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The bacterial cytoplasm lies within a multilayered
envelope that must be protected from internal and external
hazards. This protection is provided by cell envelope stress
responses (ESRs), which detect threats and reprogram gene
expression to ensure survival. Pathogens frequently need
these ESRs to survive inside the host, where their envelopes
face dangerous environmental changes and attack from
antimicrobial molecules. In addition, some virulence genes
have become integrated into ESR regulons. This might be
because these genes can protect the cell envelope from
damage by host molecules, or it might help ESRs to reduce
stress by moderating the assembly of virulence factors within
the envelope. Alternatively, it could simply be a mechanism
to coordinate the induction of virulence gene expression with
entry into the host. Here, we briefly describe some of the
bacterial ESRs, followed by examples where they control
virulence gene expression in both Gram-negative and Gram-
positive pathogens.

Introduction

The environment that bacterial pathogens encounter within
the host poses many threats to the integrity of their cell envelope.
These include changes in temperature, pH and osmolarity, as
well as direct attack by molecules such as surfactants and cationic
antimicrobial peptides (CAMPs). Therefore, it is not surprising
that cell envelope stress response systems (ESRs) and their role in
maintaining envelope integrity/functions are often important for
virulence. This aspect of ESRs in bacterial virulence has been the
subject of other reviews and will not be repeated extensively
here.1,2 However, this review focuses specifically on the regula-
tion of virulence genes by these ESRs. This focus presents some-
thing of a problem because “virulence genes” and “envelope
stress response” are 2 microbiological terms that are difficult and

perhaps even contentious to define. It is not our intention to con-
tribute our own entries into that debate here, but we must begin
by providing the admittedly subjective and loose definitions that
we have chosen solely for this article. We will define virulence
genes as those that encode both defensive and offensive functions
thought to be required exclusively or at least predominantly in
the host. For example, toxins, attachment factors, some protein
export systems, and factors involved in resistance to CAMPs. By
cell envelope stress response, we refer to transcriptional regulation
systems known/suspected to be activated by, and/or determining
resistance to, stimuli associated with adverse effects on the cell
envelope, such as misfolded, mislocalized or aggregated proteins,
perturbation of the cell envelope itself, or the presence of mole-
cules that can cause such perturbation. This is not a comprehen-
sive review of all bacterial ESRs, or of all the impacts that ESRs
have on bacterial virulence. Rather, the purpose of this article is
to briefly outline some of the ESRs found in Gram-negative and
Gram-positive bacteria, and then to focus on describing a few
selected examples of virulence gene regulation by ESRs in various
pathogens.

Regulation of Virulence Genes by ESRs
in Gram-Negative Bacteria

Introduction to Gram-negative ESRs
The cell envelope of Gram-negative bacteria is made up of 2

membranes and the periplasmic space between them, which also
contains the peptidoglycan cell wall.3 The outer membrane
(OM) is an asymmetric bilayer made up of phospholipids in the
inner leaflet and lipopolysaccharide (LPS) in the outer leaflet.
The OM provides a major permeability barrier, although it does
contain integral b-barrel porin proteins that allow small mole-
cules to pass through by diffusion. The periplasmic space is
home to various enzymes, transporters and regulatory proteins. It
also contains a thin but rigid layer of peptidoglycan that provides
resistance against the inner turgor pressure and maintains cell
shape. The inner membrane (IM) is a symmetric phospholipid
bilayer with integral a-helical proteins responsible for a broad
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range of activities that include transport, generation of electro-
chemical gradients, and the synthesis of ATP. Both membranes
also have lipoproteins anchored to them by N-terminal lipid
moieties.

The cell envelope is a critical but vulnerable structure and bac-
teria must perceive and respond to a variety of internal and exter-
nal threats that might compromise it. This is vital when
pathogenic species enter their host, where the cell envelope pro-
vides an important barrier against dangerous environmental con-
ditions. The cell envelope is also a target of attack for some
components of the innate immune system. To deal with these
dangers, bacteria have evolved specialized response systems that
detect problems within the cell envelope and communicate with
cytoplasmic DNA-binding proteins to alter gene expression and
combat the threat. These are known as cell envelope stress
responses (ESRs).1,2,4 The best-characterized ESRs in Gram-
negative bacteria consist of an alternative sigma factor, 3 different
2-component regulatory systems, and the phage shock protein
response. Much, but by no means all, of the basic characteriza-
tion of these systems has been done in Escherichia coli K-12 and
its close relatives.

The extracytoplasmic function (ECF) sigma factor, RpoE or
sE, orchestrates the most extensively studied Gram-negative
ESR. It is also an ESR with an extremely well studied connection
to virulence gene control in Pseudomonas aeruginosa. A proteo-
lytic cascade degrades an inhibitory antisigma factor to control
RpoE activity and this cascade is triggered by misfolded/mislocal-
ized OM proteins and by so-called “off-pathway” LPS mole-
cules.5,6 RpoE is essential in some species, with E. coli being a
notable example.7 This indicates that it also plays a critical role
during normal growth conditions.8 Nevertheless, the stress-
induced increase of RpoE activity triggers an extensive alteration
in gene expression, with target genes involved in protein folding
and degradation, cell envelope biogenesis and various other
aspects of metabolism, and in particular the OM.9,10 In fact,
overall it seems that the broad role of the RpoE response is to
help maintain OM homeostasis.

One of the 2-component ESRs is the conjugative pilus expres-
sion (Cpx) response.11,12 Its core components are the IM histi-
dine kinase CpxA and the cytoplasmic response regulator CpxR.
Cpx inducing conditions include exposure to alkaline pH, over-
production and accumulation of pilus subunits in the periplasm,
mutations that impact periplasmic protein folding, and exposure
to environmental conditions that alter the composition of the
bacterial cell envelope.13-17 Upon induction, CpxR regulates
many genes that are involved in maintaining cell envelope
homeostasis, with the most recent data suggesting that IM main-
tenance might be its most important function.18,19 The Cpx
response is also one of the Gram-negative ESRs that regulates vir-
ulence genes.

Another Gram-negative ESR is restricted to the Enterobacter-
iaceae and is a non-canonical 2-component system known as the
regulation of capsular synthesis (Rcs) phosphorelay. It is induced
by conditions that are deleterious to the cell envelope such as
osmotic shock, desiccation, and overproduction of envelope pro-
teins.20,21 The Rcs regulon includes genes involved in diverse

cellular processes including maintenance of cellular integrity,
motility, biofilm formation and capsular polysaccharide produc-
tion. Once again, this is a ESR that has been implicated in viru-
lence gene regulation.

The third 2-component ESR is the bacterial adaptive response
(Bae). It is induced by exposure to membrane damaging agents
including indole and some other antimicrobial compounds and
is thought to provide protection against them. Specifically, it pro-
motes the increased expression of a group of linked genes encod-
ing a multidrug transporter that might exclude toxic compounds
from the cell.22,23 However, there are no links to virulence gene
control and so this ESR will not be discussed further.

The final Gram-negative ESR is the phage shock protein (Psp)
system, which can be induced by extreme heat or osmotic shock,
and by exposure to some organic solvents and proton iono-
phores.24-28 One potent and highly specific activator of the Psp
response is the mislocalization of pore forming “secretin” pro-
teins into the inner membrane.29,30 The Psp response is thought
to react to, and mitigate, specific events that compromise the
integrity of the inner membrane. A striking feature of the Psp sys-
tem is that it is remarkably autonomous. Studies in 3 different
species have shown that the genes encoding the Psp proteins are
the only ones that change their expression level when a secretin
mislocalizes.31,32 Together with other work, this suggests that the
Psp proteins detect the inducing trigger and increase only their
own production to mitigate the stress. Therefore, although the
Psp system itself is essential for virulence in Yersinia enterocolitica
and Salmonella enterica serovar Typhimurium (S. Typhimu-
rium), it does not regulate other virulence genes and will not be
described further here.28,33,34

All of the ESRs outlined above are known or likely to be
induced by one or more conditions found in the host, and their
general stress tolerance and envelope homeostasis roles can have
broad impacts on virulence.1,2 Their effects on cell envelope
functions and integrity can influence many important pheno-
types such as adaptation to host environmental conditions (e.g.
temperature and osmolarity) as well as resistance to CAMPs, sur-
factants and reactive oxygen species. However, as stated in the
Introduction, this article will focus on their roles in controlling
virulence gene expression.

