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Nonsense suppression is a readthrough of premature
termination codons. It typically occurs either due to the
recognition of stop codons by tRNAs with mutant anticodons, or
due to a decrease in the fidelity of translation termination. In the
latter case, suppressors usually promote the readthrough of
different types of nonsense codons and are thus called
omnipotent nonsense suppressors. Omnipotent nonsense
suppressors were identified in yeast Saccharomyces cerevisiae in
1960s, and most of subsequent studies were performed in this
model organism. Initially, omnipotent suppressors were localized
by genetic analysis to different protein- and RNA-encoding
genes, mostly the components of translational machinery. Later,
nonsense suppression was found to be caused not only by
genomic mutations, but also by epigenetic elements, prions.
Prions are self-perpetuating protein conformations usually
manifested by infectious protein aggregates. Modulation of
translational accuracy by prions reflects changes in the activity of
their structural proteins involved in different aspects of protein
synthesis. Overall, nonsense suppression can be seen as a
“phenotypic mirror” of events affecting the accuracy of the
translational machine. However, the range of proteins
participating in the modulation of translation termination fidelity
is not fully elucidated. Recently, the list has been expanded
significantly by findings that revealed a number of weak genetic
and epigenetic nonsense suppressors, the effect of which can be
detected only in specific genetic backgrounds. This review
summarizes the data on the nonsense suppressors decreasing
the fidelity of translation termination in S. cerevisiae, and
discusses the functional significance of the modulation of
translational accuracy.

Introduction

Efficiency and precision of the three major templated pro-
cesses in the cell, replication, transcription, and translation, are

determined by the balance of ambiguity (error frequency) and
repair (efficiency of proofreading). In translation, templating
errors result either from reading of codons by non-cognate
tRNAs, or from recognition of codons by cognate tRNAs
charged with wrong amino acids. Attachment of non-cognate
mRNAs to codons may be reversed by the mechanism of ribo-
somal correction with elongation factor EF-Tu in prokaryotes,
and with its ortholog eEF-1A in eukaryotes (for a review see refs.
1–2). Also, correction of tRNA mis-acylation was described for
several aminoacyl-tRNA synthetases (for a review see ref. 3).
When correction does not occur, resulting errors can be divided
into two major categories: (i) when sense codons are mistrans-
lated into other sense codons, leading to a single amino acid sub-
stitution, or (ii) when stop codons are readthrough as sense ones,
leading to an extension of the peptide. Also, mistranslation of
both sense and nonsense codons may involve a shift of the read-
ing frame.

The genetic approach to the analysis of mistranslation is to
obtain reporters with missense, frameshift and nonsense muta-
tions, and then identify suppressors called, respectively, missense-,
frameshift- and nonsense-suppressors, that would allow to detect
mistranslation events. In general, nonsense suppression is easier to
detect and measure, so it has been studied in more detail than
other two types of suppression.

The study of nonsense suppression began in the 1960s with
the discovery of nonsense mutations and suppressors of nonsense
mutations (SNMs) in the classical Escherichia coli – bacteriophage
T4 system,4,5 followed by the identification of the three nonsense
codons, UAG, UAA and UGA,6,7 the existence of which was pre-
dicted in the work of Francis Crick with co-authors in 1961.8

Saccharomyces cerevisiae was the first eukaryote, in which SNMs
were identified,9,10 (for a review see ref. 11). SNMs are subdi-
vided into two major classes: codon-specific that suppress only
one of the three nonsense codons, and omnipotent that affect
readthrough of all three nonsenses.

Codon-specific nonsense suppression has been found to be
due to mutations in genes encoding different tRNAs. Usually the
anticodon is mutated to an anti-stop, but occasionally changes
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are outside of the anti-codon.12-15 Also, codon-specific nonsense
suppression may be caused by amplification of genes encoding
tRNAs that are near-cognate to stop codons.16,17 Such SNMs are
called “multicopy” suppressors. In this case, multicopy suppres-
sion apparently reflects a lower-level physiological nonsense read-
through.18 For a detailed review of codon-specific SNMs see refs
11, 19.

The story of omnipotent nonsense suppressors in S. cerevisiae
started in 1964 with the discovery of the sup1 (s1) and sup2 (s2)
recessive SNMs that were proposed to be mutations in translation
termination factors.20-22 A very simple phenotypic assay for the
selection of omnipotent nonsense suppressors relied on the
simultaneous readthrough of different nonsenses in the same
strain, e.g., ade1–14 (UGA) and his7–1 (UAA). Almost all of
these double prototroph revertants bore a recessive mutation in
either one or the other of the two genes. These SNMs, currently
known as sup45 and sup35, were also identified in several other
labs as omnipotent suppressors, as well as frameshift suppressors
or allosuppressors that enhance suppressor phenotypes of codon-
specific nonsense suppressors.13,23-27 Later, it was shown that
sup45 and sup35 are the mutant alleles of indispensable genes,
SUP45 and SUP35, that indeed encode release factors, eRF1 and
eRF3, respectively.28-30 Discovery of release factor SNMs indi-
cated that nonsense suppression depends on the outcome of the
competition for nonsense codons between tRNAs and translation
release factors.

While initial evidence could suggest that omnipotent non-
sense suppression was caused directly by the loss of function of
release factors, further studies revealed a more complex interplay
of tRNAs, translation factors, and ribosomes during the recogni-
tion of stop codons. Indeed, omnipotent suppressors were soon
identified in other components of translation machinery, includ-
ing ribosomal components, and in other translation-coupled pro-
teins. Furthermore, in many cases mutations in the same gene
could manifest either as suppressors, or as antisuppressors that
inhibited the readthough caused by other nonsense suppressors.
Adding another level of complexity, numerous studies reported
that readthrough of termination codons in S. cerevisiae could be
caused by mutations or multicopy expression of genes that were
not directly related to translation. Finally, a unique subgroup of
SNMs in S. cerevisiae was associated with epigenetic elements –
prions, i.e., self-perpetuating conformations of proteins that are
prone to form infectious aggregates. In this review we summarize
the data on these heterogenous groups of nonsense suppressors,
and attempt to draw a global picture of the control of the fidelity
of translational termination and discuss its physiological role.

