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L egionella spp. are amoebae-resistant
environmental bacteria that repli-

cate in free-living protozoa in a distinct
compartment, the Legionella-containing
vacuole (LCV). Upon transmission of
Legionella pneumophila to the lung, the
pathogens employ an evolutionarily con-
served mechanism to grow in LCVs
within alveolar macrophages, thus trig-
gering a severe pneumonia termed
Legionnaires’ disease. LCV formation is a
complex and robust process, which
requires the bacterial Icm/Dot type IV
secretion system and involves the amaz-
ing number of 300 different translocated
effector proteins. LCVs interact with the
host cell’s endosomal and secretory vesi-
cle trafficking pathway. Accordingly, in a
proteomics approach as many as 12 small
Rab GTPases implicated in endosomal
and secretory vesicle trafficking were
identified and validated as LCV compo-
nents. Moreover, the small GTPase Ran
and its effector protein RanBP1 have
been found to decorate the pathogen vac-
uole. Ran regulates nucleo-cytoplasmic
transport, spindle assembly, and cytoki-
nesis, as well as the organization of non-
centrosomal microtubules. In L. pneumo-
phila-infected amoebae or macrophages,
Ran and RanBP1 localize to LCVs, and
the small GTPase is activated by the
Icm/Dot substrate LegG1. Ran activation
by LegG1 leads to microtubule stabiliza-
tion and promotes intracellular pathogen
vacuole motility and bacterial growth, as
well as chemotaxis and migration of
Legionella-infected cells.

Legionella pneumophila Forms a
Distinct Pathogen Vacuole in

Phagocytes

Gram-negative environmental bacteria
of the genus Legionella resist degradation
by free-living protozoa and grow within
these phagocytic predators.1 Upon inhala-
tion of aerosols contaminated with Legion-
ella spp., the opportunistic pathogens
reach the human lung and replicate in
alveolar macrophages.2 Bacterial resistance
of degradation by macrophages is a pre-
condition to cause a severe pneumonia
termed Legionnaires’ disease. Legionella-
bearing aerosols can spread and sicken
people several kilometres from their sour-
ces,3 which are frequently cooling towers
of air conditioning systems or industrial
plants. Legionella pneumophila causes up
to 90% of the Legionnaires’ disease cases
and therefore is the clinically most rele-
vant species.2

To survive and replicate within amoe-
bae or macrophages, L. pneumophila
employs an apparently conserved mecha-
nism that centers on the formation of a
unique membrane-bound compartment,
the Legionella-containing vacuole
(LCV).4-6 LCVs interact with the endo-
somal pathway but do not fuse with bac-
tericidal lysosomes. Instead, the
pathogen vacuoles intercept early secre-
tory vesicles emerging from endoplasmic
reticulum (ER) exit sites and ultimately
fuse with the ER. The fusion with the
ER is not essential for the creation of a
replication-permissive compartment, as
L. pneumophila already grows within
vacuoles that are attached to but not yet
merged with the ER.7,8 In addition to
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subverting endosomal and secretory
pathways, L. pneumophila also interferes
with retrograde,9 lysosomal10 and auto-
phagosomal trafficking.11

Environmental protozoa such as amoe-
bae and ciliates are the natural hosts of
Legionella species. Given the similarity of
the infection process on a cellular level,
amoebae including Acanthamoeba castella-
nii or Dictyostelium discoideum represent
versatile models to analyze cell-autono-
mous Legionella-phagocyte interactions.12

Translocated Legionella Effector
Proteins Determine Pathogen-

Host Cell Interactions

LCV formation is an intricate and
robust process, which is governed by
the Legionella Icm/Dot type IV secre-
tion system (T4SS) that translocates the
astonishing number of »300 different
“effector” proteins into host cells.5,13-15

Hence, L. pneumophila devotes at least
10% of its genome to define interac-
tions with eukaryotic host cells. A num-
ber of effectors target phosphoinositide
(PI) lipids, a family of low abundance
glycerophospholipids, which play key
roles in eukaryotic signal transduction
and membrane dynamics.16-19 The L.
pneumophila effectors anchor to the
LCV membrane by selectively binding
to phosphatidylinositol-4-phosphate
(PtdIns(4)P) or PtdIns(3)P, which local-
ize to LCVs and are hallmarks of the
secretory or the endosomal pathway.8,20

