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Gel electrophoresis is a powerful experimental method to probe
the topology of DNA and other biopolymers. Although there is a
large body of experimental work that allows us to accurately
separate different topoisomers of a molecule, a full theoretical un-
derstanding of these experiments has not yet been achieved. Here
we show that the mobility of DNA knots depends crucially and
subtly on the physical properties of the gel and, in particular, on the
presence of dangling ends. The topological interactions between
these and DNA molecules can be described in terms of an “entan-
glement number” and yield a nonmonotonic mobility at moderate
fields. Consequently, in 2D electrophoresis, gel bands display a char-
acteristic arc pattern; this turns into a straight line when the density
of dangling ends vanishes. We also provide a novel framework to
accurately predict the shape of such arcs as a function of molecule
length and topological complexity, which may be used to inform
future experiments.

DNA knots | topology | gel electrophoresis

Topology plays a key role in the biophysics of DNA and is
intimately related to its functioning. For instance, transcrip-

tion of a gene redistributes twist locally to create what is known
as supercoiling, whereas catenanes or knots can prevent cell di-
vision; hence they need to be quickly and accurately removed by
specialized enzymes known as topoisomerases. How can one
establish experimentally the topological state of a given DNA
molecule? By far the most successful and widely used technique
to do so is gel electrophoresis (1, 2). This method exploits the
empirical observation that the mobility of a charged DNA mol-
ecule under an electric field depends on its size, shape, and to-
pology (2). Gel electrophoresis is so reliable that it can be used,
for instance, to map replication origins and stalled replication
forks (3), to separate plasmids with different amount of super-
coiling (3, 4), and to identify DNA knots (5, 6). The most widely
used variant of this technique nowadays is 2D gel electropho-
resis, where a DNA molecule is subjected to a sequence of two
fields, applied along orthogonal directions (2). The two runs are
characterized by different field strengths and sometimes also gel
concentrations (4); with suitable choices, the joint responses lead
to increased sensitivity.
Although gel electrophoresis is used very often, and is ex-

tremely well characterized empirically, there is still no compre-
hensive theory to quantitatively understand, or predict, what
results will be observed in a particular experiment. Some aspects
are reasonably well established. For instance, it is now widely
accepted that the physics of the size-dependent migration of
linear polymers can be explained by the theory of biased polymer
reptation (7–12). Likewise, the behavior of, for example, nicked,
torsionally relaxed, DNA knots in a sparse gel and under a weak
field is analogous to that of molecules sedimenting under gravity
(13–15). The terminal velocity can be estimated via a balance
between the applied force and the frictional opposing force, which
is proportional to the average size of the molecule; as a result,
more-complex knots, which are smaller, move faster under the
field. However, the mechanisms regulating the electrophoretic

mobility of DNA knots at intermediate fields, and in more-con-
centrated agar gels, are much less understood (4, 13, 16). Here,
experiments suggest that the mobility of knots is usually a non-
monotonic function of the knot complexity, or, more precisely, of
their average crossing number (5, 17) (ACN): Initially, knots move
more slowly as their ACN increases, whereas, past a critical ACN,
more-complex knots move faster. The combination of the re-
sponses to external fields directed along two perpendicular di-
rections leads to a characteristic electrophoretic arc, which allows
separation of the first simple knots more clearly in a 2D slab (4, 6,
18, 19). To our knowledge, there is currently no theoretical
framework that quantitatively explains the nonmonotonic behav-
ior at intermediate or large fields and the consequent formation of
arc patterns.
To address this issue, here we present large-scale Brownian

dynamics simulations of knotted DNA chains migrating through
a gel, and subjected to a sequence of fields of different strength
and direction, as in 2D gel electrophoresis experiments (see
cartoon in Fig. 1A). We model the gel as an imperfect cubic
mesh (20), where some of the bonds have been cut (seeMaterials
and Methods) to simulate the presence of open strands, or
dangling ends, which have been observed in physical agarose gels
(21–27). Our results confirm the linear relation of the electro-
phoretic mobility with ACN for the first simple knots (we study
ACN up to 12) in a sparse gel and under a weak field. However,
our simulations also suggest that, due to a nonnegligible proba-
bility of forming “impalements” where a dangling end of the gel
pierces a knot, the response of the chain to stronger fields is
different. We suggest that, in this regime, the sole radius of gy-
ration is not enough to explain the observed dynamics, and we
introduce an average “entanglement number” that increases with
the ACN and provides a measure of the likelihood of forming an
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impalement. The time needed by a knot to disentangle from the
gel increases with its average entanglement number (AEN), or
knot complexity, and this slows down the motion, thus competing
with the Stokes friction, which leads to an increase of mobility
with ACN. As a result of this contest, one typically gets a non-
monotonic behavior of the terminal speed with ACN, and an
electrophoretic arc in two dimensions.
We also provide a simple model, based on a mapping between the

