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Abstract

Phosphatidylinositol 3-kinase Vps34 complexes regulate intracellular membrane trafficking in 

endocytic sorting, cytokinesis and autophagy. We present the 4.4 Å crystal structure of the 385 

kDa endosomal complex II (PIK3C3-CII), consisting of Vps34, Vps15 (p150), Vps30/Atg6 

(Beclin 1) and Vps38 (UVRAG). The subunits form a Y-shaped complex, centered on the Vps34 

C2 domain. Vps34 and Vps15 intertwine in one arm where the Vps15 kinase domain engages the 

Vps34 activation loop to regulate its activity. Vps30 and Vps38 form the other arm that brackets 

the Vps15/Vps34 heterodimer, suggesting a path for complex assembly. Hydrogen-Deuterium 

Exchange Mass Spectrometry (HDX-MS) revealed conformational changes accompanying 

membrane binding and identified a Vps30 loop that is critical for the ability of complex II to 

phosphorylate giant liposomes on which complex I is inactive.

The class III phosphatidylinositol-3-kinase (PI3K) known as Vps34 (vacuolar protein sorting 

34, encoded by PIK3C3) is present in all eukaryotes. It phosphorylates phosphatidylinositol 

(PI) to yield phosphatidylinositol 3-phosphate (PtdIns3P) (1), which is important in all 

vesicle sorting pathways to lysosomes, including phagocytosis, autophagy, multivesicular 

body formation and cytoplasm-to vacuole targeting (Cvt). In yeast, PtdIns3P production is 

totally dependent on Vps34 (2, 3), whereas in mouse embryonic fibroblasts, a VPS34 

knockout suggests that 65% of PtdIns3P derives from Vps34, with a class II PI3K producing 

the remainder (4). Vps34 forms complexes with other proteins (Fig. 1A): Vps15 (encoded 

by PIK3R4, known as p150 in mammalian cells), Vps30 (encoded by VPS30/ATG6 in yeast, 
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equivalent to mammalian Beclin 1, encoded by BECN1) and either Vps38 (UVRAG) or 

Atg14 (ATG14L). Atg14/ATG14L defines complex I, involved in autophagy, which also 

includes Atg38 (5) as a fifth subunit (NRBF2 in mammalian cells), whereas Vps38 is 

characteristic of complex II and essential for vacuolar protein sorting (3). In mammalian 

cells, complex II is also involved in autophagy, receptor degradation and cytokinesis (6) as 

well as signalling (7, 8), recycling (9) and lysosomal tubulation (10). Independently from 

complex I and II, Beclin 1 and UVRAG also play separate roles in endosome function and 

neuron viability (11). Elevated expression of PIK3C3, PIK3R4 and BECN1 is associated 

with more aggressive forms of chronic lymphocytic leukemia (CLL) (12), consistent with 

autophagy being involved in tumour maintenance. The crucial roles of complex I and 

complex II in stress response, nutrition and disease have led to efforts to develop both 

activators and inhibitors, like the recently developed ATP-mimetic inhibitors of Vps34 

kinase domain (7, 13, 14).

Important questions concerning Vps34 complexes remain, such as the nature of the 

relationship between Vps15 and Vps34, and the roles of Vps30 and Vps38/Atg14 in the 

functions of these complexes and how the complexes recognize membranes. To address 

these questions and assist the development of complex-specific drugs, we determined the 

crystal structure of complex II, characterised its dynamics and membrane binding.

The X-ray crystal structure of complex II

Saccharomyces cerevisiae complex II displayed a 1:1:1:1 ratio of four subunits, (Fig. 1B). 

Crystallization required a nanobody (15) that recognized the Vps34 helical domain, as 

determined by HDX-MS (residues 386-406, fig. S1). Data from seven native crystals and 

phases from two Ta6Br12 derivative crystals (Table S1) produced a high quality 4.4 Å 

resolution experimental electron density map (Fig. 1C). Building the structure was 

challenging at this resolution. Initial models for several domains of the complex derived 

from previous structures and distant homologues (16-18) were fitted first and the remainder 

of the structure was built directly into the density. The final model consists of 2834 residues 

out of the 3469, with most of the missing residues predicted to be disordered. Although at 

this resolution side chains were not visible, the sequence register was inferred from 

previously determined structures for most of Vps34, the WD40 domain of Vps15 and the C-

terminal domain of Vps30. An approximate sequence register was assigned for the 

remainder of the structure. The real-space correlation of the model with the density suggests 

that the fit is reasonable for most of the structure. The poorest fit to the density is in the 

Vps38 N-terminal C2 domain (fig. S2).

Overall architecture of complex II

The complex has a Y shape, with two long arms and a short hook-like base (Fig. 1D, E). The 

base is built entirely of the Vps30 and Vps38 N-terminal domains and coiled-coil 1 (CC1) 

domains. One of the arms (15 nm in length) consists of Vps15 and Vps34 (Fig. 1E) while 

the other arm (18 nm) includes domains from all four subunits arranged along the Vps30 and 

Vps38 coiled-coil 2 (CC2). Interestingly, Vps30 and Vps38 show similar architectures 

except for their N-terminal domains, where Vps38 has a C2 domain, while Vps30 is mostly 
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unstructured (fig. S3, A and B). At the C-terminus, Vps30 has a BARA domain that binds 

side-by-side to the C-terminal domain of Vps38, which we named BARA2. The two arms of 

complex II correspond to the V-shape seen in the low-resolution EM structure of complex I 

(19). It is thus likely that most of the details seen in complex II are preserved in complex I.

Vps15/Vps34 catalytic heterodimer

Vps34 and Vps15 intertwine in an anti-parallel fashion, with each of the three domains of 

Vps15 [kinase and helical (KINHEAT), and WD40] interacting with at least one domain of 

Vps34 [C2, helical and kinase (HELCAT)] (Fig. 1D, fig. S3, C and D). This network of 

interactions explains the co-dependent relationship of the two proteins: Vps34 is essential 

for Vps15 integrity (3) whereas Vps15 is necessary for Vps34 membrane recruitment and 

activity in vivo (20).

The N-lobe of the Vps15 kinase domain lies at the tip of the right arm, interacting with the 

C-lobe of the Vps34 kinase domain (Fig. 2A). It is not certain whether Vps15 is an active 

kinase or a pseudokinase. Wild-type Vps15 is phosphorylated whereas kinase-dead variants 

are not, suggesting autophosphorylation (21). Vps15 exhibits non-typical residues in critical 

catalytic elements: a 145-HGD sequence motif instead of HRD in the catalytic loop; a 165-

DFA sequence motif instead of DFG in the activation segment and the absence of a GxGxxG 

motif (P-loop) that normally binds phosphates in ATP (22) (fig. S3C). Although these 

substitutions are quite rare in the human kinome, they are found both in active and pseudo 

kinases (23). The Vps15 kinase domain in our structure is probably in an inactive 

conformation since the long, partially ordered “activation loop” intrudes into the ATP 

binding site and would prevent ATP binding (Fig. 2B).