The RpoE ESR

ECF sigma factors are common in both Gram-negative and
Gram-positive bacteria and often play a role in ESR.35–37 RpoE
is one ECF sigma factor that is widely conserved in Gram-
negative bacteria. Numerous studies, mostly in E. coli and
P. aeruginosa, have uncovered how RpoE activity is controlled
(Fig. 1).38,39 The cytoplasmic domain of the bitopic IM anti-
sigma factor, RseA, sequesters RpoE to inhibit its activity.40,41

However, an inducing condition initiates a proteolytic cascade
that degrades RseA. The first protease in this cascade is the IM
protein DegS. Misfolded outer membrane proteins (OMPs)
interact with DegS, which activates it to cleave the periplasmic
domain of RseA. However, the RseA periplasmic domain is also
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bound by the RseB protein, which protects it from cleavage by
activated DegS.40,41 Therefore, 2 signals are required to initiate
the RseA proteolytic cascade, activation of DegS by its interaction
with misfolded OMPs, and a second signal that disrupts the
RseB-RseA complex. Recent work has revealed that this second
signal is off-pathway LPS molecules (i.e. intermediates in LPS
transport to the OM), which bind to RseB to antagonize its inter-
action with RseA (Fig. 1).6 Both of these RpoE-inducing signals
are likely to be generated simultaneously if defects in LPS biogen-
esis cause problems in OMP biogenesis and vice versa. Indeed,
mutational disruption of LPS biosynthesis also generates the

OMP inducing signal for DegS.6 Furthermore, the OMP LptD
is part of the machinery that assembles LPS in the OM, and
LptD requires the same assembly machinery as other OMPs.42

Thus, defects in OMP biogenesis will disrupt LptD function,
and consequently LPS transport and assembly.

After the periplasmic domain of RseA has been cleaved by
DegS the remaining part of RseA becomes susceptible to cleavage
by RseP, another IM protease, which then cleaves the RseA trans-
membrane segment (Fig. 1). Interestingly, in S. Typhimurium
acid stress has been reported to induce RseP to cleave RseA inde-
pendent of the misfolded OMP signal and DegS, and this might
be relevant during host infection.43 Regardless, after cleavage by
RseP the RseA N-terminal domain is released into the cytoplasm,
still bound to RpoE, where cytoplasmic proteases degrade it and
free RpoE to induce genes involved in mitigating cell envelope
stress.9,10,41,44-46 Importantly, this proteolytic cascade and the
dual-signal OMP/LPS activation mechanism are evolutionarily
conserved, having also been described in the distant E. coli rela-
tive, Pseudomonas aeruginosa.6

RpoE control of alginate production in Pseudomonas
aeruginosa

The best-studied example of RpoE regulating virulence genes
is the control of alginate biosynthesis in the opportunistic patho-
gen P. aeruginosa. The lungs of people suffering from cystic fibro-
sis (CF) become colonized by P. aeruginosa, which leads to
respiratory decline and a poor prognosis.47 The initially coloniz-
ing strains are susceptible to clearance by the immune response
or antibiotic treatment. However, over time the bacteria in the
lung undergo a phenotypic conversion to a mucoid appear-
ance.48,49 The environmental conditions in the lung, including
the inflammatory immune response, are thought to impose a
selection for P. aeruginosa mutants that produce the mucoid exo-
polysaccharide alginate constitutively. Alginate facilitates biofilm
formation and promotes resistance to host defenses and antibiot-
ics.50 The alginate biosynthesis operon is positively controlled by
RpoE, which is known as AlgU (or AlgT) in P. aeruginosa.51 A
proteolytic cascade analogous to that in E. coli is triggered to
degrade the antisigma factor RseA (called MucA in P. aeruginosa)
when misfolded OMPs interact with its DegS homolog AlgW,
and LPS interacts with it RseB homolog, MucB.6,52 However,
the mucoid isolates from CF lungs almost always have mutations
that inactivate MucA/RseA.52,53 The great majority of these
mutations are predicted to cause an aberrant form of MucA
(MucA22) with the C-terminal periplasmic domain truncated,
which renders it susceptible to proteolysis.54-57

In addition to its role in controlling alginate biosynthesis,
there are reasons to suspect that the P. aeruginosa RpoE/AlgU
response might function to maintain cell envelope homeostasis as
well. First, as mentioned above, the P. aeruginosa RpoE/AlgU
system requires the OMP and LPS activation signals. Second,
mucoid conversion and AlgU activation can be induced by inacti-
vation of the AlgU-dependent gene mucD. This gene encodes a
homolog of the E. coli periplasmic protease DegP, which
degrades abnormal cell envelope proteins.58 This suggests that
accumulation of aberrant envelope proteins in the absence of

Figure 1. Examples of direct virulence gene regulation by the RpoE ESR.
Two inducing signals (shown as lightening bolts) are required for activa-
tion. One is binding of a misfolded outer membrane protein (OMP) to
DegS (AlgW in P. aeruginosa), which causes a conformational change
that induces its proteolytic activity. The other is off-pathway LPS mole-
cules, which bind to RseB (MucB in P. aeruginosa) and dissociate it from
the antisigma factor RseA (MucA in P. aeruginosa). Both signals are
required in order for DegS to cleave the periplasmic domain of RseA.
The truncated RseA is then cleaved by the IM protease RseP (MucP in P.
aeruginosa). This releases the cytoplasmic domain of RseA in complex
with RpoE (sE; AlgU/T in P. aeruginosa), which is degraded by cyto-
plasmic proteases to release RpoE. RpoE-containing RNA polymerase
binds directly to the algD promoter to induce alginate biosynthesis in P.
aeruginosa and to the epsC promoter to induce T2SS production in
V. cholerae. In E. coli K-12 the micA promoter is RpoE-dependent and
drives the production of a non-coding sRNA that inhibits phoP transla-
tion (RpoE also induces 2 other sRNAs, RybB and MicL, which are not
shown; see text). The predicted base pairing between MicA sRNA and
phoPQ mRNA is conserved in pathogens including Salmonella, Shigella
and Enterobacter. Therefore, RpoE might downregulate the virulence-
associated PhoPQ regulon in multiple species. Mucoid P. aeruginosa
strains from the lungs of individuals with cystic fibrosis most often have
mutations that destroy antisigma factor RseA/MucA function, which
leads to constitutive activation of RpoE, high algD operon expression
and the production of large amounts of the exopolysaccharide, alginate.
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DegP/MucD generates a stress that triggers the RpoE/AlgU
response.59,60 Third, supplementing growth medium with both
ammonium metavanadate, which increases palmitoylation of the
lipid A component of LPS, and the cell wall antibiotic triclosan,
induces RseA/MucA degradation and causes a reversible mucoid
phenotype.61 Fourth, treatment with other cell wall antibiotics
also induces RpoE/AlgU activation, although not enough to
cause mucoidy.59,62 Finally, a global survey of the RpoE/AlgU-
dependent regulon induced by D-cycloserine, which interferes
with peptidoglycan cross-linking, identified a large number of
genes predicted to be required for recovery from cell envelope
stress.60 Therefore, while there are some differences in the activa-
tion of the E. coli and P. aeruginosa RpoE responses, and in the
genes they control, it seems that both play a roles in stress
response.

