as DNA and
RNA, are also adopted as antifungal targets. The clinical used
antifungal drug, 5-fluorocytosin (5-FC), a fluorinated pyrimi-
dine analog, can be transported into cells and finally con-
verted into 5-fluorodeoxyuridine monophosphate (5-FdUMP)
or 5-fluorouracil triphosphate (5-FUTP) to inhibit RNA or
DNA synthesis.18 Besides the drug targets list above com-
monly used in clinic, there are also some other targets identi-
fied for antifungal drug discovery. d) Protein synthesis. A

potential candidate for new fungicidal development named
sordarin is proved that it can inhibit the elongation process
of protein synthesis in yeasts by stabilizing the ribosome/EF2
complex but do not affect the protein synthesis machinery in
mammalian cells.19 e) Mitosis. The antifungal drug, griseo-
fulvin, used both in animals and humans to treat fungal
infections of the skin (commonly known as ringworm) and
nails, was reported it can bind to tubulin, interfering with
microtubule function, thus inhibiting the fungal cell mito-
sis.20 f) Mitochondria. The antifungal candidate arylamidine
was demonstrated that it can selectively accumulated in C.
albicans via transporter-mediated systemsand disrupted yeast
mitochondrial function.21,22 Although current antifungals
functioning depend on above discussed pathways, more are
imperative to be discovered in the future as the pace of anti-
fungal drug resistance continues to increase.

Along with the antibiotics development, drug resistance
evolved successively. Several drug resistant mechanisms were
found in C. albicans (Fig. 1). a) Target overexpression. Antifun-
gal drug resistant strains can over produce drug targets to blunt
the efficacy of antifungals. b) Targets alteration. Under the selec-
tive pressure of antifungals, target mutated cells with decreased
the binding affinity of antifungals survive and develop as resistant
strains. c) Drug sequestration. Fungal pathogens are capable of
separating antifungal drugs from their targets, either by keeping
drugs out of cells, such as forming biofilms, or by hijacking the
invaded drugs into sub-cell structures.23-25 d) Enhanced drug
efflux. There are 2 types of drug efflux pumps identified in C.
albicans, Candida Drug-Resistance (CDR) pump and Major
Facilitator Superfamily (MFS) efflux pump. Both have been
implicated in antifungal drug resistance among the putative
transporter genes identified in the C. albicans genome.26,27 e)
Blocking of antifungal drug entry. Pathogens can set up barriers
to reduce or stop the antifungal drug entry to decrease the intra-
cellular drug concentrations. Apart from the mechanisms dis-
cussed above, clinical isolates also developed other mechanisms
to overcome or bypass the action of antifungals such as chromo-
some aneuploidy (e.g. increase the copy of target genes on some
chromosome) and phenotype transition (Fig. 1).28,29 Moreover,
clinical isolates usually occupy more than one drug resistant
mechanisms resulting in multi-drug resistance, which cause ther-
apeutic failure of current antifungal drugs.30

Table 1. *Selected synergistic combinations against C. albicans in vitro and in vivo. (Continued)

Data from Wild type or resistance# Synergistic combination Reference

Animal Biofilm Fluconazole C FK506, or Cyclosporine A 112

Clinic trials Clinical Amphotericin B C 5-Fluorocytosine 134-137

Clinic trials Clinical 5-Fluorocytosine C Azoles 138

Clinic trials Clinical Amphotericin B C Azoles 139

Clinic trials Clinical Terbinafine C Itraconazole or Fluconazole 140

Clinic trials Clinical Mycograb C lipid-associated amphotericin B 141

*Because strains, culture conditions, susceptibility testing methods and models used to define synergy in these studies were different, results from different
literatures may be contrary to each other, only synergy reports were selected in this table.
#Strains were labeled as wild type if they were not claimed as resistance explicitly in the reference. For clinical trials, the infection sources are not distin-
guished, all labeled as clinical.
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Seeking Synergistic Combinations
to Fight Against C. albicans