Genetic Modulators of the Frequency of
Translational Readthrough

Here we discuss genes, for which there is evidence for non-
sense suppressor phenotypes due to mutations or changes in
expression level. Table 1 lists these suppressor genes with the
information on mutations and amplification effects. Figure 1
presents a graphical scheme illustrating the involvement of

proteins with different cellular functions in the modulation of
translational readthrough. The map of the genetic and physical
interactions between these genes or their products is shown in
Figure 2.

Modulators of translation termination directly involved in
translation

Beyond SUP35 and SUP45 coding for the translation termi-
nation factors discussed above, this group includes genes encod-
ing ribosomal components, both ribosomal proteins and rRNAs,
and translation factors.

Consistent with the key role of the small (40S) ribosomal sub-
unit in the decoding process, effects on translational accuracy
have been reported for several ribosomal proteins of the 40S sub-
unit. Two dominant omnipotent SNMs, SUP44 and SUP46,
were found to be mutant alleles of the genes RPS2 and RPS9
encoding the homologs of bacterial “ribosomal ambiguity” pro-
teins, ram’s, S4 and S5, respectively.31-34 Also, an array of muta-
tions modulating efficiency of translation termination was
isolated in the gene for the Rps28 protein, a homolog of another
bacterial ram protein, S12. Interestingly, Rps28 can alter transla-
tional accuracy in both directions: some of RPS28 mutations
were SNMs, and some had an antisuppressor effect toward other
nonsense suppressors, including SUP44 and SUP46.35,36 Alto-
gether, these findings were interpreted as the existence of a ribo-
somal decoding center that is conserved from bacteria to yeast.
Finally, suf14, which had been discovered as the C1 frameshift
suppressor25 but later found to be able to suppress the trp1–1
nonsense mutation, is an allele of RPS3.37

The second and very interesting subgroup of translation-cou-
pled omnipotent SNMs are mutant rRNAs of both small and
large ribosomal subunits. Consistent with structural evidence
that the 18S rRNA occupies the accuracy center of the ribosome
in the 40S subunit, mutations affecting ambiguity of translation
termination are particularly abundant in 18S rRNA, where such
mutations were found in helices 18, 27, 34 and 44.38-41 Note-
worthy, both suppressor and antisuppressor mutations were
found in 18S rRNA. The most striking illustration of how this
rRNA can fine-tune translation termination was obtained for the
residue C1054 in helix 34: while substituting this residue to A or
G led to a dominant nonsense suppressor phenotype, the
C1054T mutation caused antisuppression.39

SNMs were also detected in both rRNAs of the large ribo-
somal subunit. In the 25S rRNA, nonsense suppression was
linked to the conserved sarcin / ricin domain.42 This domain is
involved in the decoding through binding to elongation factors43

(see elongation factor SNMs below), as well as to residues that
fine-tune the structure of the A-site region of the large subunit
essential for the correct aa-tRNA accommodation.44 In the satu-
rating mutagenesis study of the entire 5S rRNA, 44 and 5 out of
239 mutations had nonsense suppressor and antisuppressor phe-
notypes, respectively. SNMs were clustered in several regions of
the 5S rRNA molecule and, strikingly, their proportion was dra-
matically increased for evolutionary conserved residues.45 The
authors proposed that 5S rRNA affects translational accuracy by
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Table 1. Genes that affect nonsense readthrough in S. cerevisiae

Gene* Protein Function** Effect on nonsense readthrough***

ACT1 Act1 Actin Nonsense suppressor96

DCP1 Dcp1 Component of P-bodies; subunit of the de-capping
enzyme complex

Nonsense suppressor76

ECM32 (MTT1) Mtt1 Upf1-like helicase Multicopy nonsense suppressor66

EFB1 (TEF5) Efb1 Alpha subunit of translation elongation factor eEF1B;
nucleotide exchange factor for eEF1A

Antisuppressor;49 multicopy antisuppressor50,51

ITT1 Itt1 Interacts with translation release factors eRF1 and eRF3 Multicopy omnipotent nonsense suppressor80

MBF1 (SUF13) Mbf1 Transcriptional co-activator Nonsense suppressor25,37

NAB2 Nab2 RNA-binding protein; required for nuclear mRNA export Weak multicopy suppressor of ade1–1479

NAB3 Nab3 RNA-binding protein required for termination of non-
poly-A transcripts and efficient splicing

Weak multicopy suppressor of ade1–1479

NAM7 (SUP113, UPF1,
MOF4, IFS2)

Nam7 ATP-dependent RNA helicase; component of nonsense
mediated mRNA decay pathway

Recessive omnipotent nonsense suppressor58-63

NMD2 (SUP111, UPF2,
IFS1)

Nmd2 Component of the nonsense-mediated mRNA decay
pathway; involved in telomere maintenance

Weak recessive omnipotent nonsense suppressor58-61,57

PAB1 Pab1 Poly-A binding protein involved in translation and
polyA tail length control

Multicopy antisuppressor67

PPQ1 Ppq1 Serine/threonine PP1 family phosphatase Allosuppressor81,82

PPZ1 Ppz1 Serine/threonine protein phosphatase Z Nonsense suppressor;84 multicopy antisuppressor85

PPZ2 Ppz2 Serine/threonine protein phosphatase Z, isoform of
Ppz1p

Allosuppressor86

PRE3 (CRL21) Pre3 Beta 1 subunit of the 20S proteasome Nonsense suppressor hypersensitive to hygromycin B87-89

RPS2 (SUP44; SUP138) Rps2 Protein of the small (40S) ribosomal subunit Dominant omnipotent nonsense suppressor33,150

