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H eard et al (2015) generated cIap1�/�

Xiap�/� mice and were surprised to

find them to be viable and fertile,

because we had reported (Moulin et al,

2012) that cIap1�/�Xiap�/� mice died by

day E12.5 of embryogenesis (Moulin et al,

2012 Figs 1B and 2B and Supplementary

Fig S1A). We are working with Heard et al

(2015) in an attempt to determine why.

It is, however, clear that failure of our

cIap2FRT/FRTcIap1�/�Xiap�/� mice to survive

past E12.5 is not due to non-functional

cIap2�/� genes. Three types of cross indicate

that the cIap2FRT/FRT locus, which is carried

by our cIap1�/� mice, does produce func-

tional cIAP2. Firstly, comparison of the

phenotypes of the cIap2FRT/FRTcIap1�/� mice,

which are viable and fertile, with the

cIap2�/�cIap1�/� mice, which die at E12.5,

indicates that the cIap2FRT/FRT locus can func-

tion, at least to the extent needed to allow

normal development when Xiap is present

(Moulin et al, 2012). Secondly, when speci-

fic deletion of cIap1 in B cells was combined

with whole body cIap2 deletion, it led

to more profound B-cell expansion than

deletion of either IAP alone (Gardam

et al, 2011). Thirdly, deletion of cIap1 in

myeloid cells on either a cIap2�/� or cIap2�/�

Xiap�/� background triggered splenomegaly,

increased neutrophils and monocytes,

inflammatory cytokine production and spon-

taneous inflammatory arthritis, whereas dele-

tion of Xiap, cIap1 or cIap2 alone did not

(Wong et al, 2014; Lawlor et al, 2015).

In addition to the differences in viability

of the cIap1�/�Xiap�/� mice, Heard et al

(2015) found much higher levels of cIAP2

protein in their cIap1�/� mouse embryonic

fibroblasts (MEFs) than we reported in our

cIap1�/� MEFs. Furthermore, Heard et al

(2015) confirmed this difference: when they

directly compared our cIap1�/� MEFs with

their cIap1�/� MEFs, they saw that ours had

very low to undetectable levels of cIAP2

protein (like wild-type MEFs), whereas

theirs had much higher levels of cIAP2

(Fig 1F, compare lanes 1, 2 and 4).

Consistent with their finding that levels

of cIAP2 rise in the absence of cIAP1 in

MEFs, they also found elevated levels of

cIAP2 protein in several tissues of cIap1�/�

Xiap�/� mice.

Although we did not observe elevated

cIAP2 in our cIap2FRT/FRTcIap1�/� MEFs, their

finding of increased cIAP2 in their cIap1�/�

MEFs is consistent with data from several

laboratories (including our own) showing

that absence or depletion of cIAP1 leads to

activation of non-canonical NF-jB and cIAP2

up-regulation (Varfolomeev et al, 2007; Vince

et al, 2007; Darding et al, 2011). Indeed, as

Heard et al (2015) show, our cIap2FRT/FRT

cIap1�/� MEFs have elevated cIap2 mRNA

expression when compared with their

cIap1loxP/loxP cIap2FRT/FRT, cIAP1-proficient

counterparts. This indicates a potential defect

in translation or stability of the cIAP2 protein

in our MEFs.

Note, however, that in our hands, immor-

talised MEFs are highly genetically variable,

with a tendency to lose the expression of

proteins, often seemingly at random (Cook

et al, 2014). Thus, it remains possible that

the particular line of immortalised MEFs that

we shared with Heard et al (2015) are not

truly representative of the situation else-

where in the mice.