The challenge of decreased public health and lack of new
drugs urgently call for new pharmaceutical strategies, one of
which is drug combination research. The generally accepted cri-
terion to determine whether a combination is synergistic or not
is to calculate the FICI (Fractional Inhibitory Concentration
Index) value by the formula: FICI D (MICdrug A in combination/
MICdrug A alone) C (MICdrug B in combination/MICdrug B alone) in
which A and B mean 2 drugs used in the combination. When
FICI > 4, the combination is antagonism, while FICI < 0.5
means synergy, and the combination effect is additive when
FICI between 0.5 and 4.31

In order to increase the hit rates of synergistic combinations,
sample the unexploited expanse of bioactive chemical space,
repurpose the old drugs which are even out of market, and accel-
erate the antifungal drug development pipeline, we establish a
high throughput synergistic screen (HTSS) platform to discovery
new antifungal drugs with novel mode of actions.32-34 For the
first time, we construct a database named Antifungal Synergistic

Drug Combination Database (ASDCD) to assemble published
synergistic antifungal combinations.35 Here we highlight some
synergistic combinations against C. albicans in in vitro studies, in
vivo animal models, and clinical trials (Table 1). In accordance
with their mode of actions, these synergistic combinations can be
categorized into several groups, including 1) antifungal drugs
and drug efflux pump inhibitors, 2) antifungal drugs and drug
resistant efflux pump reversers which can increase the entrance
and accumulation of antifungal drugs, and 3) antifungal drugs
and cell wall or cell membrane disrupting agents which enhance
antifungal drugs penetrating the cell barriers.

For example, beauvericin, identified from our biodiversity
and taxonomy guided marine microbial natural product
library, synergized with several azole drugs such as ketocona-
zole, miconazole against C. albicans including drug resistant
isolates by inhibiting the ABC transporters (Tong et al.,
unpublished).33 Beauvericin was also demonstrated for taking
part in the inhibition of FK506 and cyclosporin in calcineurin
pathway which is essential for the virulence of C. albicans
(Tong et al., unpublished). Berberine, another natural product
from our library, was confirmed that it can reverse the efflux

Figure 1. Antifungal drug targets and related drug resistant mechanisms of C. albicans Antifungal drugs and their targets: (A) polyenes, target is ergos-
terol; (B) azoles, target is ergosterol biosynthesis; (C) echinocandins, target is b(1 3)-D-glucan synthesis; (D) fluoropyrimidine, target is nucleic acids syn-
thesis; (E) sordarins, target is protein synthesis; (F) griseofulvin, target is mitosis; (G) and arylamidines, target is mitochondria. The general drug resistant
mechanisms in C. albicans include: 1. target overexpression; 2. targets alteration; 3. drug sequestration; 4. enhanced drug efflux; and 5. blocking of anti-
fungal drug entry.
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function of MDR1, a major facilitator of C. albicans, in flu-
conazole resistant isolates and further sensitize C. albicans to
azole drugs (Sun et al., unpublished). The combinations of
azoles with beauvericin or berberine, were confirmed for their
effect of killing of C. albicans in both in vitro and systematic
infectious mouse model in vivo studies (Tong and Sun et al.,
unpublished).33

Most of these studies were carried out in vitro, without con-
sidering the physicochemical and biopharmaceutical properties
of the drug combinations as well as the physiological environ-
ment in vivo. Thus, more pre-clinical performances need to be
evaluated for clinical usage. However, these synergistic combina-
tions set up the example for synergistic combinations to fight
against C. albicans.

Anti-Virulence Factors to Discover
New Antifungal Drugs

Virulence factors are attributes of pathogens and generally con-
sidered not essential for pathogen survival in vitro but functioning
and causing damage to host during infections.36,37 C. albicans
express several virulence factors that contribute to its pathogenicity.
These factors include environmental adaptation factors, adhesins,
morphogenesis, secreted enzymes, phenotype switching, and bio-
films.38-40 Virulence factors has also been considered as potent
antifungal targets.41-43 The fundamental behind targeting viru-
lence is instead of killing, hindering pathogens to cause any harm
to the host. Several advantages can be expected from the drug dis-
covery strategy by targeting virulence factors: a) it extends the
range of potential drug targets from ‘essential processes’ to
‘virulence processes’ and enlarges the number of potential drug tar-
gets; b) it reduces direct selection on fungal cells which ultimately
fosters resistance; c) the strategy of targeting pathogen-specific vir-
ulence preserves the host microbiome which is important for nor-
mal commensals, whereas broad-spectrum antifungals can cause
host microbiota unbalance, such as in gut and mouth.12

