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Abstract Mutagenesis-based screens in mice are a pow-

erful discovery platform to identify novel genes or gene

functions associated with disease phenotypes. An N-ethyl-

N-nitrosourea (ENU) mutagenesis screen induces single

nucleotide variants randomly in the mouse genome. Sub-

sequent phenotyping of mutant and wildtype mice enables

the identification of mutated pathways resulting in pheno-

types associated with a particular ENU lesion. This unbi-

ased approach to gene discovery conducts the phenotyping

with no prior knowledge of the functional mutations.

Before the advent of affordable next generation sequencing

(NGS), ENU variant identification was a limiting step in

gene characterization, akin to ‘finding a needle in a hay-

stack’. The emergence of a reliable reference genome

alongside advances in NGS has propelled ENU mutation

discovery from an arduous, time-consuming exercise to an

effective and rapid form of mutation discovery. This has

permitted large mouse facilities worldwide to use ENU for

novel mutation discovery in a high-throughput manner,

helping to accelerate basic science at the mechanistic level.

Here, we describe three different strategies used to identify

ENU variants from NGS data and some of the subsequent

steps for mutation characterisation.

Introduction

Forward genetic screens have been successful in identify-

ing and functionally characterising hundreds of disease-

related genes in mice (Acevedo-Arozena et al. 2008; Bull

et al. 2013; Potter et al. 2015; Wang et al. 2015). This

approach typically uses a DNA damaging agent such as N-

ethyl-N-nitrosourea (ENU) to mutagenize male (G0) mice

thus inducing random point mutations throughout the

germline. Subsequent phenotyping screens on the progeny

of these mice are used to identify mice with phenotypes

that can mimic human disease and highlight key pathways.

The random nature of this approach (no particular gene is

targeted) means that novel causative genes can be discov-

ered with no prior annotation required. The mouse is 99 %

homologous to humans making it an ideal model organism

to study human disease (Mouse Genome Sequencing et al.

2002). The mouse reference—C57BL/6J—was originally

sequenced in 2001; since then multiple updates to the

assembly have rendered the reference a stable and reliable

background to identify sequence variations (Church et al.

2009). This was and is imperative to identifying ENU

mutations because detection traditionally involves identi-

fying the mutagenized ENU region of interest via poly-

morphic markers. This traditional process has been fruitful

in the past but requires fine mapping of the candidate

region and exon-by-exon sequencing. This was slow,

labour intensive and involved making assumptions about

the underlying genetic cause of the observed phenotype.

With the advancement of next generation sequencing

(NGS), whole exome or genome sequence can be produced
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in a matter of weeks rather than years and new analysis

techniques based on this data are rapidly reducing mutation

identification time and increasing mutation characterisation

analysis. Here, we explore the current and innovative

strategies used to identify ENU mutations via NGS, their

correlation to human disease and its impact on mouse

genetics.

Next generation sequencing

Whole genome versus whole exome sequencing

There are many different NGS platforms ranging from

those generating billions of short sequence reads of

*100 bp (Illumina), to those generating reads of

[1000 bp, to those sequencing a single molecule. The

comparison of these technologies is covered in other

reviews (Quail et al. 2012; Mardis 2013). Early application

of NGS undertook a ‘targeting’ approach where candidate

regions resulting from positional mapping would be deep-

sequenced in order to find the causative ENU lesion (Ku-

rapati et al. 2012). Due to the reduction in sequencing cost,

whole exome and whole genome approaches are becoming

a mainstay for discovering novel mutations in mouse or

human populations.

Whole exome sequencing (WES) typically refers to

sequencing every protein-coding exon in the genome. It

may also be extended to user-specific loci and non-coding

regions including; micro-RNAs, lincRNAs, etc. DNA

libraries containing targeted exons from genes are usually

governed by gene sets from reputable resources such as the

consensus coding sequence (CCDS) database and the

RefSeq database (Pruitt et al. 2009, 2014). As the exome

represents approximately 1.5 % of the genome (Lander

et al. 2001), significantly higher sequence coverage can be

achieved with WES compared to whole genome sequenc-

ing (WGS). For example, *90 Gb of sequence data is

required to achieve a 309 average coverage of the whole

genome whereas only 3 Gb of sequence data is required for

a 759 average coverage of the whole exome (Voelkerding

et al. 2009; Bainbridge et al. 2010). Deeper sequence

coverage is a clear advantage of exome sequencing as

sequence depth is directly correlated with the sequence

quality of a single nucleotide variation (SNV). However,

coverage is more uneven with WES than WGS due to

biases in targeted capture, hence higher mean coverage

depths are required to detect coding variants and some

regions remain consistently difficult to capture (Sims et al.