The Icm/Dot-translocated ER interac-
tor SidC and the Rab1 modulator SidM
(see below) specifically bind to PtdIns(4)P
and promote the tethering and fusion of
ER-derived vesicles with the LCV, respec-
tively.7,20-22 PtdIns(4)P might accumulate
on LCV membranes either directly due to
the activity of the Icm/Dot substrate SidF,
a PI polyphosphate 3-phosphatase,23 or
indirectly through the recruitment of
OCRL1, a eukaryotic PI polyphosphate
5-phosphatase.24 Furthermore, the gluco-
syltransferase SetA25 and the retromer
interactor RidL bind PtdIns(3)P9, which
might be dephosphorylated to PtdIns by
the Icm/Dot-translocated PI 3-phospha-
tase SidP.26

Several L. pneumophila effectors have
been characterized that target small host
GTPases implicated in the secretory or
endosomal trafficking pathways.5,6,27,28

Some of these effectors exhibit novel activ-
ities, through which they modulate signal
transduction and vesicle trafficking path-
ways. RalF or SidM (alias DrrA) function
as guanine nucleotide exchange factors
(GEFs) for the small GTPases Arf129 or
Rab1,30,31 respectively. Intriguingly, Rab1
is targeted by at least six different Icm/
Dot substrates. The small GTPase is acti-
vated by the GEF activity of SidM, and
covalently modified through the adeno-
sine monophosphate transferase (AMPy-
lase) activity of SidM32,33 or by the
phosphocholinase activity of AnkX,33,34

either of which prevents Rab1 inactiva-
tion. Furthermore, LidA functions as an
activator/ stabilizer for the GTPase.31,35

The covalent modifications of Rab1 can
be reverted by either the deAMPylase
SidD36,37 or the dephosphocholinase
Lem3,38,39 and the GTPase is inactivated
by the GTPase-activating protein (GAP)
LepB.40,41 Finally, the effector VipD
tightly binds activated Rab5 and Rab22,
thus impeding binding of Rab effectors
and endosomal trafficking.42 VipD is a
Rab5-activated phospholipase A, which
catalyzes the removal of PtdIns(3)P from
endosomal membranes and thereby pro-
tects LCVs from endosomal fusion.43

In addition to PI lipids or small
GTPases, Icm/Dot substrates also spe-
cifically target other host trafficking
components. The effector RidL binds
to the Vps29 subunit of the heterotri-
meric cargo recognition subunit of the
retromer complex and interferes with
retrograde endosome to Golgi traffick-
ing.9 SidK interacts with the VatA sub-
unit of the late endosomal/ lysosomal
vacuolar HC-ATPase, thereby prevent-
ing acidification of the LCV.10 RavZ
hydrolyzes the autophagy factor Atg8 at
a C-terminal glycine, thus irreversibly
removing a phosphatidylethanolamine
residue and cleaving Atg8 from
autophagosome membranes.11 Finally,
LegS2 (a homolog of eukaryotic sphin-
gosine-1-phosphate lyase with unknown
function) localizes to mitochondria.44

Thus, host factors essential for different
vesicle trafficking pathways that restrict

the replication of intracellular pathogens
are specifically targeted and modified by
L. pneumophila effectors.

The Pathogen Vacuole is
Decorated with Endosomal and

Secretory Small GTPases

Groundbreaking early studies revealed
that LCVs are decorated with the small
GTPases Arf1 and Sar1,29,45 Rab146,47 as
well as Rab7.48 In more recent studies,
intact LCVs were isolated, and the host
proteome of the purified pathogen vacuole
preparations was determined by tandem
mass spectrometry (MS).49-51 To this end,
LCVs from infected D. discoideum amoe-
bae were enriched, using an antibody
against the PtdIns(4)P-binding Icm/Dot
substrate SidC, which exclusively localizes
to the pathogen vacuole membrane. The
immuno-affinity separation step was then
followed by Histodenz density gradient
centrifugation.