RPS28A and RPS28B Rps28 Protein component of the small (40S) ribosomal subunit Nonsense suppressor and antisuppressor35,36

RPS3 (SUF14) Rps3 Protein component of the small (40S) ribosomal subunit Nonsense suppressor25,37

RPS9B (SUP46) Rps9b Protein of the small (40S) ribosomal subunit Dominant omnipotent nonsense suppressor34,31

RPT6 (CRL3) Rpt6 ATPase of the 19S regulatory particle of the 26S
proteasome

Nonsense suppressor hypersensitive to hygromycin B87-89

SFP1 Sfp1 Transcription factor Weak allosuppresoor;93 antisuppressor when in the [ISPC]
prion form92

SIS2 (HAL3) Sis2 Negative regulatory subunit of protein phosphotaze Z Antisuppressor and multicopy allosuppressor85

SSA1 Ssa1 Heat-inducible Hsp70 chaperone Increases nonsense readthrough in [PSIC] cells when
overexpressed152

SSB1, SSB2 Ssb Ribosome-associated Hsp70 chaperone Multicopy antisuppressor (SSB1);50 double deletion
allosuppressor for [PSIC]151

SSO1 Sso1 Plasma membrane t-SNARE; involved in fusion of
secretory vesicles at the plasma membrane and in
vesicle fusion during sporulation

Multicopy suppressor100

STU2 Stu2 Microtubule-associated protein; spindle body
component controlling microtubule dynamics

Multicopy suppressor100

SUP35 (s2, SUP2, SUP36,
SAL3, SUF12, SUPP)

Sup35 eRF3 translational release factor Recessive omnipotent nonsense suppressor and
allosuppressor20,13,23-26

SUP45 (s1, SUP1, SUP47,
SAL4, SUPQ)

Sup45 eRF1 translational release factor Recessive omnipotent nonsense suppressor,
allosuppressor20,13,23,24,26

TEF2 Tef2 Translation elongation factor eEF1A Omnipotent nonsense suppressor46,47

TPA1 Tpa1 Poly-A binding protein involved in polyA tail length
control

Nonsense suppressor73

UPF3 (SUP112) Upf3 Component of the nonsense-mediated mRNA decay
pathway; involved in telomere maintenance

Weak recessive omnipotent nonsense suppressor58-60,57

VTS1 Vts1 RNA-binding protein; stimulates deadenylation-
dependent mRNA degradation

Weak omnipotent multicopy nonsense suppressor77

YEF3 (TEF3) Yef3 Gamma subunit of translational elongation factor
eEF1B; nucleotide exchange factor for eEF1A

Multicopy antisuppressor51

snR18 (SNR18) — snoRNA U18 Multicopy antisuppressor50

18S rRNA (RDN18–1 and
RDN18–2)

— 18S rRNA Nonsense suppressor and antisuppressor38-41

25S rRNA (RDN25–1 and
RDN25–2)

— 25S rRNA Nonsense suppressor42

5S rRNA — 5S rRNA Nonsense suppressor and antisuppressor45

Note: *Alternative names are shown in the brackets; **See “Saccharomyces Genome Database” (http://www.yeastgenome.org/) and references therein for
the functional role of gene products; ***Unless otherwise stated the phenotypes are caused by mutations or gene disruptions.
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transducing information between different functional centers of
the ribosome.

Translation elongation factors also affect translational read-
through. Omnipotent SNMs were obtained in the S. cerevisiae
TEF2, one of the two genes encoding the translation elongation
factor eEF1A.46 eEF1A plays a central role in the delivery of aa-
tRNA to the ribosome and, after the GTP hydrolysis, leaves aa-
tRNA docked in the ribosomal A-site, where decoding events
occur for both elongation and termination. The mutations were
clustered in two regions of the Tef2 protein that are involved,
respectively, in the interaction with aa-tRNA and GTP-binding,
suggesting two distinct mechanisms for the modulation of trans-
lational accuracy by Tef2. Disruption of TEF2 that left only one
eEF1A-encoding gene, TEF1, and thus led to the reduction of
eEF1A levels, caused antisuppression, and not only in S. cerevi-
siae,47 but also in Podospora anserina.48 A feasible explanation for
these data is that reduction in eEF1A allowed for a more efficient
competition from termination factors. This explanation was sup-
ported by findings that mutations inactivating the nucleotide
exchange factor for eEF1A, the eEFB1a protein encoded by
EFB1, also had an antisuppressor effect.49 A seemingly contradic-
tory result, that overexpression of EFB1 also causes antisuppres-
sion,50,51 is apparently because the antisuppressor effect of EFB1
overexpression is caused not by the eEFB1a encoded by the

EFB1 ORF, but by the EFB1 intron-encoded snoRNA, snR18,
that guides the 2’-O-methylation of the 25S rRNA. In this case
control of translation termination fidelity possibly occurs via
modification of rRNAs by the snoRNA regulatory system.50

Valouev et al. (2009) proposed another interesting explanation
for the multicopy antisuppressor phenotype of eEFB1a, and also
of another subunit of eEFB1, eEFB1g encoded by YEF3. They
hypothesized that eEFB1 has an auxiliary function as a nucleotide
exchange factor for the translation termination factor eRF3
encoded by SUP35, so excess eEFB1a and eEFB1g promote the
activity of Sup35 and, consequently improve the efficiency of
translation termination.51 This hypothesis is further supported
by the homology of eEF1A and the C-terminal part of Sup35.