2014). For example, a recent study comparing the human

Gencode annotation with current exon arrays found 5594

genes missing from the array geneset and inaccessible to

WES (Coffey et al. 2011). NGS technologies have higher

error rates than Sanger Sequencing, leading to increased

false positives in mutation detection (Kircher and Kelso

2010; Ledergerber and Dessimoz 2011). This is somewhat

offset when sequencing depth is increased; however, sys-

tematic biases will persist. Large-scale initiatives using

WES to detect spontaneous mouse mutations and ENU-

induced mutations have shown a good success rate

(*40–75 %) for novel mutation detection (Boles et al.

2009; Fairfield et al. 2011). However, WES is reliant on

gene annotations from databases that will not contain

undiscovered exons or regulatory sequences such as

enhancers or promoters, areas increasingly recognised as

important in disease. Moreover, larger sequence variations

such as structural variations (e.g. large insertions, deletions

or translocations, etc.) that span exon boundaries will

remain undetected. Previous ENU studies detected the

majority of ENU-induced mutations in coding exons

(Nolan et al. 2000; Quwailid et al. 2004); therefore, there is

a preference for deeper sequencing using exome sequenc-

ing. There is likely to be an ascertainment bias in the past

ENU literature due to difficulty in identifying non-coding

variants (e.g. found in repetitious regions with limited

functional annotation). However, interpretation of these

regions is becoming a more tractable problem with

resources to predict function in non-coding regions

(Stamatoyannopoulos 2012) and WGS will make it easier

to detect these mutations.

General NGS pipeline

Sequence analysis to discover ENU mutations requires

three basic steps: (i) alignment to a reference genome, (ii)

variant detection and (iii) variant annotation. This pipeline

usually occurs in an automated manner prior or in tandem

with the isolation of the ENU causative mutation. This

review will mostly concentrate on the specific detection of

novel or ENU-induced mutations alongside characterisa-

tion as part of the second and third step. Briefly, mouse

mutant sequence data are usually aligned to the reference

(mm10) using a popular aligner (e.g. BWA, Maq). The

alignment is the foundation for accurate mutation detection

and is critical to identifying all possible variants. Currently

a good alignment maps *98 % of the reads with default

parameters (e.g. usually two mismatches in the seed

sequence). There are a plethora of widely used variant

callers, including SAMtools (Li et al. 2009), Unified

Genotyper in the Genome Analysis Toolkit (GATK)(De-

Pristo et al. 2011), Platypus (Rimmer et al. 2014), etc.

Typically variant calling involves two steps: genotype

assessment and variant identification, both steps vary

between different callers. Even though many variants will

be common between the different callers, mutation detec-

tion should be carried out with one or more mutation
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detection tools to minimise false positives. There are many

reviews on the different types of variant callers (Liu et al.

2013; Pirooznia et al. 2014). Lastly, annotating sequencing

variants in terms of genomic position, functional context

and potential clinical impact has become an essential part

of sequence variant analysis. ENU NGS pipelines typically

determine the genomic annotation of a SNV; intronic,

exonic, missense, nonsense, splice site, regulatory region,

etc. Three popular tools for variant annotation are

ANNOVAR (Wang et al. 2010), NGS-SNP (Grant et al.

2011) and Variant Effect Predictor (McLaren et al. 2010).

The impact of a sequence variant on the genome and

phenotype is briefly discussed below. To our knowledge,

relating a sequence variant directly to the phenotype is not

yet standardised and would be challenge to the bioinfor-

matic field.

As NGS technologies and detection of novel mutations

in ENU-induced mice become commonplace, the require-

ment to streamline the mutation detection process to ensure

cost efficiency has increased. Different mouse breeding

schemes and the mutation detection methods developed are

discussed below.

ENU breeding and background

A variety of strains have been used, in a range of pheno-

type-driven screens, which have been reviewed in detail

elsewhere (Acevedo-Arozena et al. 2008; Andrews et al.

2012; Wang et al. 2015). The most commonly used back-

ground is C57BL6/J, because this strain retains fertility at

higher doses of ENU (Justice et al. 2000) and the number

of mutations induced is proportional to the dose of ENU

(Russell et al. 1982). A variety of breeding strategies can

be employed reviewed below and in Acevedo-Arozena

et al. 2008. Firstly, the simple outcross scheme, which

enables the rapid identification of a map location; and

secondly the inbred scheme, which relies on sequencing to

map mutations, increasing the number of mutations present

in G3 mice by breeding from two G0 mice. The main

advantage of carrying out phenotypic screens on an inbred

background is reduced variation in the data produced.

Differences between strains in certain phenotypes result in

greater variation in the baseline data, making detection of

subtle phenotypes on a mixed genetic background more

difficult and often requiring more mice to confirm a phe-

notype. For example, there is a significantly lower bone

mineral density in C57BL/6J mice when compared to most

other strains (Simon et al. 2013). This variance can how-

ever lead to the identification of phenotypic modifiers

which may or may not be advantageous to the screen.