In the proteomics approach, more than
560 D. discoideum proteins were initially
identified as LCV components, including
Arf1, Rab1, Rab7, Rab8 and Rab14.49

The proteomics data were validated by
fluorescence microscopy using amoebae
stably producing GFP fusion proteins.
The purification protocol was subse-
quently adapted to enrich intact LCVs
from RAW 264.7 macrophages, and the
proteome was compared with LCVs iso-
lated from D. discoideum.51 This analysis
revealed more than 1150 (macrophages)
or 670 (D. discoideum) host proteins,
including Arf1, Sar1 (SarA), and 14 small
GTPases of the Rab family. LCV localiza-
tion of all Rab proteins except two (Rab6,
Rab18) was confirmed by fluorescence
microscopy. Therefore, Arf1, Sar1 and at
least 12 different Rab GTPases (Rab1,
Rab2, Rab4, Rab5, Rab7, Rab8, Rab9,
Rab10, Rab11, Rab14, Rab21, and
Rab32) localize to LCVs (Fig. 1). Most of
these small GTPases (Arf1, Rab1, Rab2,
Rab4, Rab8, Rab10, Rab11, Rab14,
Rab21, Rab32) selectively accumulate on
pathogen vacuoles containing wild-type L.
pneumophila but not mutant bacteria lack-
ing a functional Icm/Dot T4SS.29,45,49,51

In contrast, the late endosomal Rab pro-
teins Rab7 and Rab9 (and to some extent
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also the early endosomal GTPase Rab5)
are present on pathogen vacuoles harbor-
ing wild-type as well as DicmT mutant L.
pneumophila.

Individual depletion of 20 small
GTPases by RNA interference (RNAi) in
epithelial cells revealed that endocytic
GTPases (Rab5a, Rab14, and Rab21)
restrict the intracellular growth of L. pneu-
mophila, whereas secretory GTPases
(Arf1, Rab8a, Rab10, and Rab32), impli-
cated in Golgi to endosome trafficking,
promote bacterial replication. Moreover,

depletion of Arf1, Rab8a, Rab14, or
Rab21 (but not Rab1 or Sar1) signifi-
cantly decreased the number of SidC-posi-
tive LCVs, suggesting that these GTPases
regulate the level of PtdIns(4)P on the
pathogen vacuole.49,51 In summary, prote-
omics data and its validation revealed that
at least 14 distinct small GTPases promot-
ing different cellular pathways localize to
LCVs. These findings corroborate the
notion that LCVs communicate with
many host cell compartments and vesicle
trafficking pathways.

The Legionella Effector LegG1
Activates the Small GTPase Ran

on the Pathogen Vacuole

The proteomics approach outlined
above not only identified small GTPases
of the Arf, Sar and Rab families on
LCVs, but also indicated the presence of
the small GTPase Ran and its effector
Ran binding protein 1 (RanBP1), as well
as a- and b-tubulin.49-51 Microtubules
are implicated in the initial trafficking
events of LCVs, taking place prior to the

Figure 1. LCV localization and cellular functions of Rab and Ran GTPases. The LCV is decorated with small GTPases localizing to the secretory pathway
(Arf1, Rab1, Rab2, Rab8, Rab10, Rab32), early endosomes (Rab4, Rab5, Rab14, Rab21), recycling endosomes (Rab4, Rab11), or late endosomes and lyso-
somes/ autolysosomes (Rab7, Rab9). The small GTPase Ran and its effector RanBP1 localize to LCVs and promote microtubule polymerization as well as
nucleo-cytoplasmic transport.
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acquisition of the early secretory vesicle
marker GFP-HDEL and the resident ER
marker calnexin-GFP.52

The small GTPase Ran plays a funda-
mental role in many cellular processes,
including nuclear pore translocation,53 or
post-mitotic nuclear envelope formation
and mitotic spindle assembly.54,55 Fur-
thermore, Ran controls cytoplasmic events
involving microtubules,56 e.g., organiza-
tion of non-centrosomal microtubules,57

endocytic receptor trafficking,58 and retro-
grade signaling along microtubules in
nerve axons.59 Ran is activated by a Ran
GEF termed regulator of chromosome
condensation 1 (RCC1),60 which localizes
to the nucleus or the chromatin (in
mitotic cells), respectively. Active Ran
(GTP) is inactivated by cytoplasmic Ran-
GAP1, together with RanBP1 that con-
tains a Ran(GTP)-binding domain.59