Some of the conditions that induce RpoE/AlgU in the labora-
tory mimic aspects of the inflammatory environment in the lung.
These include treatment with hydrogen peroxide, osmotic shock
and oxygen limitation.50,54,59,60,63-66 This raises the intriguing
question of whether or not the RpoE/AlgU regulon, and alginate
production, are induced immediately after environmental P. aer-
uginosa enters the lung. Indeed, there is evidence to support
this.67 The resulting relatively low-level production of alginate,
and products of other genes within the RpoE/AlgU regulon,
might help to buffer P. aeruginosa from the hostile host environ-
ment. This could be important to help the bacteria to gain an ini-
tial foothold. Ultimately, this could allow time to select for
mutants in which the RpoE/AlgU regulon has been induced to a
higher level by RseA/MucA inactivation. The copious production
of alginate that results, perhaps along with favorable contribu-
tions by other RpoE/AlgU regulon members, would then give P.
aeruginosa relative long-term immunity to the host immune sys-
tem and, unfortunately, to therapeutic intervention.

RpoE/AlgU has also been implicated in modulating the
expression of other virulence factors in P. aeruginosa, although
the mechanism might be indirect in most cases. Notably, micro-
arrays revealed that AlgU downregulated several genes involved
in the transcriptional control of flagella and the type IV
pilus.60,68 This is consistent with most isolates from the lungs of
long-term colonized CF patients being non-motile.69 Although
the flagellum is important for attachment and the establishment
of infection, its production and use requires a great deal of
energy. Furthermore, it is not required in biofilms, and flagellin
is a potent trigger of the innate inflammatory response. There-
fore, its downregulation by RpoE/AlgU provides another advan-
tage that favors the long-term survival of P. aeruginosa in the
lung.68,69

RpoE control of type II secretion in Vibrio cholerae
Gram-negative pathogens use complex systems to secrete toxic

proteins.70 One is the type II secretion system (T2SS), a multi-
protein apparatus with components in both membranes.71

T2SSs export various substrates including proteases, lipases, cel-
lulases, phospholipases and toxins. Secretion occurs in 2 stages,
with Sec- or Tat-dependent translocation into the periplasm,
where the protein folds and/or complexes with its partner(s),

being followed by translocation across the OM by the T2SS.72

T2SSs in several organisms are involved in pathogenesis.73 One
is in Vibrio cholerae, which causes the life-threatening diarrheal
disease cholera. V. cholerae employs a T2SS to export at least 19
proteins, including its major virulence factor cholera toxin that is
responsible for the profuse watery diarrhea that defines the
disease.74,75

The epsC-N operon and the pilD gene are required for pro-
duction of the V. cholerae T2SS.73,76 Aside from its export role,
some studies have also implicated this T2SS in maintaining cell
envelope integrity.77,78 Removal of the eps genes compromises
the OM, which is characterized by leakage of periplasmic compo-
nents, the reduction of specific OM proteins, increased sensitivity
to membrane-perturbing agents, and activation of the RpoE
response.77,78 Activation of RpoE is consistent with removal of
the T2SS compromising the cell envelope and might result, at
least in part, from T2SS substrates accumulating in the peri-
plasm. However, a particularly interesting and recent finding is
that one of the promoters driving expression of the epsC-N
operon is RpoE-dependent.79 One possible rationale for this con-
trol is to ensure increased T2SS production and virulence factor
export when V. cholerae enters its host, where it encounters
RpoE-inducing stimuli such as CAMPs and altered environmen-
tal conditions. An alternative rationale, suggested by removal of
the T2SS compromising envelope integrity, is that increased pro-
duction of the T2SS is an important component of the RpoE-
dependent envelope stress-reduction mechanism. These 2 ration-
ales are not mutually exclusive.

RpoE modulation of the PhoPQ regulon
The tightly packed LPS in the outer leaflet of the Gram-

negative OM is a critical permeability barrier. However, LPS has
some disadvantages for pathogens. One is that it is a potent
inducer of inflammation. Another is that the anionic components
of LPS provide an attractive force for CAMPs.80 However,
Gram-negative bacteria can modify their LPS to change its prop-
erties and increase resistance to the host antimicrobial molecules
they encounter. The PhoP (regulator)/PhoQ (sensor) 2-compo-
nent system, which has been studied extensively in Salmonella, is
pivotal in controlling these modifications.81 Its activation by low
concentrations of divalent cations or the presence of CAMPs
leads to PhoP-dependent regulation of genes involved in Mg2C

transport, resistance to acid, resistance to CAMPs, LPS modifica-
tions and virulence.82,83 The PhoPQ regulon is important for
virulence and there is evidence from work in E. coli that the
RpoE ESR can modulate it (Fig. 1).84 This discovery provides a
regulatory connection between an ECF sigma factor and a
2-component system and significantly extends the mechanisms
by which the RpoE response can remodel the cell envelope and
control virulence gene expression.

Small RNAs (sRNAs) base pair with mRNAs to trigger their
degradation and/or inhibit their translation. In E. coli, RpoE
induces expression of the RybB, MicA and MicL sRNAs.85,86

MicL mitigates envelope stress by reducing production of the
OM Braun lipoprotein, which is one of the most abundant pro-
teins in the cell, and serves as a receptor for CAMPs.85 The
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Braun lipoprotein-encoding lpp mRNA appears to be the only
direct target of MicL.85 In contrast, RybB and MicA have mul-
tiple targets and downregulate the production of every major
OM porin, preventing their accumulation in conditions of enve-
lope stress.87 Furthermore, RybB and MicA also repress the pro-
duction of other proteins, some of which have been implicated
in virulence-associated processes such as LPS modification
(LpxT), and acid survival (Asr).87 MicA was also found to
reduce production of the OmpT protease, but only in phoPC

cells. This led to the discovery that MicA base pairs with phoPQ
mRNA to inhibit phoP translation, which then reduces ompT
gene expression from its PhoP-induced promoter.84,87 There-
fore, the RpoE response can downregulate the PhoPQ regulon
via MicA-dependent inhibition of PhoP synthesis. Importantly,
the predicted base pairing between MicA and phoPQ mRNA is
conserved in several enterobacteria, including Salmonella, Shi-
gella and Enterobacter.

This regulatory interaction between RpoE and PhoPQ
makes some physiological sense because the PhoPQ regulon
includes genes encoding secretion system and flagellar compo-
nents, membrane transport systems, and proteins that are
probable structural components of the OM.81 Reducing their
production might help to reduce envelope stress. However,
downregulation of the PhoPQ regulon by RpoE is a potential
problem for a pathogen. If CAMP-induced damage activates
the RpoE ESR, why use this response to decrease expression
of the PhoPQ regulon that protects against CAMPs? The
answer might be that RpoE does not shut down the PhoPQ
regulon, but fine-tunes it to strike an appropriate balance
between its beneficial effects and its potential to contribute to
envelope stress. In support of a fine-tuning role, production
of MicA only modestly downregulates the PhoP regulon.84

ompT expression was reduced 30-fold by a phoP null muta-
tion but only 3-fold when MicA RNA was overproduced
from a plasmid, and only 1.2-fold when MicA was produced
from the chromosome of an rseA (RpoE anti sigma factor)
null mutant.84 These effects are indeed modest, although it
remains possible that some conditions might drive higher
MicA production and a larger effect on the PhoP regulon.

The Cpx ESR

Gram-negative pathogens assemble pili and protein export
systems in their cell-envelope, but problems arising from the pro-
duction of these complex structures can trigger ESRs. Perhaps
more interestingly, ESRs can also regulate the production of these
virulence factors directly. The Cpx response provides several
examples of this (Fig. 2). This response is a 2-component system
consisting of an inner membrane histidine kinase (CpxA) and a
cytoplasmic response regulator (CpxR).4,8,12 The small periplas-
mic protein CpxP, encoded immediately upstream of the cpxRA
operon, inhibits the system, perhaps by forming an inhibitory
complex with CpxA, although this remains in question.11 This
negative regulation might be relieved when CpxP is degraded,
perhaps in association with misfolded proteins. However, CpxP

is not required for activation of the Cpx response by any known
inducing signals, including misfolded proteins.88 Upon activa-
tion, CpxA primarily phosphorylates CpxR, which then binds to
its target promoters. One promoter controls cpxP, and the CpxP
protein has a second function as a chaperone that facilitates pro-
tein degradation by another CpxR regulon member, the periplas-
mic protease DegP.89 In addition, CpxR regulates other genes
important for dealing with protein misfolding, transport func-
tions, IM associated functions and many of unknown
function.18,19

