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Three plasma metabolite 
signatures for diagnosing high 
altitude pulmonary edema
Li Guo1,*, Guangguo Tan2,*, Ping Liu3, Huijie Li1, Lulu Tang4, Lan Huang1 & Qian Ren5

High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater 
than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the 
lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-
high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to 
study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma 
metabolites responsible for the discrimination between the two groups from discovery set (35 
HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-
ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE 
using metabolic pathway impact analysis. The feasibility of using the combination of these three 
biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve 
(AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 
healthy controls), respectively. Taken together, these results suggested that this composite plasma 
metabolite signature may be used in HAPE diagnosis, especially after further investigation and 
verification with larger samples.

High altitude pulmonary edema (HAPE) is a life threatening clinical condition, mostly occurring in 
non-acclimatized healthy individuals who rapidly ascend to high altitude (above 3000 m)1. It is the major 
cause of death related to high altitude exposure. Currently, HAPE diagnosis mainly relies on patient 
interviews, physician’s examination, X-ray radiograph and computed tomography (CT) of the chest, and 
magnetic resonance imaging (MRI)2, as there are lack of objective laboratory-based tests. Current diag-
nostic methods are highly dependent on the clinician experience, which usually results in underdiagno-
sis, delayed diagnosis, and misdiagnosis due to the high heterogeneity of clinical symptoms. Therefore, 
the identification of metabolite biomarkers for HAPE would be of great clinical value in laboratory-based 
diagnosis of HAPE and understanding the pathophysiology of the disease.

Metabonomics is a top-down systems biology approach whereby metabolic responses to disease or 
treatment are analyzed and modeled3. Hence, metabonomics represents an excellent developing prospect 
for capturing diseases specific metabolic signatures as possible biomarkers4. Metabolite biomarkers have 
been successfully applied in the discrimination or diagnosis of various diseases such as cancer5, neurode-
generative diseases6, cardiovascular disease7, diabetes8, and so on. Previously, there was a report on iden-
tifying the molecular alterations associated with HAPE by 1H NMR- based metabonomics approach9, 
which not only provided valuable clues in dissecting the mechanisms of HAPE, but also exemplified the 
ability of metabonomics to identify diagnostic biomarkers for HAPE from clinical samples. Given that 
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1H NMR analytical technology cannot provide complete coverage of the human metabonome due to 
the diverse physicochemical properties of metabolites and the relatively low sensitivity of 1H NMR, the 
metabolite variations and the disturbances of metabolic pathways of HAPE are still far from complete. 
It is meaningful to apply complementary metabonomic platforms such as mass spectrometry to identify 
novel biomarkers of HAPE.

In this study, we therefore applied metabonomic method based on ultra-high performance liquid 
chromatography (UHPLC) coupled with Q-TOF mass spectrometry to profile metabolites in plasma 
samples from 57 HAPE subjects and 57 healthy controls. One of the purposes was to identify the dif-
ferential plasma metabolites in HAPE patients relative to healthy controls. The other purpose was to 
optimize a simplified metabolite signature for HAPE diagnosis.

Materials and Methods
Participants.  The study protocol was approved by the Human Ethics Committee of the Third Military 
Medical University, and written informed consent was obtained from all study volunteers prior to par-
ticipation. All procedures involving the human subjects were carried out in accordance with the recom-
mendations of the Helsinki Declaration.

A total of 57 HAPE subjects were enrolled as cases for the study, including 49 men and 8 women 
with a mean age of 34.79 ±  5.84 years, who developed the disease after traveling from the lowlands to 
Golmud district (altitude 2,780–4,500 m) in Qinghai, China. All subjects were recruited between March 
2013 and December 2014 from the 22nd Hospital of the Chinese People’s Liberation Army, which is the 
largest hospital located in the city of Golmud in Qinghai. This hospital is the primary treatment center 
for individuals suffering from high altitude disease in this region, which is considered as a “checkpoint” 
to Tibet by many travelers. The HAPE patients enrolled in this study did not receive any medication 
therapy prior to sample collection. Fasting blood samples were collected from HAPE patients. The diag-
nosis of HAPE was based on standard criteria10 including cough, dyspnea, cyanosis at rest, absence of 
infection, the presence of pulmonary rales and cyanosis. In all cases, HAPE was confirmed by chest 
radiographic findings of infiltrates consistent with pulmonary edema. The control group consisted of 49 
men and 8 women with a mean age of 34.66 ±  6.08 years. These individuals were selected according to 
a 1:1 case-matching scheme using the variables sex, age, blood pressure, BMI and method of ascent. All 
control subjects were non-natives of a high altitude environment who had not developed any symptoms 
or signs of HAPE or related illness after exposure to high altitude within 7 days. Blood samples from 
healthy volunteers were obtained under fasting conditions.

In total, the 57 HAPE patients and 57 healthy controls were enrolled into this study and then were 
divided into a discovery set and a validation set. The discovery set, composed of 35 HAPE subjects and 
35 healthy controls, was used to identify plasma diagnostic markers for HAPE; the remaining subjects 
were used to establish the validation set to independently validate the diagnostic generalizability of these 
biomarkers. The detailed demographic and clinical data of the participants are presented in Table  1. 
Any patients with previous history of cardiopulmonary diseases and other metabolic diseases such as 
diabetes, hypertension, obesity and heart disease, as identified by self-reported medical history or full 
examination carried out after HAPE recovery, were excluded from study participation.