The fact that SNMs were found in most ribosomal compo-
nents and in translation factors is not surprising. Ribosome, as a
protein-RNA complex guiding the decoding process, has a great
potency for the fine-tuning of translational fidelity, not only
increasing but also decreasing the frequency of translational
errors. Indeed, there is an obvious link between SNMs and the
decoding center of the ribosome and, specifically, the A-site,
where the choice between elongation and termination is made.
For example, all known SNMs for ribosomal proteins are in the
small subunit. And among elongation factors, termination accu-
racy is affected by the ones that are implicated in events at the

Figure 1. Nonsense suppressors in S. cerevisiae, and cellular processes in which SNMs are implicated. Genes that are linked to nonsense suppressors are
shown and grouped by cellular functions of their products. Thick teal arrows show the lifecycle of proteins, from transcription to degradation. Red arrows
show influence of one process or prion on another. Light-green arrows show conversion of soluble proteins into prion conformations. Dashed arrows are
shown in the cases if the mechanisms of an influence are not fully elucidated. Dark blue lines connect processes and their graphical representations.
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A-site. Noteworthy, while some studies raise the possibility of
nonsense recognition as an outcome of a competition between
elongation and termination, many mutations in different ribo-
somal components and translation factors have similar effects on
the accuracy of translation termination and on the frequency of
other translational errors, such as framesifting and mistranslation
of sense codons, indicative of a global effect on the accuracy of
decoding.52 This supports the idea that in some cases nonsense
suppression could reflect the general inaccuracy of the decoding

site. Beyond the decoding site, factors affecting the overall accu-
racy of translation do not always cause nonsense readthrough.
For example, a dramatic effect on the accuracy of sense codon
recognition without a nonsense suppressor phenotype was
reported for Rpl39,53 a large subunit protein that is located in
the peptide exit channel, where it affects both the post-transla-
tional signaling events and the speed of the peptidyl transferase
reaction, which is downstream of the critical steps of the codon
recognition essential for the nonsense readthrough.54,55

Figure 2. Interaction network of the genes and factors affecting nonsense readthrough in S. cerevisiae. Genetic factors are indicated as gray circles, epige-
netic – as red circles. Different lines indicate different types of interactions between suppressors: physical interactions are shown in orange, genetic – in
gray. The data on interactions were obtained and combined from “BioGrid” (http://thebiogrid.org/), “GeneMANIA” (http://genemania.org/), “Saccharomy-
ces Genome Database” (http://www.yeastgenome.org/) and, in some cases, from papers cited in this review.
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RNA-binding proteins involved in mRNA processing
This group includes proteins that are either directly involved

in translation, or affect it through directing mRNA to active
translation, storage or degradation. While many of them are
known to interact with Sup35 and/or Sup45, the mechanisms of
the modulation of the efficiency of translation termination are
largely unclear.

The NMD (Nonsense-Mediated Decay) mRNA degrada-
tion pathway is tightly coupled with translation, and its com-
ponents interact with both eRF1 and eRF3.56,57 The mutant
alleles of NAM7 (UPF1), NMD2 (UPF2), and UPF3 encod-
ing the components of the surveillance complex implicated in
NMD were initially isolated as weak recessive omnipotent
nonsense suppressors sup113, sup111 and sup112, correspond-
ingly.58 The relationship between these suppressors and
NMD genes was proven only in 2005,59 but meanwhile sev-
eral studies directly tested the effects of known NMD compo-
nents on the fidelity of translation termination, and nonsense
suppression was detected in the upf1-D, upf2-D and upf3-D
strains.60-63,57 While stabilization of nonsense-containing
transcripts in NMD-deficient strains could be the simplest
explanation for these phenotypes, experimental evidence indi-
cates alternative explanations implying an interaction of
NMD components with translation termination factors.
Indeed, nonsense suppression in the presence of disruptions
or mutations in UPFs was independent on their effects on
mRNA turnover.62,63,57 Also, there is evidence that Upf1
affects the mode of translation of stop codons: decoding of
premature stop codons by the release factor is aberrant, but
only in the presence of Upf1.64 On the other hand, it is feasi-
ble that inefficient NMD is a contributing factor to nonsense
suppressor phenotypes of some sup35 and sup45 mutants:
accumulation of nonsense-containing mRNAs was reported
for several sup45 SNMs.65

In addition to the well-known components of the surveillance
complex, Ecm32 (Mtt1), an Upf1-like helicase that also interacts
with translation termination factors, was shown to cause non-
sense suppression when overexpressed.66

Another Sup35-binding protein affecting the accuracy of
translation termination is the poly-A binding protein encoded by
the PAB1 gene: its overexpression antisuppresses nonsense-sup-
pression caused by Sup35 mutations, as well as reduces the read-
through of different stop codons in reporter assays.67 The
understanding of how Pab1 promotes translational accuracy is
complicated by the fact that Pab1 is a multifunctional protein
involved in both translation and control of mRNA stability, and
the interaction of Pab1 with Sup35 is important for different
functions of Pab1. On one hand, Pab1 interacts with the initia-
tion factor eIF4G promoting the formation of a closed-loop
structure between the mRNA cap and poly-A tail, essential for
efficient translation. This process is translation-dependent and
requires the retention of Sup35 with the Pab1 complex after ter-
mination.68 Thus, the effect of Pab1 on termination efficiency
could be through translation. Indeed, disruption of the ribosomal
protein Rpl39, which is critical for translational accuracy,53 res-
cues the lethality of pab1-D.69 Furthermore, a recent finding that

NMD depends on a complex competition of Pab1 and Upf1 for
binding with Sup35,70 opens the possibility that NMD could be
involved in Pab1-associated nonsense suppression. On the other
hand, Pab1 controls mRNA stability through the conventional
de-adenylation / de-capping pathway, and mutations in Sup35
have been shown to interfere with mRNA de-adenylation and
degradation.71,72 This indicates that termination accuracy could
be controlled through de-adenylation. The possible role in this
for proteins specifically interacting with poly-A and implicated in
the control of its length is further underscored by the finding that
the disruption of the TPA1 gene, which encodes a protein inter-
acting with Pab1, Sup35, Sup45 and de-adenylation enzymes, is
also an SNM.73

P-bodies and stress granules are the RNP complexes involved
in mRNA storage and degradation. They encompass multiple
components of the translational machinery and occasionally
incorporate eRF1 and eRF3,74,75 although association with
release factors is not obligatory. Both disruption and point muta-
tions in the DCP1 gene, which encodes the P-body marker Dcp1
involved in mRNA de-capping prior to degradation, increase the
stop codon readthrough and suppress the ade2–1 nonsense muta-
tion.76 An interaction between Dcp1 and Sup35 was reported in
co-immunoprecipitation experiments, so this interaction may be
either direct, or it is possible that the effect of Dcp1 on transla-
tional accuracy is mediated by Pab1, with which Dcp1 also
interacts.