Figure 2. Examples of direct virulence gene regulation by the Cpx ESR.
The Cpx response can be induced by various signals, with inputs enter-
ing at different points (surface attachment via NlpE to CpxA, external
environmental changes via CpxA, and metabolic changes that alter the
phosphorylation state of CpxR independently from CpxA). CpxP acts as a
chaperone for misfolded proteins, directing them to destruction by the
DegP protease (see text) and also negatively regulates the system, per-
haps by interacting with CpxA. Phosphorylated CpxR activates the pro-
moters of protein degradation factors (e.g., degP), protein-folding factors
(e.g. dsbA) ands in multiple species, as well as many other genes associ-
ated with inner membrane functions. DegP and DsbA can reduce stress
by promoting efficient assembly of the bundle forming pilus and Pap
pilus in EPEC and UPEC, respectively. In addition, CpxR represses the pro-
moters of the bfp and pap operons encoding these pili. In Y. pseudotuber-
culosis (Y. ptb) CpxR represses expression of several components of the
Ysc-Yop T3SS. In Shigella sonnei CpxR directly activates the promoter of
the gene encoding the major virulence regulator VirF, which leads to
increased T3SS production because one VirF-induced target is the gene
encoding the T3SS positive regulator NlpE/VirB (see text). CpxR also con-
trols the T4SS in L. pneumophila by inducing genes encoding structural
components (icm/dot) and by activating or repressing genes encoding
some of the effectors exported by the T4SS.
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Regulation of pili by the Cpx response
In strains of pathogenic E. coli, pili are critical for attachment

to host cells and in some cases they are influenced by the Cpx
response. One of these is the uropathogenic E. coli (UPEC) Pap
or P pilus, which is involved in attachment to kidney cells.90,91

When the P pilus assembly genes were expressed in an E. coli lab-
oratory strain the Cpx response was induced and at least 2 mem-
bers of the CpxR regulon facilitated pilus assembly.15 These were
DegP, which degrades “off-pathway” subunits that aggregate in
the periplasm and DsbA, which assists pilus protein folding.
Consequently, when the Cpx pathway was inactivated by muta-
tion, laboratory strains of E. coli provided with the pap genes
could produce only short, aberrant pili.15

CpxR also controls pap operon expression directly. This
operon is regulated by a phase variation mechanism that switches
between OFF (not expressed) or ON (expressed) states. A full
description of this complicated mechanism is far beyond the
scope of this review, but others have covered it extensively.92,93

In brief, the global regulator Lrp (leucine-responsive regulatory
protein) binds to distal activating or proximal repressing sites
within the pap regulatory region. The Lrp binding location is
influenced by the methylation state of GATC sequences, which
is influenced by Dam methylase and the local regulatory proteins
PapB and PapI.93 It is thought that phase switching requires
DNA replication to dissociate Lrp-DNA complexes and to gener-
ate a hemimethylated GATC site. Regardless, CpxR competes
with Lrp for binding to both promoter proximal and distal bind-
ing sites. CpxR binds to these sites in a methylation-insensitive
manner and locks the pap operon promoter into the OFF state
by preventing Lrp-dependent activation.91 Another study had
suggested that CpxR activated the pap operon, but it was later
suggested this was due to multicopy pap sequences being used,
which disrupted the normal phase variation mechanism.90,91

Taking all of this together, the Cpx response functions in 2 ways,
presumably to reduce stress associated with P pilus production.
First, it facilitates efficient pilus assembly by assisting protein
folding and degrading mislocalized intermediates. Second, it
reduces P pilus gene expression.

A similar relationship between a pilus and the Cpx response
occurs in the intestinal pathogen Enteropathogenic E. coli
(EPEC), where its bundle-forming pilus (BFP) is critical for
attachment to host cells.94 The components required for BFP
assembly are encoded by the bfp operon.95 Introduction of the
bfp operon into E. coli K-12 strain HB101 resulted in pilus pro-
duction, but this did not happen in E. coli K-12 strain
MC4100.96 The authors speculated that the Cpx response could
facilitate BFP assembly but its activity might have been insuffi-
cient in MC4100. This was supported when mutational activation
of the MC4100 Cpx system allowed BFP production.96 Further-
more, BFP production and attachment to host cells were dis-
rupted when the Cpx response was inactivated in EPEC.96 This
defect was attributed to a requirement for CpxR regulon mem-
bers, including DegP and DsbA, for efficient BFP assembly.97

The Cpx response also reduces bfp operon transcription.97

This is probably due to reduced expression of perA, which enco-
des a bfp transcriptional activator. However, it is not known if

CpxR directly represses the perA promoter, which lacks obvious
CpxR DNA binding sequences.97 Regardless, like the UPEC P
pilus, the Cpx response both facilitates efficient BFP assembly
and also reduces BFP pilus gene expression. Again, both mecha-
nisms could be strategies to reduce stress associated with pilus
production.

Regulation of protein secretion systems by the Cpx response
The Cpx response also regulates protein export systems associ-

ated with virulence (Fig. 2).12 For example, mutational activation
of the Cpx response reduced expression of the genes encoding the
Ysc T3SS of Yersinia pseudotuberculosis.98 The mechanism
appears to be direct because phosphorylated CpxR bound to the
control regions of Ysc T3SS-encoding genes in vitro.99 However,
although T3SS gene expression was repressed by constitutive acti-
vation of the Cpx response, a cpxR null mutation had no effect.98

Therefore, when or if the endogenous Cpx response might regu-
late the Y. pseudotuberculosis T3SS is not yet known.

Another example of direct regulation of T3SS gene expression
by CpxR comes from Shigella sonnei, although in this case the
regulation is positive rather than negative. In this species VirF is
the master regulator of virulence and one gene it induces is nlpE
(virB), which encodes an activator of T3SS gene expression.100 A
cpxR null mutation almost abolished virF expression.101 CpxR
bound to the virF control region in vitro and this was enhanced
by CpxR phosphorylation. Furthermore, phosphorylated CpxR
activated virF transcription in vitro.101 The situation in S. sonnei
is even more complex because it was later found that a cpxA null
mutation reduced the translation, but not the transcription, of
nlpE.102 The underlying mechanism of this translational effect,
including whether CpxR is involved, is not clear.

Legionella pneumophila is a facultative intracellular respiratory
pathogen that causes Legionnaires’ disease. Its ability to replicate
inside macrophages requires the Icm/Dot type IV secretion sys-
tem (T4SS), which translocates approximately 300 effector pro-
teins into host cells.103 A screen for regulators of icmR
expression, which encodes a chaperone component of the T4SS,
identified CpxR as a positive regulator.104 CpxR bound to the
icmR control region in vitro, which contains a conserved CpxR-
binding sequence, and a cpxR null mutation reduced expression
of an icmR-lacZ translational fusion.104 A later study found that
other genes encoding several Icm/Dot components and secreted
effectors are also regulated by direct CpxR-DNA binding.105

CpxR induced the genes encoding T4SS structural components.
However, genes encoding secreted effectors were either induced
or repressed by CpxR, which might indicate that different effec-
tors are produced at different times during infection.105 Despite
all of this, a cpxR null mutation did not affect L. pneumophila sur-
vival inside macrophages.104 This could be due to redundancy
between CpxR-regulated and non-regulated effectors, or because
the CpxR-activated effectors are only important in non-human
hosts.105 It is more difficult to explain why reduced expression of
genes encoding T4SS structural components would not affect
intracellular growth. One possibility is that there might be com-
pensatory control by other regulators inside macrophages. Alter-
natively, any reduced production of the T4SS might be below
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the threshold required for a phenotype to manifest in this ex vivo
experimental system.