Chemicals and reagents.  HPLC-grade Methanol and acetonitrile (ACN) were purchased from Merk 
(Darmstadt, Germany). Formic acid was obtained from Fluka (Buchs, Switzerland). Sphingosine and pal-
mitoylcarnitine were purchased from Acros Organics (NewJersey, USA). Glutamine, methionine, hypox-
anthine, inosine, valine and isoleucine were obtained from Shanghai Jingchun Reagent Co. Ultrapure 
water was prepared with a Milli-Q water purification system (Millipore, Bedford, MA, USA).

Discovery Set Validation set

Control HAPE p value Control HAPE p value

sample size 35 35 −  22 22 − 

sex (M/F) 31/4 31/4 −  18/4 18/4 − 

Age, year 34.81 ±  6.03 35.00 ±  5.75 0.88 34.42 ±  6.29 34.45 ±  6.10 0.98

Method of ascent by train by train −  by train by train − 

Systolic blood pressure, mm Hg 119.57 ±  3.75 120.56 ±  3.51 0.25 120.76 ±  3.86 119.91 ±  3.60 0.45

Diastolic blood pressure, mm Hg 78.27 ±  4.06 78.15 ±  4.00 0.89 77.87±  4.22 78.22 ±  3.74 0.77

Body mass index, kg/m2 22.45 ±  2.29 22.27 ±  2.12 0.73 22.39 ±  2.45 22.58 ±  2.19 0.78

arterial oxygen saturation, % 92.34 ±  3.89 77.48 ±  5.99 < 0.0001 92.39 ±  3.39 76.54 ±  5.67 < 0.0001

Pulse rate, rate/min 81.47 ±  5.82 94.95 ±  10.82 < 0.0001 81.47 ±  5.82 94.95 ±  10.82 < 0.0001

Table 1.  Demographic and clinical details of recruited subjects
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Sample preparation.  Fasting venous blood (with EDTA as an anticoagulant) was obtained from all 
the above-mentioned individuals. The plasma was separated immediately by centrifugation (3000 ×  g, 
10 min). The harvested plasma samples were stored at − 80 °C, and transported to Shanghai for further 
experiments. Prior to the analysis, a volume of 400 μ L of methanol was added to 100 μ L of plasma. After 
vigorous shaking for 1 min and incubation on ice for 10 min, the mixture was centrifuged at 14,000 ×  g 
for 15 min at 4 °C to precipitate the protein. All the supernatant was removed (without removing any 
particles left at the bottom of the vial). The supernatant was evaporated to dryness with a gentle nitrogen 
stream. The dry residue was reconstituted in 100 μ L of ACN/water (7:3, v/v), then centrifuged again at 
14,000 ×  g for 10 min at 4 °C.

As part of the system conditioning and quality control (QC) process, a pooled QC sample was pre-
pared by mixing equal volumes (100 μ L) from each of the 114 samples as they were being aliquoted for 
analysis. It was processed as real samples and then was inserted through the analytical run at intervals 
of 8–13 real samples to be analyzed eleven times. The QC samples were sufficiently spread out through 
the whole run as to ensure its validity.

UHPLC-Q-TOFMS analysis.  UHPLC analysis was performed on Agilent 1290 Infinity LC system 
(Agilent, Germany). Chromatographic separation was carried out at 40 °C on an ACQUITY UPLC BEH 
C18 column (2.1 mm ×  100 mm, 1.7 μ m, Waters, Milford, MA). The column oven was set at 40 °C. The 
mobile phase consisted of 0.1% formic acid (A) and ACN modified with 0.1% formic acid (B), using a 
gradient elution of 5%B at 0–2 min, 5%–95% B at 2–13 min, 95% B at 13–15 min. The total run time was 
20 min including equilibration. The flow rate was 350 μ L/min and the injection volume was 4 μ L.

An Agilent 6530 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) mass spectrometer (Agilent, 
USA) was used in the study. The Q-TOF mass spectrometer was operated in electrospray ionization 
source (ESI) positive ion mode with a capillary voltage of 3.5 kV, drying gas flow of 11 L/min, and a gas 
temperature of 350 °C. The nebulizer pressure was set at 45 psig. The fragmentor voltage was set at 120 V 
and skimmer voltage was set at 60 V. All analyses were acquired using a mixture of 10 mM purine (m/z 
121.0508) and 2 mM hexakis phosphazine (m/z 922.0097) as internal standards to ensure mass accuracy 
and reproducibility. Data were collected in centroid mode and the mass range was set at m/z 50–1000 
using extended dynamic range. Potential biomarkers were analyzed by MS/MS in the Q-TOF. Nitrogen 
was used as the collision gas. MS/MS analysis was performed on the mass spectrometer set at different 
collision energy of 10− 50 eV according to the stability of each metabolites. MS spectra were collected 
at 2 spectra/s, and MS/MS spectra were collected at 0.5 spectra/s, with a medium isolation window 
(~4 m/z). A negative ion scan was only employed when metabolite identification was carried out.