Additionally certain inbred strains may be employed

because of their susceptibility or resistance to certain

phenotypes (Jonczyk et al. 2014; Banks et al. 2015).

A variety of breeding strategies have been utilised to

maximise the number of mutations in the progeny that

undergo screening. As long as a phenotype is detectable,

and is amenable to relatively high-throughput screening,

forward genetic screens can be used as a discovery

platform to identify genes and pathways associated with a

disease or pathway. A wide range of screens have been

applied; from developmental processes, ex vivo and

in vivo analysis of immune function (Andrews et al.

2012; Wang et al. 2015), through basic physiological

functions (Hrabe de Angelis et al. 2000; Acevedo-Aro-

zena et al. 2008) to more complex behavioural pheno-

types (Nolan et al. 2000). Challenges can be applied to

mouse phenotyping pipelines to discover novel gene

function and screens have revealed modifiers of pheno-

types or indeed disease progression (Vinuesa and Good-

now 2004; Buchovecky et al. 2013).

Coupled with the increased efforts of the more sophis-

ticated phenotyping pipelines (Brown and Moore 2012) are

the new and innovative ways to detect mutations using

NGS, ranging from large structural variants to small

insertions and deletions (indels) to single nucleotide poly-

morphisms (SNPs). ENU mutations are typically SNVs and

to a lesser extent, small indels. Since the emergence of

NGS there has been an evolution of ENU mutation

detection strategies, making ENU an efficient and attrac-

tive method to generate mouse models of human disease

(Andrews et al. 2012; Potter et al. 2015).

Methods for mutation mapping and detection

Method 1: candidate region approach

Whilst several phenotype-driven ENU screens have been

run or are still underway, to our knowledge, the Harwell

Ageing Screen is the first to apply whole genome

sequencing in a high-throughput, unbiased approach to

discover genetic lesions that result in a detectable pheno-

type. The two mouse strains that are used by MRC Harwell

to generate mutant mouse lines are C57BL/6J and C3H/

HeH. Initially, male mice are injected intraperitoneally

with ENU doses of 1 9 120 mg/kg, and then 2 9 100 mg/

kg with a week between each dose. These mutagenised

male mice (G0) are then mated with wild type females to

give mice that are heterozygous for every ENU-induced

mutation (G1). These can be subjected to phenotype-driven

screening programs, with the intent of discovering domi-

nant mutations, or further breeding can be carried out to

generate homozygous mutant mice (G3) to identify reces-

sive mutations resulting in phenotypes. The Harwell Age-

ing Screen has opted to sequence the G1 mouse in order to

detect all of the ENU-induced ENU mutations contained

within a pedigree. In parallel to G1 sequencing, G3
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phenotyping is carried out. Once a phenotype of interest is

identified (e.g. [3 mice are phenodeviant at any one

timepoint) the affected G3 mice undergo positional map-

ping. Positional mapping aims to identify the recombinant

mapping region(s) containing the causative ENU lesion

(Fig. 1). Typically the breeding scheme will include a

highly polymorphic background strain to provide poly-

morphic genetic markers flanking the ENU lesion. The

interval size is characterised by the density of polymorphic

markers alongside the number of recombination events.

Figure 2 shows an ENU region in the genome flanked with

polymorphic markers. Once the candidate region in the G3s

is narrowed to a manageable size (this can be anything

ranging from *30 Mb to the whole chromosome), all

coding and non-coding variants in the respective G1 loci

are identified in the WGS mutation detection pipeline. The

NGS and mutation detection pipeline used at Harwell

involves mapping sequence reads to the mouse reference

(currently mm10) and calling SNVs using an established

SNV caller such as GATK or SAMTOOLs. Subsequent

prioritisation of the variants occurs (discussed below) and

the G3s are genotyped for the chosen variants to confirm

inheritance of the putative causative mutation. This ‘drill

down’ approach allows for the rapid discovery of multiple

causative ENU mutations in a pedigree when only

sequencing one mouse, whilst also generating a library of

potentially functional mutations available for a gene-driven

approach in the G1 archive (Quwailid et al. 2004). The

main challenge of mutation detection is distinguishing

genuine ENU lesions from the background noise resulting

from nucleotide errors in the sequence reads. Over the

years a number of typical steps have been employed to

remove the false positives. These steps include one or more

of the following: a read depth threshold where variants

found in less than the allotted number of reads are ignored,

a quality threshold where variants in poorly mapped reads

are ignored and inbred SNP identification where variants

overlapping background SNV sites are ignored (Simon

et al. 2012). This prioritisation and filtering of SNVs is a

crucial step in the NGS pipeline as false discovery of

erroneous SNVs masquerading as real ENU variants can

result in incorrect candidate genes, whereas over-filtering

can result in the exclusion of the real causal mutation,

resulting in the failure of the experiment.