The Rcs ESR

Another Gram-negative ESR linked to virulence gene regula-
tion is the Rcs response. It is conserved throughout the Enterobac-
teriaceae, induced by mutations or conditions that can disrupt the
cell envelope, and thought to be important for controlling the
production of macromolecular envelope structures and for enve-
lope homeostasis.20,21 Activation of the Rcs response is mediated
by a complex phosphorelay that can involve accessory factors and
signal sensing by different components (Fig. 3). Regardless, all
sensing pathways converge on the IM sensor kinase RcsC. RscC
phosphorylates the intermediary IM protein RcsD, which then
phosphorylates the cytoplasmic response regulator RcsB.106,107

Phosphorylated RcsB can bind DNA as a homodimer or as a het-
erodimer with the unstable accessory cytoplasmic protein RcsA or
with some other accessory regulators.20,108 Target genes affect
many processes including cell division, osmoregulation, cell enve-
lope homeostasis, motility and virulence.20,21,109

Rcs-regulation of polysaccharide capsule production
The Rcs response was discovered as a regulator of E. coli genes

required for biosynthesis of the extracellular polysaccharide
colanic acid (the cps operon, later renamed the wca operon).
However, colanic acid is most highly produced below 30�C,
which means that it is probably important only in the environ-
ment.110 Nevertheless, polysaccharide capsules are widely con-
served and in some cases they are virulence factors associated
with resistance to phagocytosis and to host antimicrobial mole-
cules.111–113 Furthermore, the Rcs response has been implicated
in regulating production of E. coli group I capsules, which are
important virulence determinants. In some E. coli strains the pro-
duction of group I capsule was induced by overexpression of
rcsB.114 However, an rcsB null mutation did not affect capsule
production. Furthermore, neither an rcsB null mutation nor rcsB
overexpression affected expression of the group I capsule-
encoding (cps) operon.114 This suggested that the effect of rcsB
overexpression on group I capsule production was indirect.
Indeed, it was found that rcsB overexpression induced the galF
gene involved in producing sugar nucleotide precursors, and that
there was a putative RcsAB-binding sequence (RcsAB box)
upstream of galF.115 Independent overexpression of galF also
increased capsule production without affecting expression of the
cps operon.115 Thus, the Rcs system might be able to induce
group I capsule by increasing galF expression and influencing the
pool of precursors. This does not explain why an rcsB null muta-
tion did not affect capsule production. Of course, it is possible
that the impact of rcsB overexpression was non-physiological.
Alternatively, perhaps the appropriate environmental conditions
were not used to detect an effect of the rcsB null mutation.115

Finally, an analogous situation also occurs in Salmonella. In this
case, the ugd gene, encoding an enzyme that converts UDP-d-
glucose to UDP-d-glucuronic acid, is regulated by the Rcs

system. Ugd activity is important for both colanic acid produc-
tion and for an LPS modification that increases CAMP
resistance.116,117

Klebsiella pneumoniae is an important nosocomial pathogen
that causes various diseases. Clinical isolates generally produce a

Figure 3. Examples of virulence gene regulation by the Rcs ESR. The Rcs
system is induced by various signals deleterious to the outer membrane
such as osmotic shock, desiccation, and overproduction of envelope pro-
teins. Detection of some signals involves accessory proteins such as RcsF
and others not shown. All signals converge of the IM histidine kinase
RcsC, which transfers phosphate (P) to the cytoplasmic response regula-
tor RcsB via the intermediary IM protein RcsD. RcsB can regulate target
promoters as a homodimer or as a heterodimer with RcsA, or with the
RcsA homologues RmpA and RmpA2 that are found in hypermucovis-
cous (HMV) strains of K. pneumoniae. Positively controlled target pro-
moters include galF in encapsulated E. coli K strains, which increases
precursors available for Group I capsule production. Similarly, ugd is an
activated target in Salmonella, which is needed to make a precursor for
LPS modification that increases CAMP resistance. In Y. enterocolitica
(Y. ent) RcsB is involved in activation of the major operon encoding regu-
latory and structural components of the Ysa T3SS, but it is not known if
this regulation is direct. Very recent data from Y. pseudotuberculosis
(Y. ptb) has also shown that RcsB activates genes encoding the Ysc T3SS
via direct induction of the lcrF gene, encoding the master Ysc T3SS regu-
lator (see text). In Salmonella, RcsB drives the production of an antisense
transcript encompassing the distal end of the fliLMNOPQR operon, which
is involved in downregulating multiple virulence genes including those
encoding components of the SPI-1 and SPI-2 T3SS systems. In HMV K.
pneumoniae, RcsB, most likely as a heterodimer with RmpA or RmpA2,
activates the cps operon responsible for capsular polysaccharide
production.
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capsular polysaccharide that confers resistance to serum and
phagocytosis and is related to E. coli group I capsule. Interest-
ingly, the RcsAB box upstream of galF is conserved in K. pneumo-
niae, suggesting that the phenomenon described above is not
restricted to E. coli.118 In addition, copious capsule production,
or hypermucoviscosity (HMV), has recently become associated
with devastating invasive disease.119 The HMV strain K. pneumo-
niae CG43 has a plasmid with 2 homologous genes, rmpA and
rmpA2, which encode transcription factors in the same family as
RcsA and RcsB. The presence of these rmpA genes has been cor-
related with the HMV phenotype in K. pneumoniae isolates, and
RmpA and RmpA2 regulate capsule production in strain
CG43.120-122 Furthermore, RmpA or RmpA2, in addition to
RcsA, can interact with RcsB and are thought to work in concert
with RcsB as accessory proteins to regulate the capsular biosyn-
thesis genes (cps; Fig. 3).120 This is analogous to the RscAB het-
erodimers described in E. coli. Indeed, RmpA2 binds to the cps
control region, which contains an RcsAB box, and it is hypothe-
sized that this interaction might be enhanced for an RmpA2-
RcsB complex.121

Rcs regulation of T3SSs
A fascinating example of Rcs-mediated regulation has been

reported in S. Typhimurium. This organism has 2 T3SSs
encoded by Salmonella pathogenicity islands SPI-1 and SPI-2.
The SPI-1 T3SS is involved in remodeling the host cell cytoskele-
ton to induce bacterial uptake, whereas the SPI-2 T3SS promotes
intracellular survival by inhibiting phagolysosome maturation.
During infection, Salmonella transitions to a non-motile state.
RcsB represses the flhDC operon, encoding the master positive
regulators of flagella production, via an RcsB box in the flhDC
promoters of both E. coli and S. Typhimurium.123,124 A microar-
ray survey of the S. Typhimurium RcsB regulon revealed that the
SPI-1 genes were also strongly repressed by RcsB. However, SPI-
2 gene expression (and some other virulence genes) was decreased
in an rscB null mutant, suggesting positive regulation by RscB,
but repressed when rcsB was overexpressed, suggesting negative
regulation.123 This confounding regulatory pattern has not been
explained, but it has been hypothesized that it might indicate
that the Rcs system either represses or induces SPI-2 gene expres-
sion depending on the stage of infection.123

An intriguing finding from the microarray survey was that
RscB induced the mRNA levels of fliP -Q and -R, whereas all
other flagella genes were repressed.123 This was even more sur-
prising because downregulation of flhDC should have prevented
fliPQR expression. fliP -Q and -R are the last 3 genes of an operon
that is located 281 bp upstream of rcsA and transcribed in the
same direction (fliLMNOPQR – rcsA). A clue to what was hap-
pening is that the RcsB-induced levels of fliP -Q and -R mRNA
occurred in a reverse gradient (fliR > fliQ > fliP).123 The expla-
nation is that RcsB binds to an RcsAB box upstream of rcsA to
activate its promoter and in doing so it also induces an antisense
transcript that encompasses fliRQP.125 This might be due to
RcsB changing the topological state of the fliR-rcsA intergenic
region. This fliRQP antisense transcript affects the expression of
many Rcs regulon members positively or negatively, and

downregulates SPI-1 and -2 genes (Fig. 3).125 Further analysis
indicated that this might involve the translation of a small open
reading frame in the fliRQP antisense RNA, although this pre-
dicted protein was not detected.125

Another example of regulation of a T3SS by the Rcs response
occurs in Y. enterocolitica. In this case RcsB positively regulates
expression of the Ysa T3SS-encoding genes, which are found in
highly pathogenic biogroup B1 strains and might be important
in mammals or insects.126-128 RcsB is involved in activating
expression of the ysaE operon, which encodes a master regulator
of the ysa locus and structural components of the T3SS. How-
ever, the mechanism by which this occurs is unclear and it is not
yet known if RcsB binds to the ysaE promoter. Regulation of the
Ysa T3SS by RcsB was covered extensively in another recent
review.109

Very recently, in Y. pseudotuberculosis is has been reported that
RcsB positively regulates the Ysc T3SS.129 RcsB binds to an RcsB
box upstream of the virG-lcrF operon promoter, with lcrF encod-
ing the master activator of the Ysc T3SS, and this RcsB box is
conserved in Y. pestis and Y. enterocolitica. Consistent with this
regulatory role, activation of RcsB enhanced Ysc T3SS-depen-
dent delivery of Yop proteins into immune cells and promoted
bacterial viability. Thus, RcsB positively controls at least 2 differ-
ent T3SS in Yersinia species (Ysa and Ysc; Fig. 3). Furthermore,
these findings provide an example of a single T3SS being regu-
lated oppositely by different ESRs, as demonstrated by negative
or positive regulation of the Y. pseudotuberculosis Ysc T3SS by the
Cpx and Rcs systems, respectively Figs. 2 and 3).