Data Handling.  The raw data in instrument specific format (.d) were converted to common data 
format (.mzData) files using a conversion software program (file converter program available in Agilent 
MassHunter Qualitative software), in which the isotope interferences were eliminated. The program 
XCMS (version, 1.40.0) (http://masspec.scripps.edu/xcms/xcms.php) was used for nonlinear alignment 
of the data in the time domain and automatic integration and extraction of the peak intensities11. XCMS 
parameters were default settings (major default parameters: profmethod =  bin; method =  matchedFilter; 
step =  0.1) except for the following: full width at half maximum (FWHM) =  8, bandwidth (bw) =  10 and 
snthresh =  5, due to narrower peaks obtained by the use of the column packed with 1.7 μ m particles. The 
variables presenting in at least 80% of either group were extracted12, and the variables with a retention 
time less than 0.5 min (near to the dead time) were excluded due to a high degree of ion suppression 
that they suffered13. Variables with less than 30% relative standard deviation (RSD) in QC samples14 
were then retained for further multivariate data analysis because they were considered stable enough for 
prolonged UHPLC–Q-TOFMS analysis. For each chromatogram, the intensity of each ion was normal-
ized to the total ion intensity, in order to partially compensate for the concentration bias of metabolites 
between samples and to obtain the relative intensity of metabolites. The resulting three-dimensional 
matrix, including retention time and m/z pairs (variable indices), sample names (observations), and 
normalized ion intensities (variables), was exported to multivariate data analysis.

The normalized data was introduced to SIMCA-P V11.0 (Umetrics, Sweden) for principal component 
analysis (PCA) and partial least squares discriminant analysis (PLS-DA) after mean-centering and pareto 
scaling, a technique that increased the importance of low abundance ions without significant amplifica-
tion of noise. The quality of the models was evaluated with the relevant R2 and Q2 as well discussed else-
where15. T-test was performed in succession to reveal the statistical differences for the variables between 
healthy and HPAE individuals.

Results
Plasma metabolic profiling by UHPLC-MS.  The separation conditions of plasma on UHPLC-MS 
system were optimized in terms of peak shape and reproducibility. The representative chromatograms of 
plasma metabolomes in ESI positive mode are shown in Supplementary Fig. S1. The stability of the ana-
lytical method is very important to obtain valid metabonomic data. To validate the system performance 
during the analysis of real samples, a pooled QC sample was applied16, which was a representative “mean” 
sample including all the analytes during the analysis. The QC sample was processed as real samples and 
then was inserted amongst the real sample queue to be analyzed eleven times. PCA results of the QC 
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sample demonstrated that the peak areas deviation was less than 2 SD, indicating that the data from 
the UHPLC-MS were statistically acceptable (supplemental Fig. S2). In addition, it was found that the 
variation and of the retention times are 0.02–0.06 min for metabolites of interest in QC samples, and 
the relative standard derivations (RSD) for peak areas of metabolites of interest are 4.2%–13.1% in QC 
samples (see Table 2 for data). All the results demonstrated the robustness of the method. This confirms 
that the significant differences observed between the two groups by multivariate statistical analysis were 
more likely to be a result of genuine subtle changes in metabolites, rather than products of artifacts 
arising from technical errors.

Multivariate statistical analysis of metabolites.  The normalized data sets contained 1218 ions. 
To determine whether the metabolite fingerprints in plasma differed between the healthy and HAPE 
subjects, we first evaluated separation between healthy and HAPE subjects using unsupervised principal 
component analysis (PCA). The obvious separation was achieved between HAPE group and healthy 
group (R2 =  0.75) (Fig. 1A). To further search ion peaks that can discriminate between the two groups, 
the supervised PLS-DA model was established in that it was more focused on the actual class discriminat-
ing variation compared to the unsupervised PCA model. A clear separation between healthy group and 
HAPE group was observed in the PLS-DA score plot by the first two components (Fig. 1B) (R2 =  0.97, 
Q2 =  0.93). To validate the model, permutation tests with 99 iterations were further performed. These 
permutation tests compared the goodness of fit of the original model with the goodness of fit of ran-
domly permuted models. As shown in Fig.  1C, the validation plot indicates that the original model is 
valid. The criteria for validity are as follows: all the permuted R2 (cum) and Q2 (cum) values to the left 
are lower than the original point to the right, and the blue regression line of the Q2 (cum) points has a 
negative intercept17,18.