To date, Harwell has used this NGS pipeline and

mutation detection strategy on [70 mouse genomes

including 44 genomes, both G3 and G1 for the Harwell

Ageing Screen. Harwell found coding ENU mutations

(missense, splice and nonsense) in the candidate ENU

regions of 41 of the 44 genomes. Further characterisations

of these mutations are underway including inheritance

testing, secondary phenotype testing and molecular

examinations.

Method 2: rapid causative mutation finding without use

of an outcross

Method 1 represents an early adoption of NGS for ENU

mutation detection which relied on outcrossing and coarse

mapping (Arnold et al. 2011; Fairfield et al. 2011; Lesh-

chiner et al. 2012; Sun et al. 2012). A more efficient

method to rapidly isolate causative ENU mutations should

avoid outcrossing, be quick and cost effective, reliable and

comprehensive.

Bull et al. published the first method to eliminate

outcrossing to a second inbred strain or additional breeding

steps after G3, using an identity by descent (IBD)-based

approach that infers shared genomic intervals across mice

within a pedigree and simultaneously isolates causative

ENU mutations (Bull et al. 2013). The method is based on

low coverage whole genome sequencing of multiple phe-

notypically affected mice, and an implementation of the

Lander–Green algorithm (Rabiner 1989). The algorithm

harnesses knowledge of the pedigree structure to infer the

inheritance of founder genotypes. In contrast, methods that

simply search for shared mutations will pick up false

positives due to shared sequencing errors. They found that

excluding shared variants outside of shared genomic

bFig. 1 Overview of ENU mutation detection methods used on DNA-

Seq data. Method 1 Male C57BL/6J mice mutagenized with ENU are

bred to produce 50–100 third generation (G3) mice carrying mutations

mostly in the heterozygous state. The G1 male founder of each

pedigree is sent for whole genome sequencing. The G3 mice are put

through a phenotyping screen and affected mice are genotyped with a

SNP panel to identify ENU regions. Specific ENU SNPs within the

candidate region are validated via Sanger Sequencing. After sec-

ondary phenotyping and inheritance testing a copy of the potential

causative mutation may be generated with CRISPR/Cas9 targeting.

Method 2 Two C57BL/6J mice are mutageneised with ENU, each are

paired with WT C57BL/6J females to produce third generation mice

carrying 4 possible haplotypes, ENU1, ENU2, WT1 and WT2. After

phenotype testing 3 phenovariant G3 mice are sent for low coverage

whole genome sequencing. Shared homozygous ENU variants seen in

all 3 mice cluster in an IBD region, detected using the Lander-Green

algorithm. Coding variants within the IBD are validated via Sanger

Sequencing. Alternative alleles may be generated using CRISPR/

Cas9 targeting. Method 3 Male C57BL/6J mice mutagenized with

ENU are bred to produce 30–50 third generation (G3) mice carrying

mutations in homozygous and heterozygous state. The G1 male

founder of each pedigree is subjected to exome sequencing, and data

are used to generate Ampliseq panel primers for amplification of

mutated loci from G2 and G3 mouse DNA, followed by Ion PGM

200-bp sequencing. Genotyping data are uploaded to Mutagenetix

prior to phenotypic screening. Quantitative phenotype data are

entered into Mutagenetix and used with genotype data for mapping

by Linkage Analyzer. Calculated P values for non-linkage, Manhattan

plots, and scatter plots of phenotypic data for every mutant allele are

displayed by Linkage Explorer. Confirmation of candidate genes

depends on duplication of the mutant phenotype by a second allele,

which may be generated by CRISPR/Cas9 targeting
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intervals removes 75 % of putative shared mutations.

Further modelling and empirical data shows that one or two

candidate causative ENU mutations can be isolated based

on sequencing 3 G3 mice for a recessive trait or 6 G3s for a

dominant trait (Fig. 3).

Fine mapping of regions inherited from an ENU

ancestor is achieved based on the density of variation,

despite the scarcity of ENU variants across the inbred

C57B6 genome, using whole genome rather than whole

exome sequencing. The depth of coverage in shared

genomic intervals is the sum of the depth across all

sequenced mice, and the method uses local genotype

context to isolate a causative mutation. Therefore, the

actual coverage depth per mouse can be very low; in this

method all affected individuals from a pedigree are

sequenced on one lane of an Illumina Hiseq machine;

achieving 12–15 fold combined coverage across the cau-

sative variant locus. Bull et al. found this was sufficient to

reliably call a homozygous or heterozygous point mutation,

since WGS has less variability in depth of coverage than

WES (Sims et al. 2014).