Expanding the involvement of mRNA degradation machinery
in nonsense readthrough, we have recently made an interesting
observation that VTS1, a gene that encodes a protein essential for
the degradation of the normal transcripts containing a specific
Signal Recognition Element (SRE) hairpin loop, can cause weak
omnipotent nonsense suppression when expressed from a multi-
copy plasmid.77 The suppression was observed in a system where
the SUP35 chromosomal copy was deleted and replaced by a
plasmid expressing a chimeric Ab-Sup35 protein, which acts as
cryptic nonsense suppressor.78

Also, in the same suppression-sensitive background, we
found that essential genes NAB2 and NAB3 act as multicopy
allosuppressors of the ade1–14(UGA) nonsense mutation.79

NAB2 encodes a protein involved in nuclear mRNA export,
and NAB3 is an RNA-binding protein required for efficient
mRNA splicing and maturation. Thus, readthrough of termi-
nation codons is caused not only by mRNA decay proteins,
but also by RNA-binding proteins with a wide spectrum of
functions regulating mRNA production and delivery to the
cytoplasm. We hope that exact molecular mechanisms for
the Vts1, Nab2 and Nab3 action will be elucidated in the
nearest future, but some hints can be obtained even now,
from interactome analyses. As can be seen from Figure 2,
VTS1, NAB2 and NAB3 each interact with several previously
identified SNMs that may mediate their effects on nonsense
suppression.

The last SNM we include in this group is ITT1, which causes
omnipotent nonsense suppression when overexpressed.80 The
function of the protein is not known, but it interacts with two
known SNMs, Sup35 and Sup45.
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Phosphatases
The first indication of the influence of a gene encoding a pro-

tein phosphatase on nonsense suppression was obtained from the
analysis of recessive allosuppressors, which enhanced nonsense
suppression in the presence of the sup35–2 and sup45–4 alleles.81

One such allosuppressor, sal6, was mapped to the PPQ1 gene
encoding a protein phosphatase regulating the mating response.82

While the exact target through which Ppq1 affects translational
accuracy was not established, there is evidence for its involvement
in the regulation of protein synthesis: disruption of PPQ1 results
in the reduced rate of protein synthesis and hypersensitivity to
protein synthesis inhibitors.83

More recently, several studies implicated the protein phospha-
tase Z in the control of the accuracy of translational termination.
Deletion of one of the genes for this phosphatase, PPZ1, was
shown to increase readthrough of termination codons.84 Con-
versely, overexpression of PPZ1 causes antisuppression.85 Dele-
tion and overexpression of SIS2 (HAL3), which is a negative
regulatory subunit of Ppz1p, cause, respectively, antisuppression
and allosuppression.85 Finally, mutational inactivation of PPZ2,
the PPZ1 paralogue, causes allosuppression in the presence of the
Sup35-based prion [PSIC].86 It has been proposed that Ppz1
affects translational fidelity through its target, translation elonga-
tion factor eEFB1a (see the Modulators of translation termina-
tion directly involved in translation section).85

Components of the protein folding machinery and
proteasome

In 1988 McCusker and Haber isolated a set of cyclohexi-
mide-resistant mutants that fall into 22 complementation
groups. These mutants, called crl (cycloheximide-resistant
lethal), had pleiotropic phenotypes similar to those of omnip-
otent nonsense suppressors, including temperature sensitivity,
and suppressed the met13–2 nonsense mutation.87,88 Later,
by complementation of their temperature sensitivity, crl3 and
crl21 mutants were localized to the RPT6 and PRE3 genes
encoding proteasome proteins.89 It is interesting that, simi-
larly to rRNA SNMs, these crl mutants were also sensitive to
different aminoglycoside translational inhibitors, such as
hygromycin B and G418. Other mutations in the 20S pro-
teosomal components that were isolated in this study, pre1,
pre2, pre3 and pre4,89 also had pleiotropic phenotypes
observed for the crl mutants, suggesting that these genes
could be involved in the modulation of translational ambigu-
ity. To the best of our knowledge, there have been no fol-
low-up studies that would explain the role of the proteasome
in translational ambiguity. However, recent findings link
nonsense decoding and proteasomal protein degradation by
showing that the NMD system facilitates the ubiquitin-
dependent proteolysis of truncated peptides synthesized from
templates containing premature stop codons.90,91 Thus, defi-
ciencies in proteasome system could either specifically stabi-
lize partially functional truncated proteins or even interfere
with the functioning of NMD and translation termination.

Several studies also report that nonsense suppression and
efficiency of stop codon readthrough is regulated by the

chaperone machinery and, specifically, by chaperones of the
Hsp70 family. For example, SSB1 that encodes the Ssb
Hsp70 chaperone involved in the co-translational protein
folding decreases detectable nonsense readthrough when over-
expressed,50 whereas a double deletion of SSB1 and SSB2,
the second Ssb-encoding gene, increases nonsense read-
through in the presence of the [PSIC] prion.151 Among the
Ssa Hsp70-encoding genes, overexpression of SSA1 increases
nonsense readthrough in [PSIC] cells.152 While these chaper-
ones may work through the folding and modulation of stabil-
ity of proteins with stop codons recoded into sense codons, it
is also feasible that they change availability of the translation
termination factor, Sup35, by affecting its recruitment into
the [PSIC] prion,151,152 or, in the case of Ssb, by directly
affecting the decoding process on the ribosome.50

Transcription factors
This group currently includes two genes, SFP1 and MBF1.