Among the virulence factors identified, secreted hydrolytic
enzymes, filamentation and the ability to form biofilms are recog-
nized as the main virulence factors contributing to the pathogen-
esis of candidiasis. Many studies have demonstrated the potency
of anti-virulence agents in the antifungal trials with these viru-
lence factors.

Anti-Secreted Hydrolytic Enzymes

One class of the candidates for anti-virulence drugs is protease
inhibitors. In the treatment of HIV infections, Hoegl et al. found
that the potent HIV protease inhibitors showed a favorable influ-
ence on the frequency of mucosal candidiasis in HIV infected
patients.44 Further study revealed that this phenomenon were
not completely due to partial or total reconstitution of the
immune status as originally presumed, but rather due to a direct
inhibitory activity of these compounds against secretary aspartic
proteases, Saps, a major virulence factor contributed to

invasiveness from C. albicans.45 The HIV proteinase inhibitors,
such as saquinavir and indinavir, which already showed potency
in the cure of candidiasis, can be carefully selected and considered
as potential candidates for anticandidal virulence agents.46,47

Phospholipases are another major C. albicans secreted enzymes
contributed to invasiveness during infections. Ganendren et al.
reported that phospholipases substrates analogs such as alexidine
dihydrochloride and 1,12 bis-(tributylphosphonium)-dodecane
dibromide had a relatively broad antifungal activity against C.
albicans, Cryptococcus neoformans, Aspergillus flavus in vitro.48

These phospholipid inhibitors could be attractive molecules for
further development of anticandidal agents.

Anti-Morphogenesis

C. albicans is a polymorphic fungus and is able to transform
its morphologies between yeast and filamentous forms. Filamen-
tation not only represents a virulence trait itself, but it is also
coordinately regulated with other virulence factors associated
with cellular morphology.36,49 The evidence of filamentation in
C. albicans virulence was derived from the gene disrupted strains
locked in yeast morphology.50 By using tet-NRG1 strain with a
tetracycline-regulatable promoter system (morphology is con-
trolled by the presence or absence of doxycycline), Saville et al.
demonstrated that the filamentation of C. albicans was associated
with virulence and mortality.51 Moreover, the authors provided a
proof of concept that inhibition of filamentation represents an
attractive target for the development of new antifungal drugs. An
increasing number of small molecules has been reported that are
able to modulate morphogenetic conversions and inhibit fila-
mentation. These are mainly regulators of the yeast-to-hyphae
transition for C. albicans such as phenazines and homoserine lac-
tones from Pseudomonas aeruginosa, mutanobactins from Strepto-
coccus mutans and capric acid secreted by Saccharomyces boulardii,
farnesol and other autoregulatory alcohols that act as quorum
sensing molecules produced by C. albicans itself, retigeric acid,
and bisbibenzyls.52-58

Anti-Adhesion

Biofilms are structural microbial communities attached to a
surface or encased in a matrix of material. They provide the
potential to initiate or prolong infections by providing a safe
environment for cells for local tissue invading, new infection sites
seeding and drug resisting.7 C. albicans is one of the biofilm
forming species and most clinical manifestations of candidiasis
are linked to biofilm formation.59,60 The exopolymeric anti-
adhesion strategy can be either targeting biofilm matrix or cell
dispersion. Martins et al. demonstrated that addition of DNase
improves the anti-biofilm activity of some antifungal drugs as
extracellular DNA is a component of the C. albicans biofilm
matrix.61 Another possible strategy is to target dispersion, as cells
dispersed from the biofilms are responsible for dissemination,
extravasation and establishment of deep-seated candidiasis.62
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Molecules targeting the specific genes or proteins in the regu-
latory of yeast cell dispersions could be consider as a candi-
date for anti-biofilm agent. It is notable that, because of the
intimate link between filamentation and biofilms, drugs that
modulate C. albicans morphogenesis also could potentially
inhibit the development biofilms. This assumption could be
also applicable to other virulence factors as the pathogenicity
of C. albicans is multifactorial and delicate to the host and
environment conditions.