The current technique applies WGS to affected G3

individuals within a pedigree; therefore, the delay between

identifying a phenotype of interest and isolating the

mutation is the sum of the time to run the sequencing

(typically 1–2 weeks), the time ‘queuing’ for a sequencing

run, which varies between institutions plus the time to run

the NGS pipeline. Whilst this is a significant improvement
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Fig. 2 Identification of ENU

mutations using polymorphic

markers on a mixed

background. a WGS of 3 G1

samples showing heterozygous

inbred SNP sites, which are

shared among all samples.

These sites are eliminated from

the ENU mutation list; the

remaining SNPs (b) are novel or
ENU-induced. c Illustrates a

simplistic view of randomly

distributed ENU SNVs in a

chromosome of a G1 mouse.

The WGS of the G1 denotes the

genomic location of the ENU

SNVs in the candidate region of

an affected G3 mouse
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over earlier methods that relied on outcrossing and further

breeding beyond G3 for mapping, an approach that gener-

ates genotyping data in parallel with phenotyping pipelines,

as described by the Beutler group below, avoids this delay

altogether. As the costs of WGS continue to fall, it will

become feasible to apply WGS to all mice within the

pedigree in parallel to phenotyping, rapidly generating a

rich database linking phenotype and genotype across cod-

ing and non-coding regions.

Method 3: real time identification of ENU-induced

mutations in mice

The above methods use massively parallel sequencing of

whole mouse genomes or exomes and have arguably

exposed genetic mapping as the rate-limiting step in for-

ward genetics. Most ENU-induced mutations are easily

found (Andrews et al. 2012); however, finding the causa-

tive mutation has remained a time-consuming task. Light

sequencing of bar-coded samples from G3 mice for the

purpose of genotyping remains a fairly costly proposition,

and is usually applied post facto only to pedigrees that

display a phenotype (Bull et al. 2013). This means that

finding causative mutations is not truly a real-time process,

and also precludes the systematic exoneration of non-cau-

sative mutations from the screen as a whole.

The Beutler lab developed an alternative approach that

permits declaration of causative mutations concurrent with

phenotypic screening (Wang et al. 2015), without a

requirement for outcrossing and backcrossing or inter-

crossing as practiced in mapping based on meiotic

recombination. Their approach combines exome sequenc-

ing and high-throughput genotyping to determine zygosity

at all mutation sites in all G3 mice before phenotypic data

are acquired, and uses automated computational mapping

to assign causality in real time (for overview see Fig. 1).

Mice are bred to produce 30–50 G3 mice per pedigree, a

number sufficient to detect concordance between traits of

moderate strength and homozygosity at a particular locus,

assuming a neutral effect on viability. A single G1 male

serves as the founder for each pedigree, and is subjected to

whole exome sequencing to identify all possible mutations

Fig. 3 Identification of IBD

regions using a modified

Lander–Green Algorithm,

a pedigree in strain APFN1015-

1017, the sequenced mice are

shaded. The gene and genotype

for the candidate mutation is

shown for each sequenced

individual. 1/1 indicates

homozygous for mutation, ./.

indicates insufficient coverage

to call the genotype at that locus

in an individual. b Plot showing

IBD homozygous (red) and IBD

heterozygous (blue) regions

predicted by the Lander–Green-

based algorithm in APFN1015-

1017. c Pedigree for strain

ENU22 with genotypes for the

Ighm mutation. d Plot showing

IBD regions for ENU22
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transmitted to G3 mice. Prior to phenotypic screening, the

zygosity of these mutations is determined by genotyping

G2 and G3 mice and data are uploaded to the Mutagenetix

database to await linkage analysis together with phenotypic

data. All 30–50 G3 mice are screened in a single experi-

ment on the same day; with the exception of visible phe-

notypes (affecting, for example, coat colour or behaviour),

phenotypic data are quantitative in nature.

Automated linkage analysis is performed by two soft-

ware programs; Linkage Analyzer and Linkage Explorer,

they are based on classical principles of genetic mapping.

That is, correlation is determined between genotypes at

mutated loci and the presence or absence of a qualitative

phenotype, or the magnitude of a quantitative phenotype,

with reference to recessive, additive (semi-dominant), or

dominant models of inheritance. This determination is

made for each mutation site in all mice in a pedigree. The

assessment of linkage depends on the probability of asso-

ciation between genotype and phenotype as calculated

using a likelihood ratio test from a linear regression model

(Wang et al. 2015). With this method, phenovariance is

ascertained computationally, thereby eliminating the need

for the researcher to designate mice as affected or non-

affected.