DNA knot dynamics and a biased continuous-time random walk,
which faithfully reproduces our Brownian dynamics simulations
starting from a minimal number of assumptions. This approach can
then be used to predict how the shape of the electrophoretic arc
should depend on system parameters such as the average lattice
spacing (pore size) of the gel and the contour length of DNA knots;
as we shall see, the predicted trends are in agreement with existing
2D electrophoresis data. This constitutes, to our knowledge, the first
example of a quantitative prediction of 2D electrophoretic diagrams;
hence we suggest that the approach we present could potentially
lead to even more accurate and targeted experiments to separate
topoisomers in DNA or other polymers.

DNA Knots Form an Electrophoretic Arc only in Irregular
Gels
The system we studied, sketched in Fig. 1 (see also Materials and
Methods and Supporting Information), consists of 10 nicked, i.e.,
torsionally relaxed, DNA loops of ∼ 3.7 kilobase pairs (kbp)
within a model agarose gel with dangling ends. These loops are
either unknotted or form one of the first few simple knots [with
up to nine crossing in their minimal projection (28)]. The loops
were first equilibrated within the gel (see Supporting Information)
and then subjected to an in silico gel electrophoresis process
where a weak electric field is first applied (K 50 V/cm) along the
vertical (z) direction, followed by a stronger field (J 150 V/cm)

along a transversal, say y, direction. We refer to these two fields as
“weak” and “stronger,” or “moderate,” in what follows. The com-
plete equations of motions and force fields used in our Brownian
dynamics simulations are detailed in Supporting Information.
By monitoring the trajectories of the knots through the gel, we

computed the average speed of their center of mass along each
of the field directions (see Supporting Information and Fig. 2 A
and B). As expected, the mobility along the direction of the weak
field increases with the topological complexity of the configu-
rations. Along the direction of the moderate field, however, the
mobility of the knots displays a nonmonotonic behavior. In
particular, the unknot now moves faster than either the trefoil or
the 41 twist knot, and has an average speed similar to the 51 knot.
This nonmonotonic behavior of the knot mobility, as a function
of the ACN, was previously observed in typical experiments with
torsionally relaxed DNA knots (4, 6, 18, 19, 29). It is worth no-
ticing that, within the five-crossings family, the 51 torus knot
moves more slowly than the 52 twist knots. This is similar to what
was observed in the weak field case (although much less en-
hanced) but different from what is observed in experiments of
sedimentation (15).
To better compare our findings with experiments, we report,

in Fig. 2C, the spatial distribution of the knots as Gaussians
centered in [vzðKÞtz,vyðKÞty] where vzðKÞ and vyðKÞ are the ve-
locities along z (weak field direction) and y (stronger field di-
rection) of knot K, and ty and tz are the electrophoretic run times.
The width of the Gaussians is set to be proportional to the SD of
the velocities. The resulting spots can be seen as the in silico
analog of the ones observed in gel electrophoretic experiments.
Note that the combination of a monotonic behavior along the
weak field direction with a nonmonotonic one along the stronger
field gives rise to the arc-shaped distribution of the spots char-
acteristic of 2D electrophoresis experiments run either on knotted
configurations or on supercoiled plasmids (4) (see Fig. 2D).
It is interesting to ask whether one can observe the electro-

phoretic arc also in simulations where the gel is a regular cubic
mesh, i.e., a mesh with no dangling ends, as this has been, so far, the
typical way to model an agarose gel (16). Remarkably, unlike the
case of gel with dangling ends, also called “irregular” hereafter, no
example of nonmonotonic behavior of the knot mobility is found for
regular gels (for comparison, see Fig. 2C and Fig. S1). This result is
in line with previous simulations based on lattice knots in regular
gels (16) and persists for different field strengths (1.25− 600 V/cm)
and gel pore sizes (200− 500 nm) (see Supporting Information). [We
note that physical gels also have an inhomogeneous pore size; al-
though considering this aspect will affect our results quantitatively,
the common understanding is that the knot speed should depend
monotonically on size (1). This is qualitatively different from the
case of dangling ends, where the gel–polymer interactions strongly
depend on topological complexity as well.] Hence our simulations
strongly suggest that the causes for the nonmonotonic behavior,
observed in the case of irregular gels, are to be sought in the in-
teraction between the knots and the gel dangling ends.
This conjecture is also supported by the fact that linear (open)