Identification of differential plasma metabolites in HAPE.  Metabolites were carefully screened 
before being approved as potential biomarkers. First, significant original variables were extracted from 
the S-plot, which is a covariance-correlation-based procedure, and thus the risk of false positives in 
metabolite selection was reduced19. The S-plot (Fig. 1D), derived from the first component of the com-
bined model, explains most of the variables in data set, in which the ions furthest away from the origin 
contribute significantly to the clustering of the two groups and may be regarded as potential biomark-
ers (in two shaded areas of Fig.  1D). Next, the variable importance for projection (VIP) reflecting the 
importance of variables has been applied to filter the important metabolites in the model. The most 
important 30 variables were first selected according to their VIP value. Furthermore, the fold change of 
the relative intensity from the differential metabolite between the two groups was set as 1.5. Unpaired 
Student’s t-tests were performed as the final testing procedure, and the critical p-value was set to 0.05 

No. m/z tR(min) Formula Metabolite Ratioa VIPb Trendc Related pathway %RSDd

1 147.0761 0.81 C5H10N2O3 Glutaminee 0.67 2.65 ↓ * Alanine, aspartate and 
glutamate metabolism 12.7

2 150.0581 0.97 C5H11NO2S Methioninee 1.75 1.41 ↑ * Methionine metabolism 10.3

3 118.0860 1.10 C5H11NO2 Valinee 0.62 6.07 ↓ * Valine, leucine and 
isoleucine biosynthesis 8.3

4 137.0456 1.14 C5H4N4O Hypoxanthinee 2.02 2.97 ↑ * Purine metabolism 7.9

5 269.0875 1.28 C10H12N4O5 Inosinee 2.14 1.39 ↑ * Purine metabolism 13.1

6 132.1008 1.31 C6H13NO2 Isoleucinee 0.64 9.75 ↓ * Valine, leucine and 
isoleucine biosynthesis 4.2

7 300.2887 9.54 C18H37NO2 Sphingosinee 1.81 1.41 ↑ * Sphingolipid metabolism 8.9

8 400.3420 10.46 C23H45NO4 Palmitoylcarnitinee 1.60 2.39 ↑ * Sphingolipid metabolism 7.5

9 520.3379 10.62 C26H50NO7P LysoPC(18:2)f 0.60 9.73 ↓ * Phospholipid metabolism 6.7

10 426.3574 10.66 C26H51NO3 C8− ceramidef 1.74 4.46 ↑ * Sphingolipid metabolism 4.8

11 280.2631 10.83 C18H33NO Linoleamidef 1.76 1.98 ↑ * Fatty acid metabolism 10.3

12 570.3546 11.00 C30H52NO7P LysoPC(22:5)f 0.60 3.01 ↓ * Phospholipid metabolism 9.5

13 546.3549 11.14 C28H52NO7P LysoPC(20:3)f 0.61 4.81 ↓ * Phospholipid metabolism 5.4

14 256.2638 13.03 C16H33NO Palmitic amidef 1.59 1.50 ↑ * Fatty acid metabolism 10.8

Table 2.   Potential biomarkers and their metabolic pathways. aThe ratio of relative amounts of HAPE 
group to control group. bVariable Importance in Projection. cChange trend compared with control group. 
(↑ ): up-regulated. (↓ ): down-regulated. dVariation of the biomarker concentrations in QC samples expressed 
as relative standard deviation (%RSD). eMetabolites validated with standard sample. fMetabolites putatively 
annotated. *p value <  0.01.
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for significantly differential variables. Following the criterion above, 14 metabolite ions were selected as 
potential biomarkers related to HAPE.

The detailed method for the compound identification was described in the author previous work20. In 
brief, the corresponding quasi-molecular ion peak was found according to the accurate mass and reten-
tion time in the extracted ion chromatogram (EIC), and then the most probable molecular formula were 
calculated by Agilent MassHunter software. Fig. S3 A and S3 B show the EIC and MS spectrum of a typ-
ical ion whose m/z is 400.3420. Then, MS/MS analysis of m/z 400.3420 in plasma was performed using 
UHPLC-Q-TOFMS in the same chromatographic and mass spectrometric conditions (Fig. S3 C). With 
its fragmentation information and the freely accessible databases such as HMDB (http://www.hmdb.ca) 
and METLIN (http://metlin.scripps.edu), the major fragment ions m/z 341.2685, 144.1016, 85.0290 and 
60.0813 represent the fragments of [C20H37O4]+, [C7H14NO2]+, [C4H5O2]+ and [C3H9N]+, respectively. 
Therefore, the m/z 400.3420 was identified as palmitoylcarnitine according to the elemental composition, 
retention time and fragmentation information. Finally, the MS/MS spectrum of the commercial standard 
palmitoylcarnitine was used to confirm the identified compound. Other biomarkers have been similarly 
identified and are listed in Table 2 and the structures and MS/MS spectra of the metabolites are presented 
in Supporting Information Fig. S4. Among these metabolites, the high level of C8-ceramide, palmitoyl-
carnitine, hypoxanthine, linoleamide, palmitic amide, methionine, sphingosine and inosine, and the low 
level of isoleucine, valine, glutamine, lysoPC(18:2), lysoPC(20:3) and lysoPC(22:5) were observed in 
HAPE subjects relative to healthy controls. (Fig. 2)