The central part of Vps15 forms 9 helical pairs wound into a right-handed helical solenoid 

stretching from the Vps15 kinase domain to the Vps38-CC1/CC2 (Fig. 1D). The first eight 

helical pairs are HEAT-type repeats. The helical solenoid has a concave face that nestles 

Vps34-C2. The Vps15 solenoid is followed by four more helices in a bundle (residues 

788-885) that caps the hydrophobic end of the solenoid. Most of the Vps15 linker between 

the solenoid and WD40 is disordered (residues 889-985), except for an extended section 

(residues 986-1050) threading along the surface of Vps34-C2.

The C-terminal domain of Vps15 is a seven-bladed WD40 domain (16) that bridges the 

Vps15/Vps34 and the Vps30/Vps38 pairs. On one side, conserved residues in the WD40 β3/

β4 loop of blade 4 (1261-ArgPhe, referred to as RF loop) reach Vps34-C2, while on the 

other side the only two other invariant residues, Glu1077 and Ser1121 (between blades 1 and 

7) contact Vps38-BARA2. Finally, one surface of the WD40 straddles Vps30-CC2. Due to 

this interaction, the greatest HDX differences in WD40 between the heterotetramer and the 

Vps15/Vps34 heterodimer are for peptides in blades six and seven of WD40, which contact 

Vps30-CC2 (Fig. 2C). A cluster of Beclin 1 phosphorylation sites map to this CC2/WD40 

interface (fig. S4), where they could affect assembly of the active heterotetramer. The region 

of Vps30 in contact with the WD40 coincides with a region in mammalian Beclin 1 that was 

referred to as the evolutionary conserved domain (ECD) (24). Instead of binding Vps34 
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directly as previously proposed (24), ECD binds to Vps15-WD40 and therefore only 

indirectly to Vps34.

Vps15 as a potential regulator of Vps34

Several catalytically important elements of Vps34 contact the kinase domain of Vps15: the 

activation loop (residues 749-767), helix kα10 and the kα11/kα12 elbow (residues 860-864) 

(Fig. 2A). These interactions are consistent with the observation that deletions in the kα11/

kα12 region prevented association between Vps34 and Vps15 (25). In protein kinases, the 

dynamics of the activation loop regulates catalytic efficiency (26). The proximity of Vps15 

could modulate the active conformation of the Vps34 lipid-binding site, including the 

activation loop. SUMOylation of residue K840 in helix kα10 of hsVPS34 increases kinase 

activity (27). This modification could regulate both the conformation of the Vps34 activation 

loop and its interaction with Vps15.

Vps15 could influence Vps34 in multiple ways: stabilizing the enzyme, inhibiting basal 

activity by restricting the activation loop and contributing to membrane recruitment. The 

roles of Vps15 would be akin to the multiple roles of regulatory subunits of class IA PI3Ks. 

Oncogenic mutations of class I PI3Ks unmask the inhibitory role of the regulatory subunit 

(28). In a human metastatic melanoma, a Vps15 R107Q mutation in the kinase domain (29) 

is in close proximity to the C2/HELCAT Linker Helix and could affect Vps34 activity by re-

orientating the Vps15/Vps34 kinase domains.

VPS34 C2 domain as a hub for complex II formation

Although each Vps34 domain interacts with Vps15, the most extensive contacts involve 

Vps34-C2, which rests between the arms of the Y, engaging all subunits (Fig. 3A). This 

domain was crucial for the function of Vps34 in cells (Fig. 3B), and it was important for 

tight association with Vps15 (fig. S5). C2 domains often serve as membrane interaction 

modules, however, given the dense protein-protein interaction network centered on Vps34-

C2, this domain is unlikely to also bind membranes.

The relationship of Vps34-C2 to Vps34-HELCAT is completely different than what has been 

observed for class I PI3Ks. The C2 domain of class I PI3Ks interacts extensively with the 

helical domain, while Vps34-C2 is remote from the rest of the enzyme, cradled by Vps15-

HEAT (Fig. 3, C and D). This relationship of Vps34-C2 to the Vps34-HELCAT may imply 

substantial flexibility around the linker between these two regions of Vps34, as suggested by 

a relatively high global HDX (fig. S6). Long range motions of Vps34-HELCAT have been 

observed in the EM study of mammalian complexes I and II (19). Here, most of the C2/

HELCAT linker appeared disordered, however a conserved Linker Helix (Fig. 3C) nestles in 

a crook between the Vps15 and Vps34, where it could provide a pivot for Vps34-HELCAT 

motions.

In addition to a β-sandwich scaffold, Vps34-C2 deploys two distinct features assisting its 

role as a nucleus for complex II. The extended loop between β1/β2 strands (CBR1) reaches 

the Vps30/Vps38 CC2 (Fig. 3E), analogous to the critical interaction of the equivalent loop 

in class I PI3K C2 domains with the iSH2 coiled-coil of the p85 regulatory subunit (28). 
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This constitutes the only contact of Vps34 with the Vps30/Vps38 unit and explains the 

previously reported binding of hsVPS34-C2 to a Beclin 1 region encompassing CC2 (30). 

Deletion of CBR1 resulted in a phenotype similar to deletion of VPS34 (Fig. 3B), 

suggesting that this is an important interaction in the complex.

A helical hairpin insertion (C2HH, for C2 Helical Hairpin) in the β7/β8 loop reaches the RF 

loop in Vps15-WD40 (Fig. 3A). This insertion showed less HDX in complex II compared to 

the Vps15/Vps34 dimer (Fig. 2C), suggesting a stabilizing role for C2HH. The global 

exchange for C2HH was, nevertheless, higher than the rest of Vps34-C2, indicating 

flexibility (fig. S6), which might be in turn regulated by phosphorylations (fig. S4). Several 

of these modifications were affect the activity of mammalian VPS34 (31, 32). Deletion of 

C2HH in yeast Vps34 resulted in a temperature sensitive phenotype (Fig. 3B).

Organization of the Vps30/Vps38 pair

The Vps30 and Vps38 interact along their entire lengths, forming an elongated structure that 

fits like a bracket around the Vps15/Vps34 heterodimer, along which Vps38 and, to a 

smaller extent, Vps30, establish multiple contacts with Vps15/Vps34. The two central 

coiled-coils (a short CC1 and a longer CC2) of Vps30/Vps38 form a parallel heterodimer. A 

parallel arrangement of these two proteins was also proposed for the mammalian complexes 

I and II based on a low-resolution EM model (19) while the homodimeric CC2 of Beclin 1 

forms an anti-parallel homodimer (33). The bracket-like organisation of the Vps30/Vps38 

pair relative to Vps15/Vps34 suggests that the complex might assemble from these two 

pairs. This is supported by a pulldown experiment showing that purified Vps30/Vps38 

heterodimer can capture purified Vps15/Vps34 (fig. S7).