DNA samples are frequently observed to migrate faster than
covalently closed (unknotted) ones in gel electrophoresis ex-
periments performed in both strong and weak fields (4, 6, 18,
29). This is in line with the outcome of a recent computer ex-
periment probing the dynamics of linear and unknotted circular
molecules through an irregular gel (20).

DNA Samples Become Severely Entangled with the Dangling
Ends
Having established that the presence of dangling ends in gels
severely affect the transport properties of the knotted DNA
loops under moderate electric fields, it is natural to look at the
possible mechanisms ruling this phenomenon.

B

A

Fig. 1. (A) Snapshot (to scale) of the model gel with some examples of
knotted configurations. Note that, to model a physical gel, a simple cubic
structure is randomly cut to create dangling ends. (B) Equilibrium configu-
rations of some of the knots considered; it can be readily seen that the size
tends to be smaller as the knot becomes more complex. The knots pictured
in A and B are trefoil (31), red; figure of eight (41), orange; pentafoil (51),
yellow; Stevedore’s (61), green; and nonafoil (91), gray.
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The typical trajectories and average extension of some knotted
loops as they move through a regular model gel and a gel with
dangling ends are markedly different at moderate fields (see Fig.
S1). In a regular gel, knots respond to the field, by shrinking their
size so as to channel through the pores of the gel more effi-
ciently. This mechanism, also known as “channeling,” in which
polymers squeeze through the gel pores, has already been ob-
served in previous works (30, 31), and it was previously con-
jectured to play a role in the nonmonotonic separation of DNA
knots in gels, as more-complex knots could have a different
ability in deforming their overall shape when squeezing through
the pores (4). On the other hand, as discussed in DNA Knots
Form an Electrophoretic Arc, we find that this behavior is not
sufficient to explain the electrophoretic arc, as, for regular gels, we
always observe a monotonic separation of the knots as a function of
the ACN (see Fig. S1). Conversely, in the case of irregular gels,
knotted loops are much more prone to entangle with one (or more)
dangling ends (see Insets of Fig. 2C for some examples). These
entangled states (or impalements) require some time to be unrav-
eled, and this is the reason for the anomalously long pauses ob-
served in the knot trajectories (see, in particular, Fig. S1). Clearly, as
the DNA gets longer, impalements, which can either be parallel or
perpendicular with respect the direction of the field, become pro-
gressively more likely. As a matter of fact, this could be one of the
reasons why it is, in practice, unfeasible to perform efficient gel
electrophoresis experiments with circular DNA longer than 10 kbp
(32): At these sizes, impalements are so frequent that they may
cause DNA breakage.
In analogy with the phenomenon of threading, which slows

down the dynamics of unknotted loops either in a melt or in a gel
(20, 33, 34), and that of “crawling” of knots around obstacles
(35), it is reasonable to expect that more-complicated knots will
take longer to disentangle themselves from an impalement. We

argue that this mechanism, when competing with the reduced
Stokes drag of more-complex knots in gels, is ultimately responsible
for producing a nonmonotonic dependence as a function of their
complexity, i.e., their ACN.

More-Complex Knots Have Smaller Size but Larger
Entanglement Number
Given that impalement events are key factors in determining the
mobility of DNA knots within gels with dangling ends, it is im-
portant to find a way to define and measure this entanglement.
Impalement may occur with dangling ends oriented along several
directions (see examples in Fig. 2C), but it is reasonable to ex-
pect that all these events involve a similar mechanism in which,
i.e., one dangling end “pierces through” the knot.
To quantify the degree of knot–gel entanglement, we consider an

equilibrated knot configuration in the gel, and project it on the
plane perpendicular to the field direction. We then choose ran-
domly a base point P, at a distance from the projection plane that is
much bigger than the radius of gyration of the projected configu-
ration, Rproj

g . Starting from P, we draw an arc that pierces only once
the projection plane at a point, Q, chosen randomly, with uniform
probability within a disk of radius Rproj

g and centered in the center of
mass of the projected configuration. The arc and the plane define a
semispace, and we close the path with a second arc connecting Q
and P and living in the other semispace (see Fig. 3A). To assess
whether this circular path interacts topologically with the knotted
configuration, we compute the absolute value of the linking num-
ber, jLkj, between the circular path and the knot. Fig. 3 B and C
shows the result of this procedure when applied to two different
knotted loops. By averaging jLkj over several circular paths with
different Q, and over different knot configurations, we define the
AEN, hπi, as the measure of the degree of entanglement between
the knotted loops and the surrounding gel.