Identification of a simplified HAPE metabolite signature.  14 candidate plasma biomarkers of 
HAPE were identified in the above analysis. However, diagnosis based on quantification of so many 
metabolites would not be economical and convenient in clinical practice. It would be more practical 
in diagnosing HAPE to identify a simplified plasma metabolite signature. Therefore, the 14 differen-
tial metabolites were used as candidates for selection of a simplified HAPE metabolite signature. It is 
well-known that changes in more important positions of a network will trigger a more severe impact on 
the pathway than changes occurring in marginal or relatively isolated positions21. The metabolic pathway 
impact analysis with MetaboAnalyst 3.0 revealed that these differential metabolites are important for the 
organism response to HAPE and are responsible for multiple pathways22,23. Therefore, it was used to opti-
mize a plasma metabolite signature for HAPE. The metabolic networks are directed graph as Fig. 3. It was 
revealed that the identified metabolites are responsible for sphingolipid metabolism, alanine, aspartate 
and glutamate metabolism, methionine metabolism, D-Glutamine and D-glutamate metabolism, valine, 
leucine and isoleucine biosynthesis, purine metabolism, fatty acid metabolism and phospholipid metab-
olism. The impact-value threshold calculated from pathway topology analysis was set to 0.10 24, and two 
unique pathways including sphingolipid metabolism and alanine, aspartate and glutamate metabolism 
was filtered out as potential targets pathway for HAPE. Potential metabolite signature was then identified 

Figure 1.  Multivariate data analysis. (A) PCA score map derived from UHPLC-Q-TOFMS spectra 
concerning healthy (■) and HAPE ( ) individuals. (B) PLS-DA score map derived from UHPLC-Q-
TOFMS spectra concerning healthy (■) and HAPE ( ) individuals. (C) Validation plot obtained from 99 
permutation tests. (D) S-plot of the PLS-DA model.

http://www.hmdb.ca
http://metlin.scripps.edu
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from the two metabolic pathways. Among the 14 differential metabolites, C8-ceramide and sphingosine 
belong to sphingolipid metabolism, and glutamine belongs to alanine, aspartate and glutamate metabo-
lism. Therefore, it was speculated that these three metabolites should yield the higher predictive power 
for future diagnostic applications. The relative concentrations of these three plasma metabolite biomark-
ers for HAPE are presented in Fig. 2.

To further validate the potential diagnostic effectiveness of the simplified metabolite signature, the 
ROC-curve was plotted using relative intensities of metabolites. The three representative metabolites 
including C8-ceramide, sphingosine and glutamine were selected as a panel of candidate markers. Logistic 
regression was used to combine the three variables into a multivariable. The prediction model is as 
follows: P =  1/[1 +  exp(− (− 2.39 +  204.16 ×  (C8-ceramide) +  3015.73 ×  (sphingosine) −  829.96 ×  (glu-
tamine)))]. The results indicated that a panel of three metabolites generated an AUC of 0.981 with a 
sensitivity of 91.43% and a specificity of 94.29% and 0.942 with a sensitivity of 86.36% and a specificity 
of 81.82 for the discovery and validation sets, respectively (Fig. 4A). According to the highest prediction 
sensitivity (91.43%) and specificity (94.29%) of the ROC curves on the discovery set, an optimal cutoff 
value of 0.4988 was obtained. Based on this cutoff value, it was found that 65 out of 70 samples (92.8%) 
in the discovery set as well as 37 out of 44 samples (84.1%) in validation set could be accurately predicted 
(Fig. 4B). This finding indicated that this simplified plasma metabolite signature was a “good” classifier 
of HAPE patients and healthy controls.

Figure 2.  HAPE subjects possess increased/decreased metabolites. (A) The relative signal intensities of the 
increased metabolites in HAPE subjects. (B) The relative signal intensities of the decreased metabolites in 
HAPE subjects. Data are expressed as mean ±  S.D.

Figure 3.  The pathway impact of HAPE on plasma metabolites with MetaboAnalyst 3.0. (a) sphingolipid 
metabolism; (b) alanine, aspartate and glutamate metabolism, (c) methionine metabolism; (d) D-Glutamine 
and D-glutamate metabolism; (e) valine, leucine and isoleucine biosynthesis; (f) purine metabolism; (g) 
phospholipid metabolism; (h) fatty acid metabolism.
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Discussion
HAPE is a severely life-threatening acute mountain sickness that endangers the lives of people climb-
ing or migrating to high altitudes. Currently, the lack of disease biomarkers constitutes a bottleneck in 
the clinical diagnosis of HAPE. Here, using UHPLC-Q-TOFMS-based plasma metabonomic approach, 
14 potential biomarkers related to HAPE was identified. Compared to previous 1H NMR-based study, 
UHPLC-Q-TOFMS-based metabolomic approach provided larger coverage of HAPE-related metabo-
nome including sphingolipid, phospholipids, fatty acid amides and several amino acids. Based on meta-
bolic pathway impact analysis, a metabolite signature consisting of three plasma metabolite biomarkers 
C8-ceramide, sphingosine and glutamine was further identified as an effective diagnostic pattern, yield-
ing an AUC of 0.981 in the discovery set and 0.942 in the validation set. Our results suggest that this 
metabolite signature may be helpful in the development of objective laboratory-based diagnostic tools 
for HAPE.