Combinations of Anti-Virulence Agents
With Antifungals

Though promising, the approach of targeting virulence is still
at the start of the antifungal drug development pipeline. One of
the drawbacks of the anti-virulence agent application is that most
of the genes encoding the major virulence factors are non-essen-
tial and C. albicans express different virulence factors during the
pathogenic process. A pragmatic strategy is to identify anti-viru-
lence agents in conjunction with antifungal therapy, which not
only increases the clearance of fungal pathogens, but also reduces
the pathogenicity and decreases the toxicity of antifungal drugs
by lowering their dosages. Here we highlight some important
applications of anti-virulence agents combined with antifungals
in in vitro studies.

Synergistic Activities of Inhibitors
from Calcineurin Pathway

Calcineurin is proved essential for virulence of C. albicans.63

Mutations from catalytic subunit Cmp1 and regulatory subunit
Cnb1 cause the hypersensitivity to environmental stresses and are
avirulent in mouse model of disseminated candidiasis.64,65 The
deletion of genes from the calcineurin pathway resulted in loss of
tolerance to several antifungal agents.64,66 CyclosporineA (CsA)
and FK506, 2 immunosuppressive drugs which can inhibit calci-
neurin signaling by binding to the cyclophilin and FKBP12
respectively, have been proved for their repurposing usage in anti-
fungal treatment by synergizing with various antifungals which
mainly are azoles.67 These synergistic effects possibly result from
the cell membrane damage and accumulation of toxic sterols
when C. albicans is treated by azoles, while calcineurin pathway
is essential for the response to these stresses.68 This proved con-
cept opens the chapter to combine inhibitors from these 2 path-
ways: calcineurin signaling pathway and egosterol biosynthesis
pathway. For example, radicicol and geldenamycin show potent
synergistic antifungal activities with azoles by inhibiting the func-
tions of Hsp90, a molecular chaperone to calcineurin.69 The
inhibitors of PKC1 (regulates cell wall integrity) render C. albi-
cans hypersensitive to azoles and echinocandins by regulating the
PKV signaling cascade involved with calcineurin and Hsp90.70

Another small heat shock protein Hsp21, similar to Hsp90,
which plays important roles in environmental adaption and viru-
lence potentiates antifungal drug tolerance in C. albicans, while

null mutants become sensitive to antifungal drugs including ter-
binafine, clotrimazole, bifonazole, nocadazole and caspofun-
gin.71,72 These results indicated the synergistic potential between
antifungal drugs and Hsp21 inhibitors.

Anti-Biofilm Agents Sensitize C. albicans
to Antifungals

Biofilms formed by C. albicans are resistant to most of the
commonly used antifungal drugs.73 Susceptibility studies have
revealed that biofilms formed by C. albicans can be resistant to
various antifungal drugs even thousand times than the planktonic
cells.74,75 Currently, there is not a signal antifungal antibiotic was
found effective against biofilm related C. albicans infections at
low concentrations. Meanwhile, higher concentrations of the
antifungal drugs are not advisable because of side effects due to
toxicity. Thus, combination of drugs with different mode of
actions inhibiting multiple cellular targets would be a wise strat-
egy against biofilms. In 2002, for the first time, Khun et al. dem-
onstrated the unique combination activity of lipid formulations
of amphotericin B and echinocandins against Candida bio-
films.76 More efforts have been taken in this prospective area
since then and a summary of these works can be found in the
recent review article by Bink et al.77