Linkage Analyzer, the core mapping program, calcu-

lates probabilities of association between genotype and

phenotype for every mutation subjected to every screen

using recessive, additive and dominant transmission

models. It detects associations with quantitative and

qualitative traits and with lethal effects when homozy-

gosity is significantly under-represented among G3 mice

in a pedigree. Additionally, the program identifies com-

plex linkage for phenotypes that depend on two unlinked

mutations in any combination of zygosities. Over time,

multiple variant alleles of most genes are tested pheno-

typically, and Linkage Analyzer can combine pedigrees

with identical or non-identical allelic mutations to make

‘‘superpedigrees.’’ These are analysed as single pedigrees

for genotype–phenotype associations including linkage to

lethality.

Fig. 4 Presentation of mapping data by Linkage Explorer. A portion

of a typical results table (top) displays P values for all three

transmission models for each mutation, here sorted by phenotype.

P values are linked directly to the Manhattan plot (lower left), where

mousing over data points reveals the gene name and associated

P value. Clicking a data point opens the scatter plot of phenotypic

data graphed versus genotype (REF, homozygous for wild type allele;

HET, heterozygous for mutant allele; or VAR, homozygous for

mutant allele) for the mutation in question (lower right). l mean, r
standard deviation
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P values for non-linkage calculated by Linkage Ana-

lyzer are tabulated and presented by Linkage Explorer in an

online format with one-click access to Manhattan plots for

each phenotype and inheritance mode, and from there

direct links lead to scatter plots of phenotypic data graphed

versus genotype for every variant allele (Fig. 4). A key

feature of Linkage Explorer is the ability to narrow or

expand the list of positive associations by varying the

stringency of criteria for linkage, and by targeting analyses

to specific genes, phenotypes, pedigrees and mutation types

or effects (Table 1). The nature of each mutation, Poly-

Phen-2 score, and its effect at the protein and gene levels

are also accessed with a single click in Linkage Explorer.

The speed of mapping by Linkage Analyzer now

exceeds the rate of production and screening of G3 mice,

and linkage assignment occurs within minutes of the entry

of phenotypic data to the database. There are several other

advantages to this approach. Mapping of quantitative low

penetrance and weak phenotypes, which may be difficult to

assign to affected vs. non-affected groups, is made possible

by the statistical determination of phenovariance and by

superpedigree analysis, which increases the power to detect

linkage by enlarging the mapping population. Complex

traits dependent on two loci can be solved in pedigrees of

sufficient size. Moreover, because all mutations in a pedi-

gree are known, not only causative mutations but non-

causative mutations (constrained by a specified P value)

can be declared. This approach also permits the measure-

ment of saturation, with an upper limit set by the number of

genes tested in homozygous state with ‘‘probably damag-

ing’’ missense or null alleles, and a lower limit set by the

number of genes with null alleles. As for other mapping

strategies described in this review, the limitations of exome

capture and massively parallel sequencing apply to our

approach. In addition, although the majority of ENU-in-

duced phenotypes have been shown to arise from mutations

in coding sequence (Fairfield et al. 2011; Arnold et al.

2012), it remains possible that causative intronic mutations

would on rare occasions be missed or attributed to closely

linked exonic mutations. Routine CRISPR/Cas9 targeting

of implicated genes is therefore used to confirm mapping

data.

To date, the Beutler lab has used Linkage Analyzer and

Linkage Explorer to test a total of 53,966 mutations in

16,350 genes for their ability to cause phenovariance in

135 screens of immunological function. The mutations

Table 1 Parameters that may be specified in linkage explorer

Parameter Notes

Single or double locus analysis

Gene Will return all phenotypes linked to mutations of the specified gene(s), along with associated P values

Phenotypic screen When specified, will return mutations linked to the phenotype(s) tested in the specified screen(s)

Pedigree or mouse/mice Will return all genotype–phenotype associations identified in the specified pedigree or the pedigree of

which the specified mouse (mice) is (are) part, along with associated P values. Named according to

eartag of G1 male founder

Total mouse numbers Will restrict linkage analysis to pedigrees containing a specified range or number of G3 mice

Allele name (phenotype) Will return all mutations linked to the specified phenotype, along with associated P values

Mutation type Will restrict linkage analysis to the specified mutation type(s): nonsense, missense, makesense, critical

splicing, noncritical splicing

Predicted effect of mutation Will restrict linkage analysis to the specified mutation effect: probably null (corresponds to nonsense and

critical splicing mutations); or probably damaging, possibly damaging, probably benign as determined

by PolyPhen-2

P value cutoff Will display genotype–phenotype associations with P (non-linkage) B the value specified; Bonferroni

correction may be applied

Minimum number of HET or VAR

mice screened

Will return genotype–phenotype associations tested with at least the specified number of HET

(heterozygous) or VAR (homozygous mutant) mice

‘Raw ? Norm’ switch When applied, enforces P value cutoff for both raw and normalized datasets. Otherwise, enforces P value

cutoff for either raw or normalized datasets

Direction of phenovariance Quantitative phenotype scores either higher than or lower than wild type scores

Number of linkage peaks Will return genotype–phenotype associations for which a specified number of linkage peaks exceed the

specified -log10[P(non-linkage)] in the Manhattan plot for recessive, dominant or additive models of

linkage. This parameter is useful for filtering results to show only strong, unambiguous genotype–

phenotype associations

Date of data collection
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were distributed within 22,421 G3 mice from 876 pedi-

grees. Linkage Analyzer is freely available for download

and online data analysis of selected pedigrees via the

Mutagenetix website (https://mutagenetix.utsouthwestern.

edu/linkage_analysis/linkage_analysis.cfm).