To understand the underlying molecular functions of these plasma metabolite biomarkers, metabolic 
pathway analysis was conducted. The 14 metabolites were found to be primarily involved in (a) sphin-
golipid metabolism (b) alanine, aspartate and glutamate metabolism, (c) methionine metabolism, (d) 
D-Glutamine and D-glutamate metabolism, (e) valine, leucine and isoleucine biosynthesis, (f) purine 
metabolism, (g) fatty acid metabolism, (g) phospholipid metabolism and (h) fatty acid metabolism. By 
relating the metabolic pathways, the metabolic network of HAPE-related potential biomarkers was con-
structed (Fig. 5). The disturbed metabolic pathways are discussed in detail below.

The significantly higher levels of C-8 ceramide and sphingosine were observed in HAPE subjects 
relative to healthy controls, suggesting the sphingolipid metabolism is upregulated in HAPE subjects. It 
was reported that ceramide-challenged pulmonary endothelial cells exhibit decreased barrier function, 

Figure 4.  ROC curves based on the binary logistic regression model by the combination of three plasma 
metabolites (C8-ceramide, sphingosine and glutamine), and their prediction plots based on the optimal 
cutoff value from ROC curves. (A) The HAPE samples from the discovery set were applied to construct 
a binary logistic regression model based on the combination of plasma C8-ceramide, sphingosine and 
glutamine, and the ROC curves of the discovery set ((A), left) and validation set ((A), right) were obtained 
from the above established prediction model. (B) The optimal cutoff value with the highest sensitivity and 
specificity in the ROC curves of the training set was obtained (0.4988) and applied to evaluate the prediction 
capacity (92.8% for discovery set ((B), left) and 84.1% for validation set ((B), right)) of the current model, 
where 0 and 1 on the x axis represent healthy controls and HAPE patients, respectively, and blue circle 
represent samples.
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independent of apoptosis25,26, which may contribute to lung inflammation and pulmonary edema27. 
A recent study also reported that exogenous sphingosine-1-phosphate boosted acclimatization in rats 
exposed to acute hypobaric hypoxia28. In addition, the level of palmitoylcarnitine was significantly 
increased in HAPE subjects relative to healthy controls, which illustrated that HAPE facilitated the pro-
cess of sphingolipid biosynthesis. These consistent set of findings suggested that reestablishing the sphin-
golipid homeostasis was an important drug target for improving physiological acclimatization of subjects 
venturing into high altitude.

The low level of glutamine, a key metabolite in the pathway of alanine, aspartate and glutamate metab-
olism and D-Glutamine and D-glutamate metabolism, was observed in HAPE subjects. Since the bio-
synthesis of glutamine depends on glutamine synthetase, we speculated that the decrease in activities of 
glutamine synthetase should be a reason for the decrease of glutamine. In agreement with this presump-
tion, several studies have consistently reported that the activity of glutamine synthetase was decreased 
in animal model exposed to high altitude (4000 m)29.

A significantly higher level of methionine was observed in HAPE subjects relative to healthy controls, 
suggesting the methionine metabolism pathway is perturbed in HAPE subjects. Although the metabolic 
mechanism is not yet well defined, it is plausible that the metabolic disorder results from dysregulation 
of proteolysis, oxidative catabolism, and gluconeogenesis30. Further study on its underlying mechanisms 
is underway in our laboratory.

The levels of inosine and hypoxanthine were significantly increased in HAPE subjects relative to 
healthy controls. Inosine and hypoxanthine are the products of adenosine metabolic degradation. It was 
previously reported that adenosine was released by hypoxic canine lung tissue and the levels of inosine 
and hypoxanthine showed sustained significant increases31, which is consistent with our results. In addi-
tion, an increased purine metabolism flux induced by acute systematic hypoxia has also been observed in 
a recently reported LC-MS study32. These data suggests that perturbed purine metabolism is implicated 
in HAPE.

The low levels of valine and isoleucine, correlated with valine, leucine and isoleucine biosynthesis, 
were observed in HAPE subjects. Valine and isoleucine, two branched-chain amino acids, may be an 
important alternative energy substrate. It seems that the reduction in ATP production due to the inhi-
bition of citrate cycle induced by the hypobaric hypoxia of high altitude could lead to the utilization of 
branched-chain amino acids as energy compensation. Branched-chain amino acids have been suggested 
as a useful supplementation in the treatment of lung disease33 and in trekking at high altitude34. These 

Figure 5.  Schematic overview of the disturbed metabolic pathways associated with HAPE. The 
metabolites are shown in color: red represents increased metabolites, green represents decreased metabolites 
and the open circles represent no detected or changed metabolites in our experiment. PRPP, phosphoribosyl 
pyrophosphate; GS, Glutamine synthetase
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results together with our findings suggest that HAPE is associated with disturbances in branched-chain 
amino acids metabolism.

Fatty acid amides (FAMs) are a group of endogenous lipid signaling molecules found in the brain and 
blood of mammals. Linoleamide and palmitic amide were FAMs and a significantly higher levels of them 
were observed in HAPE subjects relative to healthy controls. Although the possible role of linoleam-
ide and palmitic amide in HAPE could not be directly elucidated, the physiological functions of the 
other FAM such as endocannabinoid anandamide could give an indirect clue to them. It was previously 
reported that endocannabinoid anandamide could mediate hypoxic pulmonary vasoconstriction via fatty 
acid amide hydrolase (FAAH)-dependent metabolites and hypoxia could cause elevated anandamide 
in the lung35. Meanwhile, exaggerated hypoxic pulmonary vasoconstriction is one of the pathological 
features of HAPE1. In line with these previous reports, we speculated that linoleamide and palmitic 
amide may also be an important mediator of hypoxic pulmonary vasoconstriction and be involved in 
the generation of pulmonary hypertension. The mechanism of action of the two FAMs still carried out 
in our laboratory.