A

B

C D

Fig. 2. In silico 2D gel electrophoresis for knotted DNA loops. (A) Average velocity of different types of knotted polymers along the direction of the weak
electric field: E1 = f1=qb ’ 50 V/cm. The dotted line indicates the linear increase with the ACN. (B) Average velocity of different types of knotted polymers
along the direction of the moderate field E2 = f2=qb = 150 V/cm. (C) A 2D reconstruction of the spatial distribution of the knots as Gaussian probability
distributions centered in [vzðKÞtz,vyðKÞty], where vzðKÞ and vy ðKÞ are the average speeds along, respectively, the weak and stronger field direction of knot
type K, as found by Brownian dynamics simulations. The electrophoretic run times correspond to tz = 0.8 1010 τBr ’ 5 min and ty = 2.6 1010 τBr ’ 16 min. The
spread of each spot has been estimated by looking at the SD of vzðKÞ and vyðKÞ. (Examples of single trajectories along the z and y directions are reported in
Fig. S1). (D) Outcome of a 2D gel electrophoresis experiment performed on P4 viral DNA (10 kbp) at 0.4% agarose concentration [reprinted with permission
from ref. 6 (Arsuaga et al.)].
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From Fig. 3D, we see that hπi grows approximately linearly with
can; as one would expect, more-complex knots can, on average,
become more entangled with the surrounding irregular gel. It is
interesting to compare this behavior with that of the mean squared
radius of gyration normalized with respect to half the gel pore size
(see Fig. 3D): Unlike the AEN, the average extension of the loop is,
to a good approximation, inversely proportional to the ACN, i.e., to
the knot complexity. This corresponds to the well-known fact that,
for a given loop contour length, more-complex knots are on average
less extended (5, 15) (see also the equilibrium configurations
in Fig. 1).
The plots in Fig. 3D suggest a possible interpretation of the

nonmonotonic mobility of the knots in irregular gels based on the
interplay between the average size and the degree of entangle-
ment with the gel. On one hand, more-complex knots, being
smaller in size, experience less frequent collision with the gel and
hence should travel more easily through it; this is just another
variant of the Stokes friction argument discussed previously. On
the other hand, once knot–gel collisions occur, more-complex
knots experience a more intricate entanglement with the gel
(higher values of AEN are more probable) that will take longer
to unravel (5, 14, 16, 35).
The above argument suggests the existence of two time scales in

the process: one is the time τf between two successive knot–gel
collisions yielding a local entanglement; the other, τdis, is the time

needed by the knotted loop to fully disentangle from the impale-
ment. The time scale τf increases as the knot average size decreases,
and hence increases with knot complexity (ACN). In other words,
more-complex knots experience, on average, less collisions with the
gel than their simpler counterpart. The second time scale, τdis, is
instead an increasing function of hπi (see Fig. 3D) and hence of the
knot complexity (measured in terms of ACN). According to this
picture, the slowest topoisomer in an irregular gel with a given
lattice spacing will be the one with the best compromise between a
high rate of collisions, and a sufficiently high value hπi.
To investigate more quantitatively the dependence of τf and τdis

on the knot type (ACN), we analyze the trajectories of the knotted
loops in the gel by computing (i) the average number of times a
knot arrests its motion in the gel (entanglement event), hnei, and (ii)
the distribution of the duration of these entanglement events.
As specified in Supporting Information, the duration of the en-

tanglement events can be identified as the time intervals where the
spatial position of the center of mass of the configuration deviates
significantly from the expected collision-free field-driven linear
motion with speed vfree =Fz,y=Mζ= fz,y=ζ.
As reported in Supporting Information (Fig. S2), the average

fraction of time in which the knot is trapped, τw=τtot (τtot is the time
of the full trajectory), is a nonmonotonic function of the ACN, in
line with the result on the mobility under moderate field (Fig. 2B).
In Fig. 3A, we show that the average number of entanglement