The protein product of the SFP1 gene, Sfp1, is capable of form-
ing the [ISPC] prion that has an antisuppressor effect.92 How-
ever, deletion of SFP1 causes an opposite effect, a weak
allosuppression,93 which is observed in the strains bearing a com-
bination of specific SUP35 and SUP45 mutant alleles.94

MBF1, a DNA replication stress-dependent transcriptional
co-activator, was initially isolated as the suf13 C1 frameshift sup-
pressor,25 and later found to suppress the trp1–1 nonsense
mutation.37

However, the number of transcription factors affecting non-
sense suppression, is likely much higher. Indeed, we recently
found that the genes encoding transcriptional regulators ABF1,
GLN3, FKH2, MCM1, MOT3, and REB1 can act as very weak
multicopy suppressors. Their effect on translational accuracy
needs further investigation, since it was detected only for the rela-
tively efficiently suppressed ade1–14(UGA) codon. Also, suppres-
sor effect of these transcription factors was observed only in the
genetic background that was made readthrough-prone by intro-
ducing a cryptic nonsense suppressor:95 like in the study describ-
ing the discovery of the VTS1, NAB2 and NAB3 multicopy
suppressors (see the RNA-binding proteins involved in mRNA
processing section), this was done by substituting Ab-Sup35 for
the wild type Sup35.

Cytoskeleton and transport
Finally, SNMs were linked to changes in both actin and

microtubular cytoskeletons. Due to yet unclear mechanisms,
several act1 mutations cause nonsense suppression.96 The
authors hypothesized that the effect is mediated by elongation
factors and, specifically, by eEF1A. The alternative possibility
is that the suppression is mediated by Sup35, which is known
to interact with multiple components of the actin cytoskele-
ton, especially in the context of the formation of the Sup35-
based prion [PSIC].97-99,153 Also, a multicopy SNM pheno-
type was reported for STU2, a gene encoding a component
of the spindle body controlling microtubule dynamics, and
for SSO1, which codes for a component of the plasma
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membrane t-SNARE complex involved in the fusion of secre-
tory vesicles to the membrane.100

In summary, currently the list of genes affecting readthrough
of termination codons includes 37 names (Table 1). As can be
seen on the map in Figure 2, many of these genes interact. More-
over, there are no genes in this group that don’t have genetic
interactions with other group members. This suggests that,
although SNM genes curate extremely different cellular pro-
cesses, they are involved in a specific sub-interactome, in which
four genes, SUP35, SUP45, PAB1 and ACT1, appear to be the
“hubs” connecting most of its members (Figure 2). Thus, SNMs
involved in different cellular processes may realize their influence
on translation via interaction with these four major translation-
coupled SNMs. Alternatively it is possible that modulation of
translation by these key proteins allowed the discovery of an array
of cellular functions influencing translational readthrough.
Indeed, the fact that SNM genes do encode proteins involved in
all stages of the expression of genetic information, from transcrip-
tion, to splicing and mRNA export from the nucleus, to mRNA
modification, to translation, and finally, to mRNA degradation
(Figure 1), certainly underscores a multi-level control of transla-
tional accuracy.

It is also noteworthy that recently several novel SNMs were
uncovered in the presence of mutations in other SNM genes,
such as SUP35 and SUP45. All these new SNMs are very weak
suppressors, often allosuppressors. So the pre-existing mutations,
which can be cryptic themselves, create an environment, essen-
tial for the initial selection of such weak suppressors and allo-
suppressors. This suggests that genetic background may be
crucial for the detection of factors that fine-tune the frequency
of the readthrough of nonsense codons. Considering that most
studies have not been conducted in such suppression-sensitive
backgrounds, it is likely that only a small fraction of weak non-
sense suppressors, allosuppressors or antisuppressors were identi-
fied to date.

Epigenetic Modifiers of Translational
Readthrough Efficiency

Along with a number of genes that affect nonsense suppres-
sion in the mutated or overexpressed state, a family of epigenetic
elements modulating this process has also been described
(Table 2, Figure 2). The first epigenetic modulator of nonsense
suppression, [PSIC], was discovered in 1965 as the allosuppressor
of the weak suppressor tRNA.101,102 Its molecular nature

remained mysterious for a long time, until it was explained
within the framework of the prion hypothesis by Reed B. Wick-
ner,103,104 based on a series of studies linking [PSIC] to Sup35,
and eventually demonstrating that [PSIC] is a prion form of
Sup35.105-109 The nonsense suppressor phenotype of [PSIC] is a
result of partial inactivation of Sup35 release factor, due to its
incorporation in the [PSIC] prion aggregate.

The second prion identified in our studies, [PINC], also mod-
ulates translational readthrough, although this influence is indi-
rect. This prion was initially discovered as the non-chromosomal
determinant essential for the de novo induction of [PSIC].110,111

Later [PINC] was linked to the protein with an unknown func-
tion encoded by the RNQ1 gene and biochemically and geneti-
cally proven to be able to take on a prion conformation.112,113

Both [PSIC] and [PINC] were recently detected in wild yeast
populations, with [PINC] occurring considerably more fre-
quently than [PSIC] and present in all wild [PSIC] strains.114,115

The demonstration that [PSIC] can act as a phenotypic modifier
for an array of traits in various genetic backgrounds led to a
hypothesis that [PSIC] has an adaptive role revealing hidden
genetic variability and thus facilitating the survival and evolvabil-
ity of wild yeast populations in changing environmental condi-
tions.116,117,115 In this case, an adaptive role of [PINC] could be
in the induction of [PSIC] (as well as of other prions). However,
the hypothesis of the adaptive role of [PSIC] is challenged on the
grounds that the frequency of [PSIC] strains in nature is too low
for a non-harmful trait,118 that at least some [PSIC] variants are
notably detrimental or even lethal to yeast cells,119 and that the
existing intraspecies barriers for [PSIC] transmission manifest an
adaptation to limit the spread of the prion.120