Why might MEFs derived from our

cIap2FRT/FRTcIap1�/� and cIap2FRT/FRTcIap1�/�

Xiap�/� mice have much lower levels of

cIAP2 than the MEFs from their cIap1�/� and

cIap1�/�Xiap�/� mice? If the differences in

cIAP2 levels in the MEFs are reflected in vivo,

one reason their cIap1�/�Xiap�/� mice are

viable, whereas our cIap1�/�Xiap�/� mice

die in mid-embryogenesis, might be differing

levels of cIAP2 present during embryogene-

sis. In a number of molecular pathways

minimum threshold levels of protein are

required for normal development. As we

have only observed one morphological

anomaly, namely defects in the integrity of

the atrial walls of the heart (Moulin et al,

2012), it is possible that in one experimental

system there is enough IAP2 protein to avoid

this lethal defect, whereas in another there is

not. Furthermore, if this is the case, is the

amount of cIAP2 aberrantly low in our mice,

or is it aberrantly high in theirs, or both?

If there are differences in the production

of cIAP2 protein, it might be due to the way

the closely linked cIap1 locus was deleted in

each of the strains. Heard et al (2015) used

cIap1�/� mice as described in Conze et al

(2005). These were generated from 129/Sv

E14 embryonic stem (ES) cells by homolo-

gous recombination of a neomycin (Neo)

resistance gene in reverse orientation in

place of the transcription initiation start

codon and the first BIR domain of cIap1

(see Fig 1A of Conze et al, 2005). These

mice were backcrossed to C57BL/6 mice for

multiple generations. We generated

cIap2FRT/FRTcIap1loxP/loxP mice by sequen-

tially targeting the same chromosome in

BRUCE embryonic stem cells, which were

derived from C57BL/6 mice (Koentgen et al,
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1993). In these mice, an FRT site is inserted

50 of the ATG of cIap2, and an FRT-flanked

Neo gene is inserted into the intron

between exons 3 and 4 (see Fig 1A of

Moulin et al, 2012).

Because the cIap2 gene is so close to the

cIap1 gene, in some circumstances, the Neo

gene or the promoter driving it in Heard

et al’s cIap1�/� mice might enhance the

expression of the linked cIap2 gene, or it is

possible that cIap2 regulatory sequences

were inadvertently altered during homolo-

gous recombination. On the other hand, in

our cIap2FRT/FRTcIap1�/� mice, it is possible

that the intronic Neo gene and Pgk promoter

sometimes decrease the expression of cIap2

or the efficiency with which its mRNA is

spliced.

Another possible explanation for the dif-

ferences between the two sets of cIap1�/�

Xiap�/� mice is the presence or absence of

129/Sv versus C57BL/6 polymorphic genes,

especially those physically linked to the

cIap2-cIap1 locus. In our mice, the genes are

of C57BL/6 origin, as the mice were gener-

ated from C57BL/6 BRUCE ES cells, whereas

even with extensive backcrossing, the genes

linked to the cIap2-cIap1 locus in Heard

et al’s mice will be of 129/Sv origin. In addi-

tion to the mutation in caspase-11 already

described (Kenneth et al, 2012), there is a

very high probability that the Mmp1a gene

is also mutated in these strains of mice

(Vanden Berghe et al, 2015). We know that

even minor differences in the expression of

other genes can have a major effect on the

survival of cIap1�/�Xiap�/� embryos. For

example, when we crossed our cIap1�/�

Xiap�/� mice onto a heterozygous Ripk1+/�

background, rather than dying at E12.5,

some survived until weaning (Moulin et al,

2012, Fig 6C and Supplementary Fig S3).

There are several lines of experimenta-

tion that might reveal why Heard et al’s

cIap1�/�Xiap�/� mice are viable, whereas

our cIap1�/�Xiap�/� mice die by day E12.5.

Sequencing the cIap1-cIap2 locus in the two

cIap1�/� lines might reveal unexpected

changes in the parental cIap2FRT/FRTcIap1�/�

or cIap1�/� mice. Using CRISPR/Cas9

technology to mutate the cIap1�/� gene in

cell lines or C57BL/6 zygotes might show if

our cIap2FRT/FRTcIap1�/� mice have aber-

rantly low levels of cIAP2, or their cIap1�/�

mice have aberrantly high levels of cIAP2.

These mice could be crossed with Xiap�/�

knockouts to test their viability. We

welcome any other suggestions for experi-

ments and are happy to provide mice or cell

lines to other investigators.
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