Regulation of Virulence Genes by ESRs in
Gram-Positive Bacteria

Introduction to Gram-positive ESRs
The discussion changes upon moving from Gram-negative to

Gram-positive ESRs. The fundamental differences between their
cell envelopes is one obvious reason for this.3 Compared to
Gram-negative bacteria, the defining features of the Gram-posi-
tive cell envelope are the lack of an outer membrane, a much
thicker cell wall, and the presence of teichoic acids.130 The thick-
ness of the cell wall comes from its composition as a multi-
layered mesh of highly cross-linked peptidoglycan, in contrast to
the single layer found in Gram-negative bacteria. Teichoic acids
are phosphate containing anionic polymers anchored to the cyto-
plasmic membrane or covalently linked to the peptidogly-
can.131,132 This complex cell wall must be continuously
synthesized, degraded and recycled. These processes must be
carefully controlled to maintain cell shape, to increase cell size
and for cells to divide. The cell wall also provides Gram-positive
cells with resistance to extremely high turgor pressures. There-
fore, it is critical for survival and Gram-positive bacteria go to
great lengths to maintain it.

Another reason the discussion changes is because Gram-
positive ESRs have been defined differently to Gram-negative
ESRs. This was discussed in a highly recommended review of
Gram-positive ESRs by Jordan et al.133 Those authors noted that
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many Gram-positive ESRs were discovered due to their role in
resisting or responding to cell wall antibiotics. This is in contrast
to the defining feature of most Gram-negative ESRs, which is
detection or response to mislocalized or misfolded envelope pro-
teins (although some Gram-negative ESRs have also been impli-
cated in resistance to antibiotics, including some that target the
cell wall).18,134,135 Therefore, Jordan et al suggested that ESRs of
Gram-positive bacteria are defined by their detection or response
to the presence of cell wall antibiotics or other cell envelope-
damaging molecules. These definitions are not completely satis-
factory, comprehensive, or immune to pitfalls, but they are rea-
sonable based on current understanding.

Much of the characterization of Gram-positive ESRs has been
done in the non-pathogenic Bacillus subtilis, the model species
for low GCC Gram-positive bacteria (Firmicutes). However,
many of the systems are conserved in other species including
some high GCC Gram-positive bacteria (Actinobacteria). The
Gram-positive ESRs have been divided into 3 categories.133 The
first responds to one specific compound, or group of closely
related compounds. They regulate one target that is usually
closely linked to the regulatory genes and involved in conferring
resistance to the inducing agent alone. Therefore, this category
will not be discussed further.

The second category is induced by cell wall antibiotics or
other damaging agents and is involved in counteracting the dam-
age. These are perhaps the most deserving of the ESR title. They
include at least 4 ECF s factors in B. subtilis (sM, sW, sX and
sV) that respond to antibiotics and CAMPs to control numerous
target genes.136-140 However, relatively little is known about
ECF s factors in other Gram-positive bacteria. Other members
of this category include 2 component regulatory systems. For
example, LiaRS-like systems respond to a variety of cell enve-
lope-damaging agents and usually, but not always, confer resis-
tance to them.133,141 However, the identity and extent of their
target genes varies considerably between species. Another exam-
ple more pertinent for this review is the ApsXRS/GraXRS sys-
tem, studied most in staphylococci and streptococci, which
responds to CAMPs.142,143 It is critical for resistance to these
agents and also one of the few Gram-positive ESRs that has been
closely linked to virulence gene regulation (Fig. 4).

The third category of Gram-positive ESRs is not induced by
cell-wall antibiotics but does play a role in controlling cell enve-
lope integrity. The former property perhaps makes their assign-
ment as stress response systems tenuous.133 However, some of
them might detect consequences of damaging agents (e.g.,
decreased membrane potential) or their inducing signals are not
yet known. These systems are the LytSR-like, MtrAB-like, and
YycGF-like 2 component regulatory systems. In Staphylococcus
aureus LytSR works along with another regulator (CidR) to con-
trol genes encoding a holin (LrgAB) and antiholin (CidAB) that
affect the access of a murein hydrolase to the cell wall.144 This
impacts autolysis and has been described as an altruistic pro-
grammed cell death system important in biofilms.144,145 LytSR
responds to reduced membrane potential and also plays a role in
resisting CAMPs.146,147 MtrAB are conserved in the Actinobac-
teria and implicated in ESR in Corynebacterium glutamicum and

Mycobacterium smegmatis.148,149 However, note thatMycobacteria
are not Gram-positive (or Gram-negative) because the Gram
stain procedure does not work with their cells. Furthermore,
both Corynebacteria and Mycobacteria are now known to have an
OM, although it is distinct from that of Gram-negative bacte-
ria.150,151 Regardless, MtrAB is essential in Mycobacterium, an
unusual property for a 2 component system. Both the essentiality
of MtrAB, and its link to ESR, has led to it being described as
the Actinobacterial functional equivalent of YycGF/WalKR.152

YycGF/WalKR, first described in B. subtilis, are conserved in
most Firmicutes and probably essential in almost all of them.133

It is another of the Gram-positive ESRs implicated in the control
of virulence gene expression (Fig. 4).

Figure 4. Virulence gene regulation by 2-component ESRs in Gram-
positive bacteria. The ApsSR (also known as GraSR) system is activated
by a variety of antimicrobial molecules, which are detected by ApsS. This
leads to transfer of phosphate (P) from ApsS to ApsR, which can then
bind to its target promoters. In some pathogens, ApsR targets include
the promoters of dltABCD and mprF, which encode proteins involved in
modifying teichoic acids and phospholipids, respectively, to reduce the
net negative charge of the cell envelope and increase CAMP resistance.
Another ApsR-dependent promoter drives vraFG expression, which enc-
odes an ABC transporter that might be involved in efflux of toxic mole-
cules out of the cell and/or their detection. The activity of the WalKR
system is hypothesized to depend on the level of the peptidoglycan bio-
synthesis intermediate Lipid II, which might provide a report of cell wall
synthesis activity and a healthy status of replicating cells. Furthermore,
in B. subtilis WalK has been shown to interact with FtsZ at the division
septum where cell wall metabolism is highly active, which might pro-
mote high WalK activity. WalK phosphorylates the response regulator
WalR, which has many targets involved in cell division and cell wall
metabolism. In. S. pneumoniae, one WalR-dependent promoter controls
the pspA gene, which encodes the well-characterized virulence factor
Pneumococcal Surface Protein A that is involved in complement evasion.
In S. mutans, the WalKR system affects genes important for biofilm for-
mation and attachment to tooth surfaces, with WalR binding directly to
the promoters of at least 3 of them (gtfB, gtfC and ftf). In S. aureus, consti-
tutive activation of WalR generates an inducing signal for the SaeSR sys-
tem, which increases the production of many cell surface and secreted
virulence factors. However, the SaeSR-inducing signal that is generated
by WalR activation is not known.
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Gram-positive ESRs regulate cell envelope charge

One important phenotype that is regulated by several different
Gram-positive ESRs, and closely connected to virulence, is the
net negative charge of the bacterial cell surface. The negative
charge arises from 2 features. First, from the anionic membrane
phospholipids phosphatidylglycerol (PG) and cardiolipin, which
are common to Gram-negative and Gram-positive bacteria. Sec-
ond, from the teichoic acids, which are unique to Gram-positive
bacteria. A negatively charged cell surface represents a significant
problem for pathogens because it attracts CAMPs.80 Gram-
positive bacteria use separate mechanisms to reduce the negative
charge of both their phospholipids and their teichoic acids, and
both mechanisms are regulated by ESRs.