A

B

C

D

Fig. 3. (A) Sketch of the procedure used to define the piercing, or entanglement number: For a given projection of the configuration, the crossings define a set
of regions whose intersections with the disk of radius Rproj

g are highlighted in blue. Starting from different points P far away from the projections, closed paths
(two in the example) that pierce the disk once at different locationsQ are built at random. The absolute value of the linking number is then computed between
the knot configuration and each closed path. The average over the set of closed paths is finally taken: This is the AEN. B and C show the results of the procedure
described in A for a configuration with knot type 91 (C) and for an unknotted configuration (B). The regions are colored according to the computed absolute
value of the linking number (see color map at left). Note that for the 91 case, there are regions of high jLkj(3), which are more prone to become entangled with
the dangling ends of the gel. (D) The AEN hπi and the mean squared radius of gyration divided by ðl=2Þ2 (l is the gel pore size) for different knot types classified
in terms of ACN.
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events hnei decreases with the knot complexity (i.e., ACN). On the
other hand, the distribution of the duration of these events displays
an intriguing bimodal shape, with two peaks occurring respectively
at short and very long times (see Fig. S3). The peak at long times
can be interpreted as the signature of head-on collisions with the
gel, where the dangling ends involved are opposite to the direction
of the knot motion. The resulting entanglement is, in this case, very
difficult to unravel, especially in the presence of a strong electric
field (see, for instance, Inset of Fig. 2 for the unknot). Nonetheless,
whether or not we exclude from the statistic the entanglement
events corresponding to the peak at long times, the characteristic
disentanglement time τdis turns out to increase (linearly) with the
knot complexity, i.e., with ACN (see Fig. 4B).
We assume that this bimodal shape is due to a shift in the energy

barrier that the knots have to overcome to disentangle from the
dangling ends. In particular, one can think of this process as an
Arrhenius process, where the energy barrier is a function of the
length (projected along the field direction) of the dangling end, the
knot complexity, and, more importantly, the magnitude of the ex-
ternal field. When the external bias is too strong, disentanglement

events are very rare, and all knots will end up being permanently
entangled with the gel structure; on the other hand, when it is too
weak, the typical disentanglement time is very short, and the de-
pendence of τf as a function of the ACN dominates the motion of
the polymers, reestablishing the usual linear relationship.

Random Walk Model with Topology-Dependent Rates
Captures the Observed Nonmonotonic Behavior
As shown in DNA Knots Form an Electrophoretic Arc only in Ir-
regular Gels, 2D electrophoresis experiments and Brownian dy-
namics simulations of knotted loops in irregular gels are in
qualitative agreement in many aspects. In this section, we pro-
pose a simple model that reproduces the main findings of the
simulations and furnishes a simple but accurate way to predict
the arc shapes of the experimental patterns as a function both of
the knot complexity and of the loop contour length.
In this model, we describe the knotted loop moving within the

irregular gel as a biased random walk on a 1D lattice, i.e., a ran-
dom walk that moves to the right (direction of the external field)
unless it is trapped into an entangled state (due to impale-
ment), with probability λeðKÞ= τ−1f ðKÞ (see Supporting Information
for more details). Once in the entangled state, the walker has to
wait a given amount of time that is picked randomly from a bimodal
distribution consisting of an exponential decay, modeling the short
time disentanglement, and a smaller probability peak at large times,
describing the long disentanglement time from a head-on collision
(see Supporting Information for the details). In this simple de-
scription, the only relevant parameters are the hitting rate and the
parameters characterizing the bimodal distribution of waiting (i.e.,
disentanglement) times.
Once the values of these parameters are set to reproduce the

data reported in Fig. 3 (see also Supporting Information), the model
can be used to predict the mobility of the electrophoretic arc as a
function of ACN. As shown in Fig. 5, this procedure reproduces
with remarkably good agreement the simulation data, and, in par-
ticular, it captures the physical mechanism leading to the non-
monotonic mobility at moderate field. Note that, as the random
walker solely moves to the right, the field strength enters into the
model only through the waiting times and the hitting rates.
More importantly, once the parameter values of the biased ran-

dom walk model are set for a given pore size of the gel, l1, their
values for a different pore size, l2, can be estimated from general
arguments (see Supporting Information). We can therefore use this
simplified model to predict the moderate field mobility and the
shape of the electrophoretic arcs of DNA knots in gels of variable
pore size, e.g., tuned via agarose concentration (36) or nanowire
growth cycle (37).