The C-terminal Vps30-BARA and Vps38-BARA2 are at the tip of the left arm, with Vps30-

BARA interacting exclusively with Vps38, and Vps38-BARA2 contacting both Vps30 and 

Vps15-WD40. Vps30-BARA in complex II agrees closely with the structure of the isolated 

BARA (17, 34) (Fig. 4A). While Vps30-BARA has three β-α repeats, Vps38-BARA2 has 

two incomplete BARA-type repeats. The first repeat includes a helix preceded by an 

extended structure but not forming a clear β-sheet whereas the second repeat is complete 

(Fig. 4B).

The most conserved part of Vps30-BARA forms an extensive interface with Vps38-BARA2, 

which is consistent with HDX data (Vps30 peptide 385-389 at the BARA/BARA2 interface 

being more protected in complex II then in free Vps30, Fig. 4A). The Vps30-NTD, CC1 and 

CC2 also contribute to interaction with Vps38. Indeed, the NTD, C2 and CC1 domains of 

Vps30 and Vps38 are sufficient to form a stable heterodimer in solution (Fig. 4C).

The N-terminal domains of Vps30 and Vps38 meet at the base of the complex, where they 

interact primarily with Vps15. Vps30-NTD is not well defined, but we could build three 

disconnected helices that could be part of it (Fig. 5A). In our interpretation, one of these 

helices forms a triple helical bundle with CC1 of Vps38/Vps30. Furthermore, the density 

assigned to Vps30-NTD is adjacent to Vps38-C2. This close spatial relationship is supported 

by our HDX-MS that identified a single nanobody binding to both Vps38-C2 (residues 
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45-55) and Vps30-NTD (residues 63-76). HDX suggested additional contacts, not apparent 

at this resolution, between these domains, based on the large protection of peptide 82-86 in 

Vps30-NTD in complex II versus Vps30 alone (Table S2A).

Given that Vps38 defines complex II and is essential for vacuolar protein sorting (17), we 

characterised the role of Vps38-C2 and BARA2 using a CPY sorting assay in a vps38Δ 
mutant (Fig. 5B). ΔBARA2 showed only a partial rescue of CPY sorting whereas ΔC2 did 

not rescue carboxypeptidase Y (CPY) sorting due to Vps38 degradation (Fig. 5C). Thus, 

Vps38-BARA2 is important for vacuolar protein sorting and Vps38-C2 is essential for the 

stability of Vps38 and consequently for complex II formation.

Implications for complex I

In complex I, Vps38/UVRAG is substituted with Atg14/ATG14L. Although the N-terminal 

domains of Vps30, Vps38 and Atg14 differ, the overall similarity of their domain 

organizations suggests that these proteins may have evolved from a common ancestor. The 

lengths of the Atg14 and Vps38 coiled-coil regions are comparable, which suggests that 

Atg14 probably interacts with the CC1 and CC2 domains of Vps30 similarly to Vps38.

The C-terminal extension of human Atg14L contains a BATS domain previously shown to 

interact with membranes. In our model, the BATS domain would share proximity with other 

elements of the complex involved in membrane binding (see next section). In yeast, the 

amphiphilic helix at the C-terminus of Atg14 (residues 240-261) could act as its functional 

counterpart. The absence of a C2 domain in Atg14 to interact with Vps30-NTD may explain 

why Vps30-NTD is dispensable for autophagy, in contrast to the critical role of the Vps30 

C-terminal domain (17).

Membrane interactions of complex II

Because the activity of all PI3Ks is controlled by their association with membranes, we 

examined this interaction for intact complex II. Comparing HDX for complex II in the 

presence and absence of membranes showed that localized changes in exchange for all four 

subunits accompany membrane binding (Fig. 6A, Table S3). Vps30-BARA (residues 

424-443) shows decreased HDX, suggesting that this region directly interacts with 

membranes, consistent with Vps30-BARA greatly contributing to endosomal localisation of 

complex II (17). The analogous region (359-FFW) in Beclin 1 BARA contains the 

membrane binding “aromatic finger” (34). For simplicity, we also will refer to Vps30 

residues 430-FRK-432 as the “aromatic finger” (fig. S3A). Two known membrane-binding 

elements in Vps34, the activation loop and the C-terminal kα12 helix, did not display a 

decrease in HDX. Increased HDX in the Vps34 activation loop likely reflects a disruption of 

the contact between this loop and the N-terminus of Vps15 enabling the activation loop to 

bind lipids, while contacts made by kα12 helix in the closed conformation observed in 

complex II are replaced by membrane interactions (18). Thus, the net HDX that we observe 

for the Vps34 kinase domain upon membrane binding is presumably a sum of increases in 

HDX due to conformational changes and decreases associated with direct membrane 

interaction.
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In our model for Vps34 complexes on membranes (Fig. 6A), the tips of the two arms contact 

the membrane: one arm via the Vps34 activation loop, the Vps34 kα12 helix and the Vps15 

N-terminal myristoylation site, and the other arm via the Vps30/Beclin 1 BARA domain. 

Both Vps15-WD40 and Vps34 interact with the yeast lipidated Gα subunit Gpa1 on 

endosomes (35) and VPS34 interacts with Gαi at the midbody (36). It is plausible that 

membrane-localized Gpa1 would fit into the notch between the two arms of complex II. 

Mammalian Vps34 complexes are regulated by Rab5 (37) and Rab7 (38), and these G-

proteins may occupy the same crevice between the two arms of the complexes.

Activity of Vps34 complexes on small and large vesicles

To evaluate the influence of the Vps30-containing arm on Vps34 activity, we compared 

activities of complex I, complex II and the Vps15/Vps34 heterodimer. Using small 

unilamellar vesicles (SUVs), complexes I and II had similar activities that are higher than 

the heterodimer (Fig. 6B). Complex II with a mutation in the Vps30 “aromatic finger” (430-

FRK-432 mutated to DDD) showed lower activity, similar to the Vps15/Vps34 dimer (Fig. 

6B). Remarkably, complexes I and II greatly differed in their activities on giant unilamellar 

vesicles (GUVs). Complex I and the Vps15/Vps34 heterodimer were inactive on GUVs, 

whereas complex II efficiently phosphorylated these relatively low-curvature membranes 

(Fig. 6C). This ability depended critically on the Vps30 aromatic finger, since the 

FRK/DDD mutant had an activity indistinguishable from Vps15/Vps34. It is noteworthy that 

a cluster of post-translational modifications maps to loops in the Vps30-BARA (fig. S4). 