The L. pneumophila Icm/Dot substrate
LegG1 (Legionella eukaryotic gene G1;
Lpg1976) shows amino acid sequence sim-
ilarity with the eukaryotic Ran GEF
RCC1.61-63 LegG1 (alias PieG) is encoded
in the Pie (Plasticity island of effectors)
gene cluster and localizes to punctate, vesi-
cle-like structures upon ectopic production
in CHO FcgRII cells.63 To target the bac-
terial protein to host membranes, LegG1/
PieG is lipidated by the host prenylation
machinery at a C-terminal CAAX tetra-
peptide motif.64 Mutation of the con-
served cysteine residue, as well as treatment
with pharmacological inhibitors of iso-
prenoid biosynthesis (mevastatin) or gera-
nylgeranyltransferase activity abolished the
membrane localization of ectopically pro-
duced LegG1, suggesting that prenylation
is a major membrane-targeting determi-
nant. Thus, L. pneumophila employs at
least four different strategies to specifically
localize effector proteins to the LCV mem-
brane: exploitation of PI metabolism
(SidM, SidC, SetA, RidL), prenylation
(LegG1), intrinsic hydrophobic domains
(LepB, SidF) or a novel membrane sensor
enriched in aromatic and positively
charged amino acid residues (RalF).65

LCV localization of Ran and
RanBP1, together with the prediction
that LegG1 might function as a Ran
activator, prompted us to validate the
subcellular localization of these proteins,
to investigate whether LegG1 indeed

activates Ran and to analyze the conse-
quences of Ran activation in L. pneumo-
phila-infected cells.66 Ran and RanBP1
were found to localize to LCVs in an
Icm/Dot-dependent manner in D. dis-
coideum amoebae producing the corre-
sponding GFP fusion proteins (Fig. 1),
and M45-tagged LegG1 also accumu-
lated on the pathogen vacuole mem-
brane. Upon depletion of Ran or
RanBP1 by RNAi, intracellular growth
of L. pneumophila in A549 lung epithe-
lial cells was significantly reduced. Fur-
thermore, L. pneumophila lacking legG1
was compromised for intracellular
growth in macrophages, and the mutant
strain was efficiently out-competed by
wild-type bacteria upon co-infection of
A. castellanii.66 Yet, in absence of
legG1, calnexin accumulation on LCVs
was not affected, indicating that LegG1
does not affect the fusion of the patho-
gen vacuole with the ER.

LegG1 activated Ran GTPase on
LCVs, since the Ran(GTP)-binding effec-
tor RanBP1 accumulated on D. discoi-
deum LCVs harboring L. pneumophila
wild-type, but not mutant bacteria lacking
legG1 or a functional Icm/Dot T4SS, and
purified LegG1 produced active Ran
(GTP) in macrophage cell lysates.66

LegG1 represents the first Ran activator
identified in a prokaryotic organism; yet
the mechanism of Ran activation remains
unclear. The effector might activate Ran
directly through GEF activity, similar to
the eukaryotic Ran GEFs RCC1 and
RanBP10. However, in a nucleotide
exchange assay using purified human Ran,
His-tagged LegG1 showed no GEF activ-
ity, while purified RCC1 did. Perhaps,
LegG1 activates Ran indirectly by stabiliz-
ing activated Ran(GTP), by inhibiting a
Ran GAP, or by targeting a Ran-specific
nucleotide release protein such as Mog1.67

To address downstream effects of Ran
activation, we investigated microtubule
polymerization. LegG1 stabilized micro-
tubules in D. discoideum or macrophages
throughout the host cell, as well as on the
LCV membrane (Fig. 1), as indicated by
confocal laser scanning microscopy and
stimulated emission depletion (STED)
microscopy, subcellular fractionation and
western blot analysis. In an alternative
approach, LegG1 was delivered into host

cells by “microbial microinjection” using
a Yersinia enterocolitica strain that produ-
ces the Ysc T3SS, yet lacks all endogenous
T3SS effectors.68,69 Fusion proteins of the
Y. enterocolitica effector YopE N-terminal
translocation fragment with LegG1
(YopE1–53-LegG1) were injected into
nocodazole-treated epithelial cells, where
they elicited in a Ran-dependent manner
a denser microtubule network, compared
with uninfected cells or cells infected with
bacteria producing YopE1–53.