Lysophosphatidylcholines (LysoPCs) including LysoPC(18:2), LysoPC(20:3) and LysoPC(22:5) were 
obviously decreased in plasma from HAPE subjects relative to healthy controls, suggesting the phospho-
lipid metabolism is implicated in stroke patients. LysoPC is an important signaling molecule with diverse 
biological functions and can mediate many cell signaling pathways in monocytes/macrophages and 
specific receptors36,37, so that it participates in inflammatory response. The regulation of phospholipid 
metabolites may have important implications in inflammation response following HAPE induced-by 
hypobaric hypoxia.

Conclusion
In conclusion, an UHPLC− Q-TOFMS based metabonomic approach has been developed to profile 
HAPE-related metabolic changing in plasma. Fourteen potential biomarkers have been identified as 
being primarily involved in sphingolipid metabolism, alanine, aspartate and glutamate metabolism, 
methionine metabolism, D-Glutamine and D-glutamate metabolism, valine, leucine and isoleucine bio-
synthesis, purine metabolism, fatty acid metabolism and phospholipid metabolism. Using metabolic 
pathway impact analysis and metabolite enrichment analysis, we identified a panel of plasma metabolite 
biomarkers relating to HAPE, of which the combination of plasma C8-ceramide, sphingosine and glu-
tamine could discriminate HAPE patients from healthy controls with high accuracy. It suggested that 
this composite urinary metabolite signature may have diagnostic and/or prognostic values for HAPE, 
which deserve to be further investigated in larger populations with accurately characterized patients and 
to explore their corresponding mechanisms related to HAPE.

References
1.	 Bhagi, S., Srivastava, S. & Singh, S. B. High-altitude pulmonary edema: review. J Occup Health. 56, 235–243 (2014).
2.	 Pennardt, A. High-altitude pulmonary edema: diagnosis, prevention, and treatment. Curr Sports Med Rep. 12, 115–119 (2013).
3.	 Fiehn, O. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 48, 155–171 (2002).
4.	 Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 

910–914 (2009).
5.	 Armitage, E. G. & Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. Journal of 

Pharmaceutical and Biomedical Analysis 87, 1–11 (2014).
6.	 Jove, M., Portero-Otin, M., Naudi, A., Ferrer, I. & Pamplona, R. Metabolomics of Human Brain Aging and Age-Related 

Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology 73, 640–657 (2014).
7.	 Rasmiena, A. A., Ng, T. W. & Meikle, P. J. Metabolomics and ischaemic heart disease. Clinical Science 124, 289–306 (2013).
8.	 Zhang, A. H., Qiu, S., Xu, H. Y., Sun, H. & Wang, X. J. Metabolomics in diabetes. Clinica Chimica Acta. 429, 106–110 (2014).
9.	 Luo, Y., Zhu, J. & Gao, Y. Metabolomic analysis of the plasma of patients with high-altitude pulmonary edema (HAPE) using 1H 

NMR. Mol Biosyst. 8, 1783–1788 (2012).
10.	 Hultgren, H. N. & Marticorena, E. A. High altitude pulmonary edema. Epidemiologic observations in Peru. Chest. 74, 372–376 

(1978).
11.	 Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite 

profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 78, 779–787 (2006).
12.	 Bijlsma, S. et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 78, 

567–574 (2006).
13.	 Chen, J. et al. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass 

spectrometry with HILIC and RPLC separations. Anal Chim Acta. 650, 3–9 (2009).
14.	 Gika, H. G., Theodoridis, G. A., Wingate, J. E. & Wilson, I. D. Within-day reproducibility of an HPLC-MS-based method for 

metabonomic analysis: application to human urine. J Proteome Res. 6, 3291–3303 (2007).
15.	 Yin, P. et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and 

HILIC coupled with mass spectrometry. Mol Biosyst. 5, 868–876 (2009).
16.	 Sangster, T., Major, H., Plumb, R., Wilson, A. J. & Wilson, I. D. A pragmatic and readily implemented quality control strategy 

for HPLC-MS and GC-MS-based metabonomic analysis. Analyst. 131, 1075–1078 (2006).
17.	 Mahadevan, S., Shah, S. L., Marrie, T. J. & Slupsky, C. M. Analysis of metabolomic data using support vector machines. Anal 

Chem. 80, 7562–7570 (2008).
18.	 Pasikanti, K. K. et al. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res. 9, 2988–2995 

(2010).
19.	 Wiklund, S. et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting 

compounds using OPLS class models. Anal Chem. 80, 115–122 (2008).
20.	 Tan, G. et al. Metabonomic profiles delineate the effect of traditional Chinese medicine sini decoction on myocardial infarction 

in rats. PLoS One. 7, e34157 (2012).



www.nature.com/scientificreports/

1 0Scientific Reports | 5:15126 | DOI: 10.1038/srep15126

21.	 Liao, W. et al. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat 
T-cells treated with HIV-1 Tat protein. J Proteome Res. 11, 5109–5123 (2012).