Mutation annotation and consequence

Sequence variation validation typically involves four steps:

(i) confirmation of linkage by genotyping, (ii) secondary

phenotyping, (iii) cloning the mutation and (iv) producing

an alternate allele to confirm the causative allele. With the

information generated by NGS, the confirmation of phe-

notype association with a novel gene is not such a stringent

requirement for the confirmation of association, as there is

little doubt over whether a second, unidentified allele is

associated with a particular phenotype, as was the case

with candidate gene sequencing strategies. Furthermore,

the advent of CRISP/Cas9 technologies and the easy

availability of KO lines (Koscielny et al. 2014) is a great

boon to confirmation of a functional link between a novel

allele or gene and a phenotype. Alongside ENU validation

is usually the in silico examination of the mutation con-

sequence, its influence on the phenotype and association to

human disease. ENU-induced mutations provide a full

range of alleles including null (loss of function), hypo-

morphic (reduced function), hypermorphic (gain of func-

tion) and neomorphic (novel function); and better model

the genetic variation found in the human genome. More-

over, these mutations can reveal gene functions that would

not have been discovered through the analysis of null

alleles alone (Qian et al. 2011). The coding causative

variants are usually classified based on their functional

consequence to the genomic sequence; namely missense,

nonsense, synonymous and splice site mutations. Nonsense

and splice site disruptive SNVs are thought to cause loss of

function mutations, while missense mutations can be

damaging or tolerant to the protein structure and function

(Khurana et al. 2013). The current major challenge in

analysing genetic variants is in interpreting the functional

affect a mutation has on the gene and/or genome.

A variety of methods are available online to predict the

functional effects of SNVs. These methods can be classi-

fied into different categories, based on the algorithms

implemented for prediction (Table 2). Multiple sequence

alignment-based tools implement information on amino

acid conservation among homolog protein sequences at

particular loci (Ng and Henikoff 2003; Reva et al. 2011).

Other tools implement sequence data alongside three-di-

mensional structure to predict the functional impact of the

amino acid on the protein. Tools which combine functional

annotation alongside structural data arguably give the best

indication of severity. For example, Mutation Taster

combines information from different data sources includ-

ing evolutionary conservation, splice site changes and

expression data and PolyPhen2 uses a naı̈ve Bayes classi-

fier which implements eleven features, of which eight are

sequence-based while three are structure-based (Adzhubei

et al. 2010; Schwarz et al. 2014). Currently there are 4897

solved distinct protein structures, a limiting factor when

assessing mutational consequence; therefore, most predic-

tions involve only a local structure alignment. As protein

structure information increases the accuracy of SNV

functional predictions will also increase. This information

will not only impact the SNV role in protein structure but

also the mutation’s role in protein–protein interactions and

post-translational modifications (Ren et al. 2010; Wendl

et al. 2011; De Baets et al. 2012). In some cases, infor-

mation on the SNV-containing protein domain alongside

prior knowledge of protein–protein interactions will be

sufficient to determine some affects the mutation has on the

pathology of disease.

The success of phenotype-driven screens in detecting

mutants that inform us about biological function is not in

doubt but to date, the vast majority of such mutations that

have been detected affect coding regions, with a minority

being identified as occurring in non-coding regions

(Lewis et al. 1991; Masuya et al. 2007). This, it could be

argued, is due to a sampling bias as only coding and

splice regions have been examined in the majority of

programmes who employed a candidate gene approach or

NGS technologies (Quwailid et al. 2004; Acevedo-Aro-

zena et al. 2008; Andrews et al. 2012; Wang et al. 2015).