Since LegG1 localizes to the LCV
membrane, the Ran activator likely regu-
lates the production of a Ran(GTP) gradi-
ent originating from this membrane
compartment. Yet, the effector might not
only act as a Ran activator in cis (on
LCVs) but also in trans (in a distance
from LCVs) to promote the formation of
a replication-permissive pathogen vacuole
and/or to affect other cellular processes
regulated by the small GTPase. Given that
the Icm/Dot substrate RomA (Regulator
of methylation A), a L. pneumophilameth-
yltransferase that modifies chromatin and
gene expression, is targeted to the host cell
nucleus,70 it is tempting to speculate that
LegG1 might also control Ran-dependent
nucleo-cytoplasmic transport.

The Ran Activator LegG1
Promotes Pathogen Vacuole
Motility and Cell Migration

Shortly after phagosome closure LCVs
move along microtubules within D. discoi-
deum cells.52 Using real-time confocal
laser scanning microscopy, we analyzed
the dynamics of LCV transport along
microtubules in D. discoideum producing
either calnexin-GFP66 or GFP-a-tubu-
lin.71 Under these conditions, LCVs har-
boring wild-type L. pneumophila were
very motile and rapidly moved along
microtubules. In contrast, LCVs harbor-
ing DlegG1 mutant bacteria were stalled,
and the phenotype was complemented by
plasmid-encoded LegG1. Microtubule-
dependent LCV motility might position
the pathogen vacuole in the vicinity of
interacting compartments such as the ER.
Alternatively, LegG1-dependent microtu-
bule polymerization might promote vesi-
cle trafficking processes in a distance from
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the pathogen vacuole, in order to promote
fusion and fission events of vesicles com-
municating with the vacuole.

LegG1 not only promoted intracellular
pathogen vacuole motility, but also che-
motaxis and migration of eukaryotic
cells.71 In under agarose assays, L. pneumo-
phila inhibited in a dose- and T4SS-depen-
dent manner the migration of D.
discoideum amoebae toward folate, of
murine RAW 264.7 macrophages toward
the cytokines CCL5 and TNFa, or of pri-
mary human polymorphonuclear neutro-
phils (PMN) toward the peptide fMLP. L.
pneumophila lacking legG1 hyper-inhibited
the migration of the phagocytes, and the
phenotype was reverted to an extent
observed for mutant bacteria lacking a
functional Icm/Dot T4SS by providing
legG1 in trans. Similarly, LegG1 promoted
random migration in scratch assays of L.
pneumophila-infected macrophages and
A549 epithelial cells in a Ran-dependent
manner, or upon “microbial micro-
injection” into HeLa cells by Y. enterocoli-
tica lacking endogenous effectors. Real-
time single-cell tracking of L. pneumo-
phila-infected phagocytes revealed that the
velocity and directionality of the cells were
decreased, and cell motility as well as
microtubule dynamics were impaired.71

The above results are in agreement
with the notion that LegG1 stimulates cell
migration by antagonizing (unknown)
Icm/Dot-translocated effectors inhibiting
cell migration. L. pneumophila might ben-
efit from the LegG1-dependent promo-
tion of cell migration by counteracting
Icm/Dot substrates, which destabilize
microtubules and thus damage a number
of essential cellular pathways such as
phagocytosis, vesicle trafficking, cytokine-
sis and migration. Thus, by activating the
Ran GTPase and consequent microtubule
stabilization, LegG1 might dampen a del-
eterious impact of other effectors on the
host cytoskeleton.

In summary, our results demonstrate
that Ran and its eukaryotic effector
RanBP1, as well as the L. pneumophila
Icm/Dot substrate LegG1 localize to
LCVs. LegG1 was characterized as the first
bacterial Ran activator, which dependent
on Ran GTPase and RanBP1 promotes
microtubule stabilization, LCV motility
and intracellular replication of L.

pneumophila, as well as migration of
infected cells. These findings pave the way
for a detailed further analysis of the signal
transduction pathways activated by Ran
(GTP) in pathogen-infected phagocytes.
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