22.	 Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D. & Wishart, D. S. MetaboAnalyst 2.0--a comprehensive server for metabolomic 
data analysis. Nucleic Acids Res. 40, W127–133 (2012).

23.	 Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using 
MetaboAnalyst. Nat Protoc. 6, 743–760 (2011).

24.	 Wang, X., Yang, B., Sun, H. & Zhang, A. Pattern recognition approaches and computational systems tools for ultra performance 
liquid chromatography-mass spectrometry-based comprehensive metabolomic profiling and pathways analysis of biological data 
sets. Anal Chem. 84, 428–439 (2012).

25.	 Goggel, R. et al. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med. 10, 155–160 
(2004).

26.	 Petrache, I., Petrusca, D. N., Bowler, R. P. & Kamocki, K. Involvement of ceramide in cell death responses in the pulmonary 
circulation. Proc Am Thorac Soc. 8, 492–496 (2011).

27.	 Petrache, I. et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 11, 
491–498 (2005).

28.	 Chawla, S. et al. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: 
assessment of haematological and metabolic effects. PLoS One. 9, e98025 (2014).

29.	 Radak, Z. et al. The effect of high altitude and caloric restriction on reactive carbonyl derivatives and activity of glutamine 
synthetase in rat brain. Life Sci. 62, 1317–1322 (1998).

30.	 Tissot van Patot, M. C. et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. 
Am J Physiol Regul Integr Comp Physiol. 298, R166–172 (2010).

31.	 Mentzer, R. M., Jr., Rubio, R. & Berne, R. M. Release of adenosine by hypoxic canine lung tissue and its possible role in 
pulmonary circulation. Am J Physiol. 229, 1625–1631 (1975).

32.	 Lou, B. S., Wu, P. S., Liu, Y. & Wang, J. S. Effects of acute systematic hypoxia on human urinary metabolites using LC-MS-based 
metabolomics. High Alt Med Biol. 15, 192–202 (2014).

33.	 Menier, R., Talmud, J., Laplaud, D. & Bernard, M. P., Branched-chain aminoacids and retraining of patients with chronic 
obstructive lung disease. The Journal of sports medicine and physical fitness 41, 500–504 (2001).

34.	 Shimizu, M. et al. Energy expenditure during 2-day trail walking in the mountains (2,857 m) and the effects of amino acid 
supplementation in older men and women. European Journal of Applied Physiology. 112, 1077–1086 (2012).

35.	 Wenzel, D. et al. Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci USA 110, 
18710–18715 (2013).

36.	 Duong, C. Q. et al. Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses 
in human macrophages. Biochim Biophys Acta. 1682, 112–119 (2004).

37.	 Kabarowski, J. H. G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 89, 73–81 (2009).

Acknowledgements
This work was supported by the Special Projects of Scientific Research in Health Service under the 
Ministry of Health (No. 2010002012 and CWS11J309) and the National Natural Science Foundation of 
China (No. 81402888).

Author Contributions
L.G. and H.L. performed experiments. G.T. and L.T. analyzed data and wrote the main manuscript 
text. P.L. provided plasma samples of HAPE. L.H. and Q.R. designed and supervised experiments, and 
submitted the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Guo, L. et al. Three plasma metabolite signatures for diagnosing high altitude 
pulmonary edema. Sci. Rep. 5, 15126; doi: 10.1038/srep15126 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

	Materials and Methods

	Participants. 
	Chemicals and reagents. 
	Sample preparation. 
	UHPLC-Q-TOFMS analysis. 
	Data Handling. 

	Results

	Plasma metabolic profiling by UHPLC-MS. 
	Multivariate statistical analysis of metabolites. 
	Identification of differential plasma metabolites in HAPE. 
	Identification of a simplified HAPE metabolite signature. 

	Discussion

	Conclusion

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Multivariate data analysis.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ HAPE subjects possess increased/decreased metabolites.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ The pathway impact of HAPE on plasma metabolites with MetaboAnalyst 3.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ ROC curves based on the binary logistic regression model by the combination of three plasma metabolites (C8-ceramide, sphingosine and glutamine), and their prediction plots based on the optimal cutoff value from ROC curves.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Schematic overview of the disturbed metabolic pathways associated with HAPE.
	﻿Table 1﻿﻿. ﻿ Demographic and clinical details of recruited subjects.
	﻿Table 2﻿﻿. ﻿  Potential biomarkers and their metabolic pathways.



 
    
       
          application/pdf
          
             
                Three plasma metabolite signatures for diagnosing high altitude pulmonary edema
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15126
            
         
          
             
                Li Guo
                Guangguo Tan
                Ping Liu
                Huijie Li
                Lulu Tang
                Lan Huang
                Qian Ren
            
         
          doi:10.1038/srep15126
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep15126
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep15126
            
         
      
       
          
          
          
             
                doi:10.1038/srep15126
            
         
          
             
                srep ,  (2015). doi:10.1038/srep15126
            
         
          
          
      
       
       
          True
      
   