These inhibitory modifications may prevent the aromatic finger from interacting with 

membranes. Atg14 might block the basal membrane-binding ability of Vps30 in complex I 

on GUVs, and in cells this block could be relieved by starvation. Membrane binding was 

accompanied by exposure of peptides in both the arms and base of the complex (Fig. 6A), 

indicating conformational changes compatible with global opening/closing motions such as 

suggested by a normal mode analysis (Movie S1). These data allow us to devise a model for 

how complex II adapts to membranes (Fig. 6D). Conformational shifts in the base would 

enable opening of the arms to adjust to different membrane curvatures. Flexing joints at the 

junction between Vps30-CC2 and Vps30-BARA and between the Vps15/Vps34 kinase 

domains would then enhance productive membrane binding. In contrast to complex II, 

which operates on relatively flat endosomal membranes, complex I is associated with highly 

curved membranes. Accordingly, human ATG14L has a C-terminal BATS domain that 

senses membrane curvature (39). Highly curved membranes could better fit into the notch 

between the two arms (Fig. 6E). PtdIns3P recognition and curvature sensitivity conferred by 

the BATS domain could set up a positive feedback loop for rapid, localized build-up of 

PtdIns3P on highly curved membranes such as the tubular/vesicular structures associated 

with the tips of the autophagic isolation membrane (40) originating at the omegasome (41).

The Y-shaped complexes I/II constitute bipartite structures with catalytic activity in the 

Vps15/Vps34 arm and functional specificity arising from the Vps30/Vps38 (or Vps30/

Atg14) arm and base. These assemblies constitute recruitment platforms for regulatory 

proteins and downstream factors, fine-tuning Vps34 activity. This detailed view of the whole 

complex provides a framework for designing selective activators and inhibitors of Vps34 

complexes targeting not only the active site, but also complex-specific membrane- and 
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protein-binding interfaces. The structure should enable a better understanding of the 

regulation of Vps34 autophagic and endosomal complexes by post-translational 

modifications, binding partners and membranes.

Materials and methods

Constructs

All DNA constructs used in this study are listed in Table S5.

Yeast strains and cell growth

Yeast strains used in this study are listed in Table S6. Cell growth for protein expression is 

described under Protein purification. For cell biology, yeast cells carrying plasmids were 

grown at 30 °C in –URA medium (0.67% yeast nitrogen base without amino acids, 0.5% 

casamino acids and 2% glucose, supplemented with 0.002% adenine sulfate, 0.002% 

tryptophan, 0.002% tyrosine and 0.002% leucine).

Protein purification – complex II

Plasmids carrying genes encoding Saccharomyces cerevisiae PI3K complex II subunits were 

transformed into BCY123 or YOY193 yeast cells (see Tables S5 and S6 for details). All 

coding fragments were under the GAL1 promoter (Somatogen Inc.). Cells were grown in 

YM4 medium (0.67% yeast nitrogen base without amino acids, 0.5% casamino acids and 

2% glucose, supplemented with 0.002% adenine sulfate, and 0.002% tyrosine) for double-

plasmid expression using pRS424- and pRS426-backbone plasmids, or –URA medium for 

pRS426-backbone plasmids. Flasks containing a total of 10 L of cells were grown at 30 °C 

in the presence of 2% galactose for 24 h. Cells were lysed in lysis buffer (50 mM Tris pH 

8.8, 300 mM NaCl, 1 mM DTT, 1% Triton-X, 0.5 mM PMSF and protease inhibitor tablet 

(Roche, 05056489001) with glass beads (Sigma G8772), using a cell disruptor (FastPrep-24, 

MP Biomedicals). IgG beads (GE Healthcare 17096902) were added to the lysate, incubated 

for 3 h at 4 °C, then washed once with Wash 1 buffer (50 mM Tris pH 8.0, 300 mM NaCl, 1 

mM DTT, 1% Triton-X, and 0.5 mM PMSF), once with Wash 2 buffer (50 mM Tris pH 8.0, 

300 mM NaCl, 1 mM DTT, and 0.5 mM PMSF). The protein A (ZZ) tags were cleaved by 

TEV protease in Wash 2 buffer overnight. The elution fractions were concentrated and 

subjected to gel filtration on Superdex 200 16/60 equilibrated in 20 mM Tris pH8.0, 300 

mM NaCl, 1 mM TCEP. The “aromatic finger” mutant complex II (with Vps30 residues 

430-FRK-432 mutated to DDD) was purified in the same way as the wild type complex II.

Protein purification – complex I

Saccharomyces cerevisiae complex I was expressed as described above. The protocol for 

complex I purification was essentially the same as for complex II, with three differences. 

Firstly, 150 mM NaCl was used in all buffers, secondly, 0.5 % CHAPS was used as a 

detergent, and thirdly, 20 mM Tris pH8.8, 150 mM NaCl, 1 mM TCEP was used for gel 

filtration.
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Protein purification – Vps15/Vps34 dimer

Saccharomyces cerevisiae Vps15/Vps34 heterodimer was expressed as described above. The 

purification protocol was the same as for Complex II, with some diffrences. Wash 1 and 

Wash 2 buffers contained 500 mM NaCl. Once the protein A tags were cleaved off with 

TEV protease overnight, the sample was diluted with three volumes of HEP-A buffer (20 

mM Tris pH8.0, 0.5 mM DTT) and then loaded on the pre-equilibrated 5 ml Heparin HP 

column. The protein was then eluted with a NaCl gradient (HEP-B buffer, 2M NaCl and 0.5 

mM DTT).

Kinase dead vps34 (D731N) dimer was expressed and purified as wild type.

Production of nanobodies

Nanobodies were generated against cross-linked complex II. Protein for generating 

nanobodies was produced from 10 L of yeast cell culture. Complex II was purified as 

described above except that the Wash 2 buffer was 50 mM HEPES pH 7.4, 300 mM NaCl, 1 

mM TCEP, and 0.5 mM PMSF. Proteins on IgG beads were incubated overnight with TEV 

protease in 10 mL of Wash 2 buffer at 4 °C. After the first elution, 5 mL of Wash 2 buffer 

without TEV protease was added and eluted again. The two TEV elution fractions were 

combined and CHAPS was added to a concentration of 0.1%. Protein was concentrated for 

gel filtration (Amicon Ultra 100 kDa cutoff, Millipore). Gel filtration was done on Superdex 

200 16/60 (GE Healthcare), which was pre-equilibrated with gel filtration buffer (20 mM 

HEPES pH 7.4, 300 mM NaCl, and 1 mM TCEP). The peak fractions were combined and 

concentrated to 400 μL at 6.3 mg/mL (16 μM). The whole amount was used for the cross-

linking. Complex II at 10 μM was cross-linked using CovalX K200 (CovalX AG, Zurich, 

Switzerland) by following the manufacture’s protocol. After removing precipitates by 

centrifugation, the cross-linked material was frozen in liquid nitrogen and shipped on dry ice 

to the Steyaert laboratory for immunization. Complex II-specific nanobodies were generated 

following the previously described protocol (15). Briefly, one Ilama was immunized six 

times with 100 μg of cross-linked Complex II. Peripheral blood lymphocytes were extracted 

4 days after the final antigen boost. RNA was purified and converted into cDNA via RT-

PCR. The cDNA was cloned into phage display vector pMESy4 containing a C-terminal 6X 

His tag. For the phage selection, Complex II, both cross-linked and native, was directly 

coated on the solid phase. Antigen-bound phages were recovered by proteolysis with trypsin. 