A

B

Fig. 4. (A) Average number of events in which the knot is entangled
with the surrounding gel (entanglement events) as a function of ACN.
(B) Average disentanglement time as a function of ACN. In these esti-
mates, only entanglement events with duration shorter than 200 τBr are
considered.

A B C D

Fig. 5. (A) Average speed along the direction of the moderate field from Fig. 2B. The dashed line is obtained from the biased continuous random walk
model, and corresponds to the (shifted and rescaled) red curve in B. (B) Average relative separation (in units of lattice spacing over time) of the knots as a
function of the ACN for different parameters, as predicted by the continuous random walk model. The gray dashed line in A is obtained by shifting the red
curve in B by the value of hvyið01Þ and rescaling it by the free velocity vfree. (C) Reconstruction of a 2D gel electrophoresis experiment from the data in B and
zoom over the relative position of the family of six-crossings knots for two cases in which the minimum of the arc is at their left and their right. (D) Outcomes
of a 2D gel electrophoresis experiments performed on P4 viral DNA with different lengths, respectively 4.7 (black) and 10 (white) kbp at equal agarose
concentration (0.4%) [reprinted with permission from ref. 29 (Trigueros and Roca)].
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The plots presented in Fig. 5B and Fig. S4 suggest that tighter
gels give rise to more curved (or deeper) arcs where the slowest
knot has a higher ACN with respect to sparser gels. Moreover,
because the entanglement rate λe and the disentanglement time
τdis (both of these relative to the same quantities for the unknot)
should depend only on the ratio between the knot extension and
the gel pore size l, a similar trend should also be observed by
increasing the DNA loop contour length by keeping fixed l (see
Supporting Information). This is in qualitative agreement with
experiments, as electrophoretic arcs are straighter for shorter
DNA molecules (Fig. 5D). A further quantitative prediction we
can draw from our arguments is that the relative position of the
three six-crossing knots can be controlled by tuning the pore size
(Fig. 5) of the gel. Indeed, the size of the pores determines
whether the 61 Stevedore’s knot is to the left or to the right of the
minimum of the mobility curve: In the former case, 61 will moves
faster in the gel than the 62 and 63 knots (which, having higher
can, also have higher AEN), whereas, in the latter case, it will
move more slowly. This detailed prediction could be tested in
future electrophoresis experiments with knotted DNA loops
moving within different gels.

Conclusions
We have studied the role of topology in the gel electrophoretic
mobility of DNA knots by means of Brownian dynamics simu-
lations and a minimal model of biased random walk. We showed
that, when the knots are driven through a physical gel, i.e., one
possessing dangling ends, the knots’ mobility, as a function of
their ACN, depends on the strength of the external field.
At weak fields, we recover the well-known linear relationship

between migrating speed and knot type; at stronger fields, we
observe instead a nonmonotonic behavior. We argue that this
puzzling feature, routinely observed in experiments but not yet
fully explained, can be better understood by taking into account
the topological interactions, or entanglements, of the knots with
the irregularities of the surrounding gel. Although more-complex
knots assume more-compact configurations, and hence smaller
Stokes friction than simpler knots, they also experience more-
complex entanglements with the gel and, hence, longer disen-
tanglement times. These two competing effects give rise to the
nonmonotonic speed of the knots observed in the experiments, a
feature that, remarkably, is absent for knotted loops moving in a
regular gel (i.e., no dangling ends). Although most of our sim-
ulations were performed with a rigid gel, we tested that the re-
sults are qualitatively unchanged for gels with flexible dangling
ends (see Materials and Methods and Supporting Information and
Fig. S5).
We also propose a model that describes the motion of knotted

DNA loops as a biased continuous-time random walk. This model,
although minimal, by focusing on the competition between Stokes
friction and topological entanglements highlighted by the simu-
lations, is able to predict the shape of electrophoretic patterns of
DNA knots of different contour length observed in gels with
tunable physical properties. In particular, we predict that, by
changing the ratio between the radius of gyration of the unknot
and the gel pore size, 2D gel electrophoresis experiments should
lead to deep electrophoretic arcs for tight gels (or long knots),
and shallow ones for sparse gels (or short knots).
We hope that our results will prompt further experimental and

numerical verification of the role of topology in the anomalous
electrophoretic mobility of knotted polymers and, consequently,
suggest new and more accurate setups to separate biopolymers of
different topology. Lastly, we highlight that it may be possible to
understand the patterns of DNA molecules with different den-
sities of supercoiling within the presented framework as a similar
competition between loop size and loop–gel interactions may be
responsible for their characteristic behavior.