Two novel epigenetic modulators of nonsense suppression
were recently discovered in our laboratory. The first is the non-
chromosomal determinant [ISPC], an antisuppressor detectable
in the background of some SUP35 and SUP45 mutations.121

This determinant was demonstrated to be the prion form of
Sfp1,92 which was discussed above (see the Transcription factors
section). The most interesting features of [ISPC] are the very
high frequency of its spontaneous de novo appearance, the
nuclear localization of the prion, and that this prion does not
lead to the Sfp1-deficient phenotypes, but rather enhances the
phenotype of wild type Sfp1.92 The latter obviously indicates
that Sfp1 retains its activity upon acquiring its prion conforma-
tion. One possibility is that the prion-related aggregation allows
for the concentration of Sfp1 at the site of its activity. Sfp1 regu-
lates the transcription of »10% of yeast genes, so it is possible
that the effect of [ISPC] is due to global changes in the

Table 2. Epigenetic modifiers of nonsense suppression in S. cerevisiae

Prion Structural protein Function of structural protein Prion phenotype

[PSIC] Sup35 eRF3 translational release factor Dominant omnipotent suppressor101,105-109

[PINC] Rnq1 Unknown Enhances the de novo appearance of [PSIC]110-113

[ISPC] Sfp1 Transcription factor Antisuppressor92,121

[NSIC]* Unknown Unknown Weak dominant omnipotent suppressor123,77

Note: *Prion-like non-chromosomal factor.
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transcriptome / proteome. Alternatively, according to recent find-
ings, the levels of SUP35 mRNA and Sup35 protein are increased
in [ISPC] cells, which could provide a more direct explanation to
the antisuppression and the growth and survival advantages of
the [ISPC] prion in strains with insufficient levels and/or activity
of translation termination factors.122

The other non-chromosomal determinant affecting nonsense
suppression is [NSIC]. This determinant is a weak omnipotent
nonsense suppressor, which also affects vegetative growth.123,77,78

The structural gene for [NSIC] has not yet been found, but
[NSIC] is very similar to other known yeast prions in many
aspects. Indeed, [NSIC] is characterized by dominant non-Men-
delian inheritance and cytoplasmic infectivity, which has been
proven both by cytoduction and protein transformation. Also, it
is curable by a universal anti-prion agent GuHCl, as well as by
the deletion or a mutational inactivation of the Hsp104 chaper-
one, but not by overexpression of HSP104.123 [NSIC] modulates
the amounts of the mRNA for several genes, including VTS1,78

(see the RNA-binding proteins involved in mRNA processing
section above), thus its determinant appears to be involved in the
regulation of transcription or degradation of mRNAs.

Altogether, the system of epigenetic modulators of transla-
tional readthrough in yeast contains four members (Table 2),
two of which, [PSIC] and [NSIC], act as omnipotent suppressors,
the third, [ISPC], as an antisuppressor, and the fourth, [PINC],
as a modulator of prion formation.

The Role of Translation Termination Ambiguity:
Sense or Nonsense?

A potentially ambiguous reading of initiation and termination
signals is a basis for the regulation of every templated process in
the cell, and this is particularly true for the termination of transla-
tion. While the first examples of naturally occurring codon-spe-
cific nonsense readthrough were found in viruses, now such
examples are known for all groups of organisms. With the excep-
tion of the UGA codons decoded by selenocystein tRNA in pro-
karyotes and higher eukaryotes, and UAG codons decoded by
the pyrrolysine tRNA in some prokaryotes (for reviews see refs.
124, 125), the readthrough function is usually provided by non-
mutant near-cognate host tRNAs potentially capable of nonsense
translation. For some tRNAs the propensity for such mistransla-
tion is determined by nucleotide modifications, both in the anti-
codon and outside of it. An extreme example of an adaptation to
the nonsense codon readthrough comes from Euplotes sp. where
the recoding of the UGA stop codon into cystein is both due to
the presence of a promiscuous tRNACys and the inability of
eRF1 to recognize UGA codons.126-128 In mRNAs, the read-
through is facilitated by the context of stop codons that makes
them “leaky” (for a review see ref. 19).

In yeast the biological role of an ambiguous reading of non-
sense codons remains unclear. However, several examples of nat-
ural SNMs and SNM-affected templates have been obtained.
The ability to recognize the UAG and UAA stop codons was
reported for tRNAGln CAG and CAA, respectively.16-18 There is

also and indirect evidence for the readthrough of UAG codons
by endogenous tRNATrp, tRNATyr and tRNALys. This evidence
comes from sequencing analyses of translational products of non-
sense-containing mRNAs.129

The first search for SNM-sensitive yeast ORFs aimed to iden-
tify the “leaky” stop codons based on the presence of
“provocative” motifs known to promote readthrough in yeast.
The idea was based on the finding that the efficiency of transla-
tion termination in yeast is determined by a synergistic interplay
between sequences immediately upstream and downstream of the
stop codon.129,130 In the screen, the stop codon contexts were
derived from the CAA UAG CAA UUA context from the
Tobacco mosaic virus leading to a 25% readthrough of some
ORFs in S. cerevisiae.129-132 The screen revealed that readthrough
of a termination codon in the PDE2 gene drastically increases in
the presence of the [PSIC] prion and leads to overproduction of
cAMP.133 For seven more ORFs the level of stop codon read-
through was at least 2-fold higher in a [PSIC] strain in compari-
son to [psi¡]. Another whole-genome screen performed by Namy
and co-authors predicted genes for which expression is likely con-
trolled by non-conventional decoding.134 The authors searched
for two adjacent ORFs separated by only one stop codon. Out of
58 ORFs identified by the in silico search, for eight ORFs the
basal readthrough level reached 3–25%, and in two of those
ORFs, BSC4 and IMP3, the readtrough significantly increased in
the presence of [PSIC]. These findings suggest that some yeast
ORFs are really read through in the presence of SNMs, including
the naturally occurring [PSIC], and that such readthrough can be
functional. Taking into consideration that the first screen was
based on the predictions for “leaky stop” contexts that were far
from being fully elucidated, and the second screen had a strict
length filter for ORFs beyond the internal stop, the real number
of SNM-sensitive ORFs is likely significantly higher than cur-
rently assumed.