53 clones were sequenced after selections, out of which 38 tested positive in an ELISA. 

Nanobody 8780, which was crystallized with Complex II for structure determination, was 

selected using non-cross linked material.

Expression and purification of nanobodies for crystallization

WK6 Su- cells were transformed with the plasmids carrying VHH constructs genes from the 

selections described above. Cells were grown at 37 °C to OD600 = 0.7 then induced with 1M 

IPTG for 20 h at 25 °C. For the initial screening, 1 L of cell culture was grown for each 

nanobody. For further characterisation and crystallization trials, 6 L of cell culture were 

grown. Nanobodies are purified from the cell periplasm. Cells from 1 L culture were 

resuspended on ice with 15 mL of TES buffer (200 mM Tris-HCl pH8, 0.5 mM EDTA, 500 

mM sucrose) and then rotated for 1 h at 4 °C. After incubation, 30 mL of 4X diluted TES 
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buffer (50 mM Tris-HCl pH8, 0.125 mM EDTA, 125 mM sucrose) buffer was added to the 

cells followed by further rotation for 45 min at 4 °C. After ultracentrifugation, the 

supernatant was loaded onto Ni/NTA beads (Qiagen) equilibrated in Wash buffer (50 mM 

Phosphate pH7, 1 M NaCl), washed extensively in the same buffer, followed by low 

Imidazole wash (50 mM Phosphate pH7.4, 1 M NaCl, 15 mM Imidazole pH8). The protein 

was eluted with 200 mM Imidazole pH 8, 20 mM Phosphate pH 7.4, 1 M NaCl and then 

concentrated in Amicon Ultra 5 kDa cut-off concentrator, before being loaded on S75 10/30 

gel filtration column (for small scale 1 L expression) or S75 16/60 (for large scale 6 L 

expression) equilibrated in 20 mM Tris-HCL pH7.5, 150 mM NaCl.

Crystallization

Purified complex II was mixed with an excess of a purified nanobody and the mixture was 

gel-filtered on a 16/60 Superdex 200 column. The relevant fractions were pooled, 

concentrated to 6-7 mg/mL and screened for crystallization in over 1900 conditions using 

LMB Innovadyne robotic crystallization setup (42), with 100 nL of protein and 100 nL of 

the reservoir solution in 96-well plates. Initial crystals of complex II were obtained using 

Crystal Screen 1 reagent 3 (Hampton Research), containing 0.4 M mono-ammonium 

dihydrogen phosphate. The crystals were optimized in grids varying the concentration of 

reagents, adjusting pH, screening different salts, cryogenic protectants, detergents and other 

additives. For data collection, crystals were produced in 96 well plates, using 200 nL of 

protein and 200 nL of the reservoir solution containing 0.35 M sodium acetate and 3% 1,5–

diaminopentanedihydrochloride. Crystals were grown at 17 °C and reached the maximum 

size after 5-7 days. Crystals were cryo-protected by adding to the drop a solution containing 

0.35 M sodium acetate, 3% 1,5–diaminopentanedihydrochloride and 25% ethylene glycol. 

Crystals were mounted in loops and flash cooled in liquid nitrogen.

Structure solution

Diffraction data were collected at the European Synchrotron Radiation Facility (ESRF) on 

beamline ID29 and at the Diamond light Source on beamlines I04 and I24. Native crystals of 

Complex II bound to a nanobody diffracted to approximately 4.4 Å resolution, some of these 

were soaked from 1 to 10 min in 2 mM tantalum bromide (Jena Biosciences PK-103) 

dissolved in the crystallization solution. We optimized data collection for tantalum-

derivatized crystals by estimating the total dose absorbed using RADDOSE (43). Datasets 

for tantalum soaked crystals were collected at the peak absorption edge and at the two 

different inflection points for this element (see Table S1). Data were processed with XDS 

and scaled using XSCALE (44). Experimental phasing was carried out using either 

Autosharp or Sharp (45). The signal over noise for native crystals could be enhanced by 

combining seven isomorphous datasets together with XSCALE, to allow us to adopt a 4.4 Å 

resolution cut off. A list of initial sites was obtained using SHELX C/D (46), enabling us to 

obtain a first experimental map in which previously solved models of the WD40 domain of 

VPS15, the BARA and coiled-coil domains of VPS30/38 as well as the HELCAT of VPS34 

could be readily placed. At this stage, the electron density was clear enough to build most of 

the helices of the helical domain of VPS15. Missing parts of the complex, such as the kinase 

domain of VPS15 and the C2 domains of VPS34 and VPS15 were subsequently found using 

homemade scripts for serial molecular replacement with PHASER (47), using model 
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libraries obtained from HHPRED secondary structure profile matching hits (48) or BALBES 

(49). Improvement of the initial model was possible by successive rounds of model building 

and refinement followed by density modification with SOLOMON (50) from the SHARP 

server interface using the updated model every time as a solvent mask to generate a better 

experimental map. Refinement was performed using tight secondary structure and 

Ramachandran restraints with PHENIX (51). Given the low resolution, no side chains were 

incorporated, the model contains however the yeast sequence register.

HDX sample preparation: dynamics and protein contacts

For determination of the complex dynamics and protein contacts within the complex HDX-

MS experiments were conducted. The D2O used in all experiments was of a ≥99.75% 

isotopic purity (Acros Organics). Protein samples (10 μL of 2.5 μM protein in Dilution 

Buffer (20 mM Tris pH 8.0, 50 mM NaCl, and 2 mM TCEP)) were mixed rapidly with 35 

μL of D2O Buffer (20 mM Tris pH 8.0, 50 mM NaCl, 2 mM TCEP, 96.6% D2O), to produce 

a sample with a final concentration of 75% D2O. Four time points of exchange (3 s on ice, 3 

s, 30 s and 300 s at 23 °C) were produced in triplicate. For each time point, the reaction was 

quenched by the addition of 20 μL of Quench Buffer (8.4% formic acid, 5 M guanidine-

HCl), and immediate freezing in liquid nitrogen. Samples were then stored at −80 °C.