Teichoic acids are linear polymers of repeating glycerol-
phosphate or ribitol-phosphate residues substituted with
N-acetylglucosamine and D-alanine. Wall teichoic acids (WTA)
are covalently attached to peptidoglycan, whereas a glycolipid
moiety anchors lipoteichoic acids (LTA) to the cytoplasmic
membrane.130-132,153 Their negative charge comes from the
anionic phosphodiester linkages connecting the monomers.
However, when D-alanine is incorporated via an ester bond its
amino group remains free and positively charged, which reduces
the net negative charge of the polymer.131,132 The products of
the dltABCD operon incorporate D-alanine into LTAs, which
can then be transferred to WTAs by transacetylation.154,155

Therefore, inactivation of the dlt operon increases the net nega-
tive charge of the cell envelope. Consistent with this, dlt null
mutants of Gram-positive pathogens have increased sensitivity to
CAMPs, increased killing by human neutrophils and reduced vir-
ulence in animal models of infection.156-164 The dlt operon is
also one of the best examples of virulence genes controlled by
ESRs in Gram-positive bacteria. Even though many Gram-posi-
tive ESRs are widely conserved, their target genes can vary signifi-
cantly between species.133 However, the dlt operon is almost
always the target of one or more ESRs in any particular species.
The ESRs involved include ECF s factors, LiaRS, LytRS, and
ApsXRS/GraXRS.133,142,143,165 As a result, dlt is one of relatively
few defining loci of ESR in Gram-positive positive bacteria
because it is almost always connected to the envelope stress
response.133

A second mechanism for reducing cell surface negative charge
involves aminoacylation of anionic membrane phospholipids, a
phenomenon first described in S. aureus decades ago.166,167 Most
commonly it is positively charged lysine that is attached to PG,
although other amino acids linked to PG have been detected
including alanine and arginine.168 Furthermore, Listeria species
lysylate cardiolipin as well as PG.169,170 The enzyme responsible
transfers amino acids from aminoacyl-tRNA and is encoded by
mprF (multi peptide resistance factor). MprF was discovered in
S. aureus but is conserved in many Gram-positive bacteria
(mostly Firmicutes and Actinobacteria) and also Gram-negative
proteobacteria.168,171 MprF family members can be specific for
lysl-tRNA or alanyl-tRNA, although the Listeria MprF can use
both.168,172 A S. aureus mprF null mutant is more sensitive to
CAMPs and is also killed more effectively by human neutrophils

and attenuated in mouse and rat models of infection.163,171 Simi-
lar phenotypes have been reported for a Listeria monocytogenes
mprF null mutant.169 mprF expression is controlled by the
ApsXRS/GraXRS ESR in S. aureus and S. epidermidis and by
the homologous VirRS system in L. monocytogenes.142,143,165

These ESRs also control the dlt operons in these species (see above
and Fig. 4). Originally, it was suggested that the lack of pheno-
types unrelated to CAMP resistance in a S. aureus mprF null
mutant might indicate that the only purpose of MprF is to
increase resistance to host defenses.80 If so, why don’t the major
virulence regulators of Staphylococci or Listeria control mprF? The
answer might come from recent findings that lysyl-PG in L.
monocytogenes has broad roles in maintaining membrane integrity
beyond CAMP resistance.173 Thus, mprF might be considered as
both a virulence gene and an envelope stress tolerance gene. This
makes it a good fit for control by the ApsXRS/GraXRS system
because this ESR also affects the expression of other virulence
genes and other stress-tolerance genes, as described next.

ApsXRS/GraXRS

A family of ESR 2-component systems known as BceRS-like
systems typically respond to one compound, or group of closely
related compounds, to induce linked ABC transporter genes that
exclude the inducing agent, or play a role in signal sens-
ing.133,174-176 For example, the BceRS system of B. subtilis
responds to bacitracin and promotes resistance to it.177,178 How-
ever, a BceRS-like system in S. aureus and S. epidermidis known
as GraSR (glycopeptide resistance associated) or ApsSR (antimi-
crobial peptide-sensing), respectively, has several unusual fea-
tures.142,143 First, although the regulatory genes are adjacent to
ABC transporter-encoding genes (vraFG), which they regulate,
this is not their only target. Second, the system detects and con-
fers resistance to a relatively broad range of structurally unrelated
antimicrobial agents, although the range is narrower in S. aureus
than in S. epidermidis. Third, the apsX/graX gene immediately
upstream of apsSR/graSR encodes a putative cytoplasmic protein
of unknown function that is required for the regulatory response,
making this a 3-component system. In fact, it is even more com-
plex because the VraFG transporter might be involved in signal
sensing rather than detoxification, leading to this being described
as a 5-component system.176,179

As mentioned above the staphylococcal ApsXSR/GraXSR sys-
tem is a ESR that regulates virulence genes because it controls the
dlt operon and mprF, decreasing cell surface negative charge and
promoting resistance to CAMPs (Fig. 4). This regulation is prob-
ably direct because a conserved inverted repeat upstream of dlt,
mprF and vraFG is a likely GraR-binding site (although it has
not been possible to purify active GraR to confirm this in
vitro).180 S. aureus transcriptome analysis has also revealed
GraXRS-dependent upregulation of lysine biosynthetic genes,
which could provide substrate for MprF-dependent lysylation of
membrane phospholipids.142 Other S. aureus microarray analyses
have expanded the influence of GraXSR to the differential expres-
sion of 248 genes in one case and 424 in another.180,181 Among
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the most highly upregulated were those encoding virulence fac-
tors. For example, the agrBDCA operon, encoding a virulence-
regulating quorum-sensing system, was expressed up to 21-fold
higher in graSRC vs. DgraSR cells grown with colistin.180 The
gene encoding delta-hemolysin showed 80-fold higher expression
in the graSRC cells. Other virulence-related genes also demon-
strated GraSR-dependent induction, albeit of less impressive mag-
nitude, including those encoding SarA, SarX, SarS (virulence
regulators) and Hla (a hemolysin).180 Of course many of these
effects are likely to be indirect rather than due to direct binding of
GraR to promoters. Nevertheless, whether direct or indirect, the
fact that all of these genes are affected by the GraXRS system is
consistent with it being required for S. aureus resistance to CAMPs
and to killing by human neutrophils and for virulence in mouse
models of infection.142,179,182 The GraXRS regulon has also been
reported to overlap extensively with another S. aureus ESR impli-
cated in virulence gene control, the WalKR system (see below).142

L. monocytogenes, another Gram-positive pathogen, has a
homologous system called VirRS. Its genomic context is different
and it lacks an ApsX/GraX homolog.165 Nevertheless, in com-
mon with the staphylococcal and streptococcal systems, its regu-
lon includes mprF and dlt as well as genes encoding an ABC
transporter. The control regions of these genes, as well as other
VirR-induced genes identified by microarray analysis, share a
conserved inverted repeat that was bound by VirR in vitro.165

Furthermore, the virR null strain was attenuated in a mouse
model of infection and at least one of its regulatory targets
(mprF) was required for CAMP resistance.165,169

WalKR

A 2-component system originally identified in B. subtilis as
YycGF has since been described by other names in different spe-
cies.183,184 It was renamed WalKR when it became clear that its
major role was to regulate cell wall metabolism.185,186 WalKR
are widely conserved in Firmicutes and essential in most species
tested.184,187 It is not unprecedented for a ESR to be essential, as
exemplified by RpoE in some Gram-negative bacteria. However,
it must be acknowledged up front that others have suggested that
the assignment of WalKR as a ESR is highly questionable. This is
because it is most active during normal growth conditions, is not
induced by cell envelope damage, and is actually deactivated by
some conditions and antibiotics usually associated with inducing
ESR.184 In fact, the signal that induces WalKR has been pro-
posed to emanate from normal cell wall metabolism, leading to it
having been described as the antithesis of cell wall stress.185 Nev-
ertheless, in common with others we have included WalKR as a
ESR in this review because of its fundamental role in ensuring
cell envelope function and integrity.133 We have also included it
because it can influence virulence gene expression in both staphy-
lococci and streptococci (Fig. 4).