It should also be noted that the role of translational ambi-
guity may be not limited to nonsense readthrough, but also
includes other mistranslation events. Indeed, some omnipo-
tent SNMs, including [PSIC], also act as frameshift suppres-
sors.135 Programmed frameshifting in yeast is important not
only for Ty1 and Ty3 retrotransposons136 and L-A dsRNA
virus,137 but also for the expression of some cellular genes.
For example, [PSIC] modulates the cellular content of poly-
amines through the C1 frameshifting required for the anti-
zyme gene expression.138 In addition, Est1, a subunit of
telomerase, and Abp140, an actin filament-binding protein,
require the C1 frameshifting for their expression.139,140 Inter-
estingly, a recent study establishes a link between nonsense
and frameshift suppression: in Euplotes sp. deficiency of eRF1
in the recognition of stop codons coincides with a dramatic
increase in the frequency of frameshifting.141

In addition to specific ORFs requiring nonsense suppression
or frameshifting for their translation, pseudogenes, which are
considered to be a source of new functional units in gene evolu-
tion, are often inactivated with nonsense and frameshift muta-
tions. So, as it had been suggested earlier,142 SNMs, including
Sup35 prionization, may play an important role in the activation
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of either pseudogenes or their fragments exposed to natural selec-
tion in the process of gene evolution.

Certainly, studies of nonsense suppressors in yeast may have
important implications for treatment of human diseases. Indeed,
nonsense mutations constitute up to a third of the disease causing
mutations in humans, and selection of chemical compounds pro-
moting the readthrough of these premature stop codons has
recently become a promising therapeutic approach for such dis-
eases as Duchenne muscular dystrophy, cystic fibrosis and several
types of cancer. Understanding of the mechanisms of transla-
tional readthrough obtained in the course of studies of nonsense
suppression is likely to be helpful for drug screens, from the
mechanistic details on how particular types of drugs affect spe-
cific translational components (e.g., the effects of aminoglycoside
antibiotics on rRNA), to the knowledge about the differences of
termination at normal and premature stop codons (e.g., in
relation to mRNA stability and subsequent translation of the
message). Drug discovery can also be facilitated by the well-devel-
oped experimental systems used for the selection of nonsense sup-
pressors and measurement of nonsense readthrough (for reviews
see refs.143, 144).

Another important aspect is that proteins encoded by genes,
for which SNMs have been reported, may not only decrease but
also increase translation termination fidelity. Multiple examples
are discussed above. For example, SUP35, where mutations or
prionization generally cause readthrough, can act as an antisup-
pressor if its N-terminal prion-forming domain is deleted.145

Also, both suppressor and antisuppressor mutations were
reported for the Rps28 ribosomal proten35,36 and 18S
rRNA.38,39 Finally, mutations in TEF2 cause omnipotent non-
sense suppression,46 whereas its disruption causes antisuppres-
sion,47 and for PPZ1 and PPZ2 deletion and overexpression
cause allosuppression and antisuppression, respectively.84,86

These findings led to an unexpected discovery: if even a single
nucleotide substitution or an adjustment of expression level can
significantly increase the efficiency of translation termination, it
is not selected to be maintained at the highest possible level. Pos-
sibly, the naturally existing gap between the real and maximal
efficiencies of translation termination fidelity allows for the reali-
zation of the information from the sites of programmed frame-
shifting and read through.

Overall, the growing understanding that roles for omnipotent
SNMs are important and widespread, and that SNMs form an
extensively interacting system, brings us to the question: how is
this system regulated? In this respect the differences between
genetic and epigenetic SNMs are very interesting. Of course,

genetic SNMs typically appear due to mutations that perma-
nently inactivate or change expression levels of the corresponding
proteins. In contrast to genetic suppressors, prions arise upon
reversible conformational changes. Recent evidence indicates that
at least for some prions, switching between prion and non-prion
state occurs in response to environmental signals. The most strik-
ing example is [MOT3C] that can be induced by ethanol stress
and eliminated by hypoxia.146 For [PSIC], appearance is facili-
tated by various stressful conditions, including oxidative stress
and high salt concentrations,147 whereas its loss may be promoted
by heat shock, probably due to imbalance in the chaperone sys-
tem.148 Also, induction of [PSIC] is dependent upon the presence
of [PINC],110,113 which is relatively widespread in natural yeast
populations.114,115 Furthermore, recent evidence suggests that
promoting each other’s formation and elimination is a common
feature of yeast prions establishing a network of interrelated
conformational switches (for a review see ref. 149). Considering
this, epigenetic modulation of the fidelity of translation termi-
nation appears to be faster and more flexible than genetic
changes. However, genetic SNMs, when they arise not from
mutations, may also be the consequences of up- or downregula-
tion of the corresponding genes, and this regulation may be
flexible and responsive to various environmental stimuli. Alto-
gether, a dualistic system of the genetic and epigenetic modula-
tors of the translational readthrough in yeast has a great
potential to provide the precise tuning of this process. It is clear
that naturally polysemantic recognition of nonsenses by the
translation machinery is important, but only the tip of the ice-
berg is currently discovered, and a number of intriguing find-
ings await us along this way.
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