HDX sample preparation: nanobody mapping

For nanobody binding experiments, 10 μL of either 2.5 μM complex II, or 10 μL of a 2.5 μM 

complex II/ 3 μM nanobody solution were mixed rapidly with 40 μL of D2O buffer 

(producing a final concentration of 77% D2O). Reactions were incubated for 3 s on ice, 

before being quenched with 20 μL of Quench Buffer, and frozen in liquid nitrogen as above.

HDX sample preparation: membrane binding

Membrane binding experiments were carried out using liposomes produced as described 

previously (28). Briefly, phospholipids were mixed in organic solution in the desired ratios 

(18% (w/v) liver phosphatidylinositol (Avanti 840042C), 45% brain phosphatidylserine 

(Avanti 840032C), 20% brain phosphatidylethanolamine (Avanti 840022C), and 17% brain 

phosphatidylcholine (Avanti 840053C), (grossly mimicking yeast plasma membrane, partly 

modified from (52)), desiccated, resuspended in Lipid Buffer (20 mM Tris pH 8.0, 100 mM 

KCl, 1 mM EGTA), sonicated, freeze-thawed ten times, and then extruded eleven times 

through a 100 nM filter. For HDX-MS experiments, complex II (2.5 μM final concentration) 

was incubated with either 1 mg/mL liposomes or the equivalent volume of Lipid Buffer for 

30 min prior to the addition of any deuterated buffer. HDX reactions were then conducted as 

described above, with 10 μL of protein or protein/lipid solution being mixed with 40 μL D2O 

Buffer supplemented with either 1 mg/mL or the equivalent volume Lipid Buffer (76.6% 

D2O). The final concentration of D2O was 61%. Four incubation times were conducted (3 s 

on ice, 3, 30 and 300 s at 23 °C), and the samples were quenched and stored as above.

Measurement of deuterium Incorporation

All samples were analysed using the same chromatography system and mass spectrometry 

instruments. Protein samples were thawed and immediately injected onto an ice-immersed 
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ultra performance liquid chromatography (UPLC) system. The protein was initially passed 

through two immobilized pepsin columns (Applied Biosystems; poroszyme) at 150 μL/min 

for 3 min in order to digest the protein, and the resulting deuterated peptides were collected 

on a van-guard pre-column trap (Waters). The trap was then switched in-line to an Acquity 

1.7 μm particle, 100 mm × 1 mm C18 UPLC column (Waters), and the peptides were eluted 

from the column using a 20 min 5 - 45% gradient of buffer A (0.1% formic acid) and buffer 

B (100% acetronitrile), followed by a four min 76% buffer B wash. The mass of the eluted 

peptides was then determined using a Xevo QTOF (Waters) acquiring for 30 min over a 

mass range of 350 to 1500 m/z, using an electrospray ionisation (ESI) source operated at a 

capillary temperature of 225 °C, and a spray voltage of 3.5 kV.

Peptide identification

The identification of non-deuterated peptides was determined by running tandem MS/MS 

experiments with a non-deuterated sample digested as above but with 60 min gradient over 

the reverse-phase column. This was repeated with a 20 min gradient, and identical peptides 

observed in both gradients were used to produce a linear extrapolation to correct for the 

retention times of peptides observed only in the 60 min gradient. A tolerance of 15 ppm was 

used in the MS observations, and an MS/MS tolerance of 0.2 Da was also used. The 

resultant MS/MS datasets were analysed using Mascot Distiller (Matrix Science). Peptides 

with a Mascot score less than 10 were excluded from all further analysis. Centroid values 

were determined using HD-Examiner software (Sierra Analytics). Every non-deuterated 

peptide was validated manually by searching the protein sample’s MS scan and checking for 

the correct charge state, the presence of any overlapping peptide envelopes, and a correct 

retention time (peptides failing any of these criteria were excluded from further analysis). 

Peptide coverage was as follows: Vps38 – 51.9%, Vps34 - 83.6%, Vps30 - 82.9%, Vps15 – 

36.8%.

Mass analysis of peptide centroids

Validated non-deuterated peptides were subsequently analysed for their deuterium 

incorporation under various conditions. Due to the shift in isotopic envelope observed upon 

deuterium incorporation, additional peptides were discarded from the data set due to overlap. 

All peptides were once again checked for correct charge state and retention time. All 

deuterium levels quoted in both figures and the text are all relative levels of deuterium as no 

fully deuterated sample was obtained. A mathematical correction was applied using HD 

Examiner to compensate for the differences in the level of the deuterium in the various D2O 

buffers. The average error was ≤0.5 Da for any two replicates. Only changes that were 

greater than 0.9 Da for both observations were considered significant for our analysis. All 

results quoted both in the figures and the text are the greatest observed difference for that 

peptide at any single time point, unless otherwise explicitly stated.

CPY assay

CPY assay was modified from Noda et al. (17). Cells were grown at 30 °C to mid-log phase 

(A600 = 0.8 - 1.0) in –URA medium and an equivalent of 5 A600 units of cells was collected 

and resupended in 500 μL of –URA medium with 50 mM KPO4 pH 5.7 and 0.5 mg/mL 

BSA followed by incubation at 30 °C for 1 h. Cells and extracellular fraction were separated 
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by centrifugation at 4,000 g for 1 min. Cellular fractions were subjected to the cell wall 

loosening procedure (2 M LiAc on ice for 2 min, followed by 0.4 M NaOH on ice for 2 

min), resuspended in 50 mM Tris pH 8.0, 1% SDS, 8 M urea, 2 mM DTT and 5 mM EDTA 

with glass beads, and disrupted at 3000 rpm for 30 s with PowerLyzer (Mo Bio) at 4 °C. One 

in four volume of 4X sample buffer was added to the lysates and loaded on gel without 

boiling. Extracellular fractions were precipitated with final 10% TCA (from 100% stock) on 

ice for 30 min and centrifuged at 20,000 g for 10 min. Pellets were washed two times with 

90% cold acetone, air-dried, then resuspended in 2X sample buffer, and loaded on gel 

without boiling. CPY is synthesized as a premature form (p1), transported to the Golgi to be 

glycosylated (p2), and then delivered to the vacuole, where it is cleaved to a mature form 

(m). The p2 and m forms of CPY were detected both in cellular (Cell) and medium 

(Medium) fractions using anti-CPY (1/200; Invitrogen A6428). Vps38 proteins, which were 

all C-terminally tagged with 3xFlag were detected by anti-Flag-HRP (1/1000; Sigma 

A8592). Of note, both full length Vps38 (FL) and ΔBARA2 show two protein bands. The 

higher molecular weight bands correspond to the sizes of interest (asterisks in Fig. 5B). 