A survey of cell wall antibiotics that activate or deactivate
WalKR led to the proposal that Lipid II, an intermediate in pep-
tidoglycan biosynthesis, might be the inducing signal.184 Most
antibiotics that deactivate WalKR deplete Lipid II by inhibiting a

step prior to its formation, whereas antibiotics that activate
WalKR cause Lipid II to accumulate by inhibiting a downstream
step. Lipid II levels could reflect cell wall synthetic activity, which
fits with the hypothesis that WalKR monitors a signal derived
from normal cell wall metabolism. It is also consistent with the
genes controlled by WalKR. Although there is substantial varia-
tion between the WalKR regulons of different species, genes
involved in cell wall metabolism, membrane integrity and also
cell division are a common theme.133,184,187 Putting this
together, Dubrac et al. proposed that WalKR monitors the
healthy status of replicating cells and adjusts cell wall metabolism
to meet growth requirements.184 Furthermore, the B. subtilis
WalK sensor interacts with cell division protein FtsZ at the divi-
sion septum (Fig. 4), and WalKR also induces ftsAZ operon
expression.188,189 Association with the septum, where cell wall
metabolism is highly active, might promote high WalKR activity
and ensure the induction of genes involved in initiating cell divi-
sion (e.g. ftsAZ) and other functions required for division and
growth, such as cell wall hydrolases. In contrast, WalK would not
associate with division septa in stationary phase, leading to down-
regulation of genes required for cell wall plasticity. For more
extensive descriptions of this intriguing regulatory system we rec-
ommend other reviews that focused upon it specifically.184,187

Early work linking WalKR to virulence came from streptococ-
cal species, where the system is known as VicKR. In Streptococcus,
genetic analysis was facilitated because the sensor protein VicK/
WalK is not essential. Microarray studies revealed that VicKR/
WalKR affected the expression of several S. pneumoniae virulence
genes.190-192 These include genes encoding the PiaBCDA ABC
transporter involved in iron uptake; Pneumococcal Surface Protein
A, which is one of the most studied S. pneumoniae virulence fac-
tors and is involved in complement evasion (PspA, not to be con-
fused with the unrelated phage shock protein A); and some other
surface proteins linked to virulence. However, when different
growth conditions and genetic manipulations were compared,
only a subset of genes showed strong dependence on VicKR/
WalKR in all cases.192 Nevertheless, this subset included pspA.
Importantly, VicR/WalR bound to the control region of pspA in
vitro, and also to the control regions of some other genes, and in
each case the binding region encompassed a sequence similar to a
previously proposed VicR/WalR binding site consensus.192 There-
fore, VicR/WalR is a direct regulator of pspA, which encodes the
most extensively studied S. pneumoniae virulence factor (Fig. 4).
In another Streptococcus that is associated with dental caries, S.
mutans, the VicKR/WalKR system affects genes important for bio-
film formation and attachment to the tooth surface, and VicR/
WalR binds directly to the promoters of at least 3 of them (gtfB,
gtfC and ftf; Fig. 4).193 Finally, VicKR/WalKR have also been
linked to virulence in S. pyogenes but in that case it has not been
determined if virulence gene regulation is involved.194

In S. aureus, a phosphomimetic mutation in WalR (WalR
D55E), which rendered it constitutively active, increased the
expression of genes encoding major cell surface or secreted viru-
lence factors (e.g., leukotoxins, matrix binding proteins and pro-
teases).195 Also upregulated was the saePQRS operon, the last 2
genes of which encode the SaeRS 2-component system, which is
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a major virulence gene regulator.196,197 This is significant because
there was extensive overlap between the WalR and SaeSR regu-
lons, suggesting that the effect of WalR D55E on virulence genes
was mediated through upregulation of saeQPRS. This was con-
firmed when a DsaeRS mutation prevented WalR from inducing
8 out of 8 virulence genes selected for individual analysis.195

WalR is not a direct activator of saePQRS operon expression
because the operon does not have any predicted WalR binding
sites, and DsaeRS also prevented upregulation of saeP expression
by WalR D55E. This suggests that constitutive WalR activity
generates an inducing signal that triggers the SaeRS 2-component
system, leading to activation of the SaeRS regulon, which
includes saePQRS (Fig. 4). However, it is not known what
SaeRS-activating signal WalR might generate. Possibilities
include a change in the level of one or more molecules involved
in cell wall metabolism, or overproduction of other WalR regu-
lon members that causes membrane perturbation and changes
the conformation and activity of SaeS. The authors of this study
also reported that the constitutively active WalR mutant had
decreased virulence in a murine sepsis model.195 This might
seem surprising because activation of the SaeSR regulon is nor-
mally associated with increased virulence and immune evasion.
However, the WalR regulon also includes genes involved in cell
wall degradation and turnover. Therefore, the increased release of
peptidoglycan fragments in the constitutive WalR mutant proba-
bly triggers the innate immune inflammatory response, resulting
in increased bacterial clearance. In wild type bacteria, careful con-
trol of WalKR activity during host infection might maintain an
appropriate balance between its effect on the SaeSR regulon and
on cell wall metabolism enzymes. Alternatively, the wild type
WalKR system might not modulate SaeSR activity and the effect
could have been a consequence of using a constitutively active
WalR mutant.

Concluding Remarks

The survival of all bacteria depends on their ability to sense
and respond to threats against their cell envelope. Many of these
threats are prevalent when pathogens enter their host, which
means that ESRs are often critical to maintain envelope integrity
during infection. This relationship between ESRs and virulence
has been extended by the integration of some virulence genes
into ESR regulons, in both Gram-negative and Gram-positive
bacteria. These virulence genes might have functions related to
cell envelope stress relief, or their only apparent role might be in
facilitating the host-pathogen interaction. Sometimes, the divid-
ing line between these possibilities is blurred, as demonstrated by

RpoE-dependent expression of T2SS genes in V. cholerae. This
T2SS is obviously important for virulence factor export, but also
seems to be important for cell envelope integrity. We have not
discussed every known example of virulence gene regulation by
ESRs, but the specific cases we have highlighted will hopefully
demonstrate how widespread and varied this phenomenon is.
One obvious rationale for controlling virulence genes by a ESR is
when the genes are involved in protecting the cell envelope from
damage by the host (e.g. CAMP resistance). A second rationale is
to reduce envelope stress by moderating the production of viru-
lence structures that might themselves damage the cell envelope
(e.g., downregulating T3SS or pili genes). A final rationale is sim-
ply to coordinate the induction of virulence gene expression with
entry into the host, where ESR-inducing signals are encountered.
Understanding the rationale is complicated by examples of the
same or similar virulence systems being regulated differently by
ESRs (e.g. positive or negative regulation of a T3SS by the Cpx
system in Yersinia and Shigella, or by the Rcs system in Yersinia
and Salmonella, and positive or negative regulation of the Ysc
T3SS by Rcs and Cpx, respectively, in Y. pseudotuberculosis;
Figs. 2 and 3). Furthermore, components of the same system can
also be regulated differently by a single ESR in a single species,
with the T4SS effectors of L. pneumophila providing the example
(Fig. 2). It seems almost certain that future research will continue
to uncover additional direct relationships between ESRs and vir-
ulence gene expression. This will undoubtedly increase our
understanding of how this happens, why this happens, and
whether or not it might eventually be exploited for therapeutic
intervention.
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