In antifungal combination studies, it is interesting that the
results of combination against planktonic cells are not always
match with that of the biofilms but the utilization of anti-biofilm
agents usually sensitize C. albicans to antifungals. For example,
combination of fluconazole and amphotericin B has synergistic
effects on planktonic growth of C. albicans but does not alter the
activity of amphotericin B against biofilms.78 While in another
research, Mohd et al. found that the phytocompound eugenol, a
potential anti-biofilm agent against pre-formed biofilms and the
formation of biofilms alone, exhibited a synergistic interaction
with fluconazole against biofilms.79 The SMIC (sessile MICs) of
fluconazole could be reduced down to 32-fold. The tested com-
pounds were added before the biofilm formed and inhibit its
development which would be of interest for combating recalci-
trant infections involving Candida biofilms. The results showed a
varying level of attenuation of biofilm formation by planktonic
Candida cells in the presence of anti-biofilm compounds and
drugs in a dose-dependent manner. The authors suggested that
the anti-biofilm agent, eugenol, target cell membranes in both
planktonic (higher sterol content) and sessile (lower sterol con-
tent) cells of C. albicans, and that their mode of action remains
unaffected by the phenotypic variation in the ergosterol content
exhibited by planktonic and sessile cells.79 Other candidates for
combination therapies such as chloroquine and cyclosporine also
showed potency in the sensitization of C. albicans to conventional
antifungal drugs.80,81 It is notable that most of the reports deal-
ing with studies of C. albicans biofilm susceptibility for antifungal
combination treatment were in vitro. Studies in vivo and clinical
are need to perform imperatively for real applicable combination
treatments of candidiasis.
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Host Model in Synergistic Antifungal Drug
Discovery

Despite the increasing knowledge of C. albicans virulence and
the discovering of synergistic combinations, it has been not possi-
ble to harness all the information for the development of new
drugs and therapies for candidiasis. Moreover, the great majority
of these combination studies were done in vitro, lacking of evi-
dence for the effects in vivo and clinical, which limited the even-
tual development of anti-candidiasis drugs with some general
concerns about potency and potential toxicity. Thus, host models
are necessary to be introduced for comprehensively studying and
understanding virulence factors and their interactions with anti-
virulence agents. In antifungal drug discovery, besides screening
antifungal compounds in vitro, an alternative approach is to
screen molecules based on host-pathogen interactions in vivo.
Breger et al. developed a high-throughput in vivo assay with Cae-
norhabditis elegans for antifungal screening.82 In a screen of 1266
compounds with known pharmaceutical activities, 15 were iden-
tified that prolonged survival of nematodes infected with C. albi-
cans and inhibited filamentation and biofilm formation of the
fungus. Considering C.elegans is invertebrate organism with only
innate immunity, other vertebrate animals should be employed
as host model in synergistic antifungal study in the future. The
utilization of such host model in anti-infection drug discovery
can help to identify not only antifungal or anti-virulence agents
but also host immunomodulatory active compounds which could
also expand the library of synergistic combinations.

Conclusion

The antifungal drug discovery pipeline has declined substan-
tially over the past decades. The concept of synergistic therapy
breaks the historical paradigm, “one-drug-one-target dogma”, by
targeting different targets and pathways in the disease network.
And the synergistic combination of anti-virulence agents and

antifungal drugs was proved to be a promising way to combat C.
albicans, especially the drug-resistant strains, by targeting both
pathogenic process and the cell growth. However, the discovery
of such synergistic combinations based on experimental methods
by testing a large number of combinations, which is a formidable
challenge in terms of costs and time-consuming. Therefore, dis-
covery of synergistic drug combinations based upon known com-
binations and advancements of fungal pathogen genomics with
computational prediction science prospects a new direction in
antifungal drug discovery and therapy.

To date, rare synergistic combinations have been proved for
the efficacy and safety based on animal models and clinical trials.
More pre-clinical evaluation and investigations need to be carried
out in the future and the mode of actions of these synergistic
combinations should be deciphered. Though there is a long road
from in vitro assay to clinical usage, we believe that an approach
abiding by the integral concept of incorporating disease process
and synergistic bioprospecting strategy gives a promising pros-
pect for the fight against fungal pathogens, even the multi-drug
resistant ones.
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