Pgk1 was detected by anti-Pgk1 (1/2000; Invitrogen 459250). Anti-mouse HRP (1/2000; 

Sigma A9917) was used as a secondary antibody.

Protein A pull-down assay

Plasmids carrying VPS15-ZZ (pYO225) were cotransformed with an empty vector 

(pRS424), untagged VPS34 (pYO69) or HELCAT (pYO361) into a yeast strain (YOY193). 

Protein expression was induced by 2 % galactose for 24 h at 30 °C in 500 mL of YM4 

medium in the presence of 2 % glycerol and 3 % lactic acid. Cells were harvested in 50 mL 

tubes, then 5 mL of lysis buffer (50 mM Tris pH 8.8, 300 mM NaCl, 1 mM DTT, 1 % triton, 

0.5 mM PMSF, and inhibitor tablet) and 3 g of glass beads were added. Cells were disrupted 

with FastPrep-24 at 6.5 intensity for 45 s once. Cell debris and glass beads were removed by 

centrifuging at 4000 rpm for 2 min. Supernatants were transferred to ultracentrifuge tubes, 

and spun at 20,000 g for 10 min. IgG beads (100 μL of 50 % slurry) were added to 

supernatants, and rotated at 4 °C for 2 h. The protein-bound beads were transferred to Poly-

Prep chromatography columns (Bio-Rad), and washed with 10 mL of wash buffer (50 mM 

Tris pH 8.0, 300 mM NaCl, 1 mM DTT, 1 % Triton X-100, and 0.5 mM PMSF) and 10 mL 

of Wash 2 buffer (50 mM Tris pH 8.0, 300 mM NaCl, and 1 mM DTT) by gravity flow. 

After draining Wash 2 buffer, IgG beads were resuspended in 500 μL of Wash 2 buffer. A 

fraction of lysate (0.04 %) and beads (2 %) were loaded on a gel.

Microscopy

Cells were grown to mid-log phase (A600 = 0.8 - 1.0), then examined by microscopy with an 

inverted microscope (Nikon Eclipse TE2000) equipped with a CCD camera (CoolSNAP-

HQ2, Roper Scientific, Tucson, AZ), a GFP filter (Chroma Technology, Rockingham, UT) 

and a DIC channel. Images were analyzed using ImageJ, and levels adjusted with Adobe 

Photoshop.

Vps15/Vps34-Vps30/Vps38 reconstitution

A yeast plasmid carrying VPS30 and ZZ-VPS38 (pYO734) was transformed into the 

YOY193 strain. The transformed cells were grown overnight at 30 °C in –URA medium, 
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then shifted to 1 L induction medium (YM4, 2 % glycerol, 3 % lactic acid, 2 % galactose, 5 

μM ZnCl2, 55mg /L leucine, and 55mg /L tryptophan) at 30 °C for 24 h. About 10 g cell 

were obtained. Cells were split into two aliquots of 5 g in 50 ml tubes. Cells/tube were 

disrupted in 5 ml lysis buffer (50 mM Tris pH 8.8, 150 mM NaCl, 1 mM DTT, 1 % Triton 

X-100, 0.5 mM PMSF, and EDTA-free protease inhibitor tablet) and 3 g glass beads using a 

FastPrep24 at 6.5 intensity for 45 s. Cell debris and glass beads were spun down at 2,500 g 

for 2 min. Supernatants were combined, and spun at 20,000 g for 10 min. IgG beads (100 

μL) were added to the supernatant, and rotated at 4 °C for 2h. For the IgG beads only 

control, 50 μl of IgG beads was added in 5 ml lysis buffer, and rotated as above. The control 

and the protein-bound IgG beads were transferred to Poly-Prep chromatography columns, 

and washed with 10 mL of wash buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1 mM DTT, 

1 % Triton X-100, 5 mM ATP, 50 mM MgCl2, 2 mg/ml RNase A) and 10 mL of reaction 

buffer (50 mM Tris pH 8.0, 300 mM NaCl, and 1 mM DTT) by gravity flow. The protein-

bound IgG beads were split into two halves, one for the control without Vps15/Vps34, the 

other for the reconstitution with Vps15/Vps34. After draining the buffer, 225 μl of reaction 

buffer was added to each column, then 25 μl of purified Vps15/Vps34 was added to a final 

concentration of 1 μM. Binding reaction was done on ice for 1h. Beads were washed once 

with 10 ml wash2 buffer (50 mM Tris pH 8.0, 300 mM NaCl, 1 mM DTT, 1 % Triton 

X-100), and once with 10 ml reaction buffer. 2.5% of total volume was loaded on a SDS-

PAGE gel for input and IgG beads fractions.

Lipid kinase assays

Lipid kinase assays were carried out using liposomes produced as described above. 

Phospholipids were mixed in organic solution in the desired ratios (18% (w/v) 

phosphatidylinositol, 10% phosphatidylserine, 17% phosphatidylethanolamine, and 55% 

phosphatidylcholine), desiccated in a nitrogen stream, then resuspended in Lipid Buffer (25 

mM HEPES pH 8.0, 100 mM NaCl, 1 mM EGTA) to make a 1 mg/ml stock. The stock was 

sonicated in a bath sonicator, freeze-thawed ten times, and then extruded eleven times 

through a 100 nm filter.

Lipid kinase assays were performed using the Echelon K-3000 kit, a 96- well ELISA assay 

for detection of PI3P. Protein dilutions and lipid stocks were made in Reaction buffer (25 

mM Tris pH8.0, 150 mM NaCl, 2 mM EGTA, 0.1% CHAPS, 4 mM MnCl2, 2mM TCEP). 