Materials and Methods
Double-stranded (ds) and nicked, i.e., torsionally relaxed, DNA (dsDNA) knots
are modeled as closed and knotted semiflexible bead-spring chains (38), with
beads of diameter σ = 2.5 nm, which reflects the thickness of hydrated B-DNA
near physiological conditions (39). The persistence length is set to lp = 20σ=
50 nm, and the chosen contour length Lc = 512σ corresponds to DNA loops of
length ∼ 4 kbp ’ 1.3 μm.

The gel is modeled as an imperfect and rigid cubic mesh, with lattice
spacing l= 80σ ’ 200 nm compatible with the average pore size of agarose
gels at 5% and artificial gels made of solid nanowires (36, 37) (for more
details on the model and comparison with the case of flexible dangling ends,
see Supporting Information). The irregularities, or dangling ends, of the gel
are created by starting from a regular cubic mesh and then halving some of
the edges randomly, with probability p= 0.4. Although this probability is
chosen arbitrarily, it is possible to map it to a real value of disorder found in
an agarose gel at a given concentration by comparing the mobility of linear
and ring polymers running through it, similarly to what was done in ref. 20.
The edges of the mesh are discretized with beads of size σg = 10σ ’ 25 nm,
which is compatible with the observed diameter of agarose bundles (36, 40,
41). For simplicity and computational efficiency, we model the gel as a static
mesh, meaning that the mesh structure is not deforming under either
thermal of mechanical strains. This is an approximation for an agarose gel,
whose bundles are generally, at the concentrations used in gel electropho-
resis, found to be made of tens of fibers whose persistence length has been
observed to be around 2− 10 nm (40). In light of this, a conservative esti-
mation of the persistence length of an agarose bundle is comparable with
that of DNA, i.e., lp ’ 50 nm (this assumes weak attraction between the fi-
bers; see Supporting Information). In this case, whose analysis is detailed in
Supporting Information, we do not observe significant deviations from the
results presented here in DNA Knots Form an Electrophoretic Arc only in
Irregular Gels. It is also worth noticing that this perfectly rigid environment
closely resembles artificial gels made of solid nanowires (37), which possess a
much higher Young modulus and have been found to be optimal media for
gel electrophoresis experiments.

The external field is modeled as a force f acting on each bead forming the
polymers. Assuming that, in physiological conditions, half of the charges
from the phosphate groups are screened by counter ions (42), one can think
that each bead (σ = 2.5 nm ’ 8 bp) contains a total charge of qb = 16qe=2,
where qe is the electron charge. Within this assumption, we can map the
external force applied onto each bead to an effective electric field E = f=qb.
Although this mapping is a crude approximation of the Coulomb interaction
between the charged DNA, the ions in solution, and the applied electric
field, we find that we can recover a weak field behavior of the knotted
samples, i.e., linear increase of the speed as a function of their ACN, up to
∼ 50 V/cm, which is roughly comparable with the field intensity used in ex-
periments. In this work, we used field intensities in the range from E = 1.25
V/cm to E= 625 V/cm.

The ACNs used in this work were obtained from ref. 43, where the authors
computed the ACN corresponding to Möbius energy minimizing knotted con-
figurations. The thermally averaged ACN of the samples used in this work has
been computed from equilibrated configurations and has been found to be in a
one-to-one correspondence to the values in ref. 43, confirming the linear re-
lationship between the ACN of ideal and thermally agitated configurations (17).

The hydrodynamics is here considered only implicitly, as is customary for
Brownian dynamics simulations. This means that the polymers do not feel
one another via hydrodynamical interactions but are subject to thermal
fluctuations due to a surrounding bath at fixed temperature T (see Sup-
porting Information for more details).

The simulation time scale is given in terms of the Brownian time, which
corresponds to the time taken by a bead of size σ to diffuse its own size, i.e.,
τBr = σ2=Dσ, where Dσ = kBT=ξ= kBTð3πηsolσÞ−1 is the diffusion coefficient of
one bead and ηsol = 10 cP (centipoise) is the solution (water) viscosity. From
this, we obtain τBr = 3πηsolσ

3=kBT ’ 40 ns.
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