The debate on the functional contribution of non-coding

DNA continues (Consortium 2012; Eddy 2012; Doolittle

2013) but MRC Harwell’s data presents one of the first

unbiased high-throughput examination of the link

between phenotype and genotype on a stable genetic

background in a mammalian physiology thus enabling us

to begin to explore the contribution of non-coding DNA

to phenotype. Despite the majority (*97.5 %) of ran-

domly induced mutations being detected in non-coding

regions, the overwhelming majority of phenotypes iden-

tified (41/44) can be assigned to protein changes. This

does seem to suggest that the majority of ‘function’,

where changing the sequence results in a detectable phe-

notypic change, is associated with the gene. However,

there are caveats; the phenotypic interrogation of the

mutant pipeline of mice is not exhaustive and cannot

detect every possible phenotype. It is, however, an

unbiased approach as the phenotypes detected undergoes

mapping and then sequencing with no assumption of the

underlying genetic lesion. It may be that non-coding

DNA is more tolerant of sequence changes and is thus

under-represented. As more phenotyping and whole
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genome sequencing is undertaken we will provide further

information about the links between sequence and phe-

notype, particularly concerning the contribution of non-

coding DNA to phenotype but these initial results provide

a tantalizing glimpse into the functional analysis of DNA

and seems to fit with current hypotheses (Palazzo and

Gregory 2014). These results will have a significant

impact on the search for causative alleles using deep

sequencing of patients, suggesting that the current tech-

nique of primarily using next generation sequencing will

indeed find the majority of causative alleles.

Human correlation

A key goal in understanding human disease and gene

dysregulation is to discover and interpret all the genetic

variations that can occur in the human population.

Advances in sequencing technology and related tools have

made it feasible to sequence many human genomes and

catalogue all the possible variations. The 1000 Genomes

Project, started in 2008, aimed to identify 95 % of the

variants that occur in *1 % of the population and evaluate

the feasibility of large-scale sequencing to capture true

variants or artefacts (Genomes Project et al. 2010). The

project has provided a catalogue of low to high frequency

variants which are already starting to support the devel-

opment of genotyping products as well as a list of back-

ground variants to aid the identification of disease-causing

and non-disease-causing variants. In parallel, GWAS has

become a valuable tool for discovering common variants

linked to disease. It is becoming clear that GWAS and

other human studies will have considerable effect on

human health, especially as independent studies are start-

ing to report the same genes or variants associated with

particular diseases (Abad-Grau et al. 2012). GWAS is

increasing our understanding of the genetic etiologies

underlying all types of diseases ranging from common to

complex etiologies. Some reports imply some human dis-

eases are not solely caused by a single variant but rather a

combination of multiple common variants exerting a weak

affect alongside more severe or stronger effect variants

(Visscher et al. 2012). While others find human diseases

are associated with multiple variants acting in unison

where each variant lies within a single Mendelian disease-

causing loci and has the potential to be deleterious in their

own right (Blair et al. 2013). With the methods outlied

above we have the opportunity with sequencing and

advanced phenotyping strategies to correlate ENU muta-

tions with human disease more effectively, rapidly and

accurately. Key advantages of the phenotype-driven

approach in mice are the number of mutations that can be

induced, the range of phenotyping that can be carried out

from birth, and the enhanced ability to discover novelty.

Human-based studies still rely heavily on published data,

and proving a novel function for a gene or the association

of a novel gene with a particular phenotype is more dif-

ficult than in mouse studies where functional data are more

easily obtained and inheritance can be demonstrated

rapidly. Not only is this seen with the projects described

above but also with other initiatives where mutation

detection in NGS data may uncover novel disease-causing

variants. For example, modifier screens, where sequencing

of ENU mutants is used to discover novel genes that alter a

phenotype (Rubio-Aliaga et al. 2007), highlight potential

therapeutic targets and generate more complex models of

disease. Partnerships between human and mouse geneti-

cists where human-cohort studies run alongside sequencing

mouse models with similar phenotypes (Tucci et al. 2014)

and mouse GWAS-like studies where multiple mouse lines

with varying phenotype severity are sequenced and geno-

typed to determine regions of linkage disequilibrium or

QTLs could therefore be extremely beneficial. Only time

will tell if human and mouse sequencing partnerships

translate into a clinical setting, in the meantime such

studies are continually advancing our understanding of the

genetic contribution to disease and physiological

processes.

Conclusion

In the present review, we have outlined three disparate

methods to detect ENU mutations in NGS data; all methods

have been successful in finding an abundance of ENU

causative mutations. It is possible a particular method is

suited to a specific ENU study, for example, the traditional

mutation detection method, method 1 may be employed

when investigating a single ENU mouse on a mixed

background as gross mapping of the candidate region is

relatively easily achieved. Methods 2 and 3 take a popu-

lation-based type approach with ENU where multiple

samples are used to predict ENU mutation. Method 2 is an

extension of method 1 and is more effective when the ENU

mouse is on an inbred background. Method 3 automatically

combines phenotype and genotype information in a

GWAS-type fashion to generate linkage region containing

the causative gene. As more ENU mutations are charac-

terised the efficient use of CRISPR/Cas 9 genome editing

system will become increasingly valuable as a way to

validate the ENU mutations. In addition CrispR/Cas 9 can

be used to mimic any human deleterious variation. The

future of ENU may incorporate the combination of ENU

and CRISPR/Cas 9 as this enables both the discovery novel

genetic interactions alongside mimicking human disease

variants.
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