First, 5 μl of 20 nM enzyme was aliquoted into PCR tubes. The reaction was initiated by 

addition of 5 μl of liposomes in Reaction buffer with 100 μM ATP to give a final enzyme 

concentration of 10 nM and final PI concentration of 50 μM. Control reactions without ATP 

were also set up for all proteins. The reaction was incubated for 1 hour at room temperature 

without agitation and was the stopped by addition of 16.6 mM EDTA and diluted to 80 μl in 

the 2x PI3P Detection Buffer (K-3004). 50 μl of this reaction was then transferred to the 

Detection Plate (K-3001). PI3P was then detected on a plate reader as per manufacturer’s 

instructions. Kinase dead Vps34 (D731N) dimer was used as a negative control. Error bars 

represent the standard deviation from the mean for triplicate measurements. The results 

shown are representative of at least three independent experiments.
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Giant Unilamellar Vesicle (GUV) assay

Two concentric greased 16 mm/18 mm O-rings were placed on the metal side of an indium 

tin-oxide coated glass slide. An aliquot (10 μl) of the 1 mg/ml lipid mixture of 18% (w/v) 

liver phosphatidylinositol, 10% brain phosphatidylserine, 17% brain 

phosphatidylethanolamine, 55% brain phosphatidylcholine (catalogue numbers as above) 

and 0.1% Lisamine Rhodamine-PE (Avanti 810850P) was pipetted into the centre of the 

rings and dried under vacuum for 1 h. Swelling Buffer (500 mM glucose, 220 μl) was added 

to each ring. The slide was then placed into the Vesicle Prep Pro GUV generator (Nanion) 

and covered with another indium tin-oxide coated glass slide. An AC-field (1V, 10 Hz) was 

applied to the slides for 4 h at 60 °C. The wells of the observation chamber (Lab Tek 

chamber 1, Borosilicate, 155411) were pre-equilibrated with 5 mg/ml of BSA of 4 h and 

then washed with the Observation buffer (50 mM HEPES pH8.0, 150 mM NaCl). GUVs (50 

μl) were added to a solution with enzyme and PI3P detection probe (p40PX domain labelled 

with AlexaFluor647) to give 200 μL of solution of Observation buffer supplemented with 1 

mM EGTA, 2 mM MnCl2, 1 mM TCEP and 50 μM ATP, with an enzyme concentration of 

0.5 μM and a probe concentration of 7 μM. The plasmid used for p40PX domain expression 

was a kind gift from Michael Wilson, Babraham Institute, Cambridge. Confocal images 

were acquired using Zeiss LSM 780, with an x63 (NA 1.4) oil objective lens. There was no 

evidence of PI3P generation on GUVs incubated with complex I, the Vps15/Vps34 

heterodimer or the mutant complex II. PI3P generation appeared exclusively on GUVs 

incubated with complex II.

Temperature sensitivity experiment

The plasmids were transformed into SEY6210 (WT) or vps34Δ. After 2 days at 30 °C on –

URA plates, newly growing colonies were repatched onto new –URA plates, and grown at 

30 °C or 37 °C for 2 days. Protein expression was also confirmed by western blotting using 

anti-Flag-HRP (data not shown).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Complex II structure. (A) Domain organisation of complex II subunits. (B) MALS and SDS-

PAGE analyses of complex II show a 390 kDa heterotetramer with 1:1:1:1 stoichiometry. 

(C) Experimental electron density contoured at 1.1σ for part of the model. (D) Complex II 

has a Y shape with two arms and a base. NB denotes nanobody. (E) Rotated view of the 

complex.
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Fig. 2. 
The Vps15/Vps34 heterodimer. (A) Vps15 kinase domain N-lobe interacts with Vps34 

activation loop (yellow) and C-lobe helices kα10 and kα12 . ATP in Vps34 was modelled 

based on other lipid kinases. (B) The activation loop (black) in Vps15 active site would 

prevent ATP binding (ATP model based on other protein kinases). (C) Vps15-WD40 and 

Vps34-C2 (including C2HH) peptides are showing less HDX in complex II than in the 

Vps15/Vps34. HDX for the rest of the complex (grey outline) is not shown.
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Fig. 3. 
Vps34-C2 is at the heart of complex II. (A) C2 β-sandwich and its distinct structural features 

(C2HH and CBR1 loop). (B) Effects of Vps34-C2 mutants on temperature-sensitive growth. 

Deletion of either the Vps34-C2 (ΔC2), the C2HH (ΔC2HH) or CBR1 (ΔCBR1) prevents 

growth at 37°C, similar to vps34Δ. Full-length Vps34 (FL) grows at 37°C, just as the wild-

type strain (WT). (C) The helix (red) in the Vps34 C2/HELCAT linker fits between Vp15 

kinase and helical domains. (D) Vps34-C2 does not contact HELCAT (left), in contrast to 

class I PI3Ks (right). In complex II, Vps15 bridges Vps34-C2 and Vps34-HELCAT. (E) The 

Vps34-C2 CBR1 loop contacts Vps30/Vps38 CC2. This is similar to the CBR1 loop of class 

IA PI3Ks contacting the coiled-coil (iSH2 CC) of the regulatory subunit.
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Fig. 4. 
Organisation of the Vps30/Vps38 pair. (A) Vps38-BARA2 bridges Vps30-BARA to Vps15-

WD40. (B) Vps38-BARA2 fold is related to Vps30-BARA. (C) MALS shows that Vps30-

NTD and Vps38-C2 together with CC1 regions, form a stable 50 kDa complex, as expected 

for a 1:1 heterodimer.
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Fig. 5. 
Vps30 and Vps38 N-terminal domains are important for complex II stability and function. 

(A) Vps30 and Vps38 parallel arrangement brings Vps30-NTD close to Vps38-C2. For 

Vps30-NTD (grey), a partial model consisting of three helices is suggested. (B) CPY assay 

in WT and vps38Δ strains expressing Vps38 truncations. Protein bands for CPY, Vps38, and 

Pgk1 were detected with anti-CPY, anti-Flag and anti-Pgkl antibodies. Full-length (FL) and 

ΔBARA2 show two Vps38 bands. Asterisks indicate Vps38 expected size. (C) Fluorescence 

microscopy of the vps38Δ strain expressing the same truncations as (B) fused to GFP. FL 

showed a punctate pattern whereas ΔC2 was in the vacuole, and ΔBARA2 was cytosolic 

with empty vacuoles. Scale bars are 5μm.
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Fig. 6. 
Activity and dynamics of Vps34 complexes on membranes. (A) Vps30-BARA binds 

membranes as shown by decreased HDX (blue). Regions showing increased HDX are 

coloured orange. The membrane-protected region of Vps30-BARA, the activation loop, 

kα12 helix and the Vps15 N-terminus (grey) suggest a plausible membrane-binding surface. 

(B) Activities of the Vps34 complexes on SUVs. Kinase-dead Vps15/Vps34 (Vps34-

D731N), is used as a negative control. Error bars represent the standard deviation from the 

mean for triplicate measurements. (C) Complex II is active on GUVs, in sharp contrast to 
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complex I, Vps15/Vps34 and complex II “aromatic finger” mutant. 50 GUVs were counted 

per condition. 50/50 GUVs showed PI3P production (red) for complex II, whereas 0/50 were 

positive for complex I, Vps15/Vps34 or the mutant. (D) A model for conformational 

changes on membranes. Regions showing increased HDX upon membrane binding (orange 

circles) and the dynamic C2/HELCAT Linker Helix (white circle) suggest pivoting points. 

(E) A model of complex I on a highly curved membrane. The N-terminal domains of Atg14 

(NTD) and Vps38-C2 could contribute to anchoring the complexes at specific cellular sites.
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