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Abstract

Purpose

To prospectively evaluate the changes in fatty acid concentration after administrating a
60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation
analysis between fatty acid with molecular diffusion (Dy.e), perfusion-related diffusion
(Dtast), and perfusion fraction (Pt action)-

Material and Methods

This prospective study was approved by the appropriate ethics committee. Ten male Spra-
gue-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved
spectroscopy sequence 'H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and
8x8x8 mm® voxel was used to acquire magnetic resonance spectroscopy (MRS) data. Dif-
fusion-weighted imaging was performed on a two-dimensional multi-b value spin echo pla-
nar image with the following parameters: repetition time msec/echo time msec, 4500 /63;
field of view, 120x120 msec?; matrix, 128x128; section thickness, 3 mm; number of repeti-
tion, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm?. Baseline magnetic
resonance imaging and magnetic resonance spectroscopy data (control) were acquired. 'H
proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The
individual contributions of the true molecular diffusion and the incoherent motions of water
molecules in the capillary network to the apparent diffusion changes were estimated using
a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-
Wallis test was used to compare each week’s fatty acid mean quantification. Spearman’s
correlation coefficient was used to evaluate the correlation between each fatty acid (e.g.,
total lipid (TL), total saturated fatty acid (TSFA), total unsaturated fatty acid (TUSFA), total
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unsaturated bond (TUSB), and polyunsaturated bond (PUSB)) and intravoxel incoherent
motion (IVIM) mapping images (€.9., Dirue, Dtast @nd Psraction)-

Results

The highest mean TL value was at week 8 (0.278 + 0.10) after the administration of the 60%
high-fat diet, followed by weeks 6, 4, 2, and 0. The concentration level (16.99+2.29) of
TSFA at week 4 was the highest. No significant differences in the concentrations of TUSFA,
TUSB, or PUSB were observed in different weeks.

Conclusion

After the administration of the 60% high-fat diet in nonalcoholic fatty liver disease model, TL
and TSFA depositions had significant changes. The mean concentrations of TUSFA,
TUSB, PUSB did not significantly change. Total unsaturated fatty acid and polyunsaturated
bond showed positive correlations with Dy,e and Praction-

Introduction

Non-alcoholic fatty liver is a common disease that is currently experienced bu 10-24% of the
world’s population [1]. It can progress into chronic liver diseases such as liver fibrosis and cir-
rhosis [2-4]. In the USA, 32-37% of nonalcoholic fatty liver disease (NAFLD) patients progress
to liver fibrosis in 3-6 years, with 12% experiencing liver cirrhosis in 8-10 years [5-8]. A sim-
ple scoring system for predicting cirrhosis in nonalcoholic fatty liver disease has been used that
measured platelet, albumin, and AST/ALT ratios in blood samples [9]. NAFLD is usually asso-
ciated with metabolic syndromes (MetS), such as type 2 diabetes, insulin resistance, hyperten-
sion, and dyslipidemia, that are accompanied by abdominal obesity [10-11]. Accordingly,
clinical approaches to investigating the relationship between NAFLD and the prevalence of
atherosclerosis and cardiovascular disease have been conducted [12]. NAFLD is not a simple
risk factor of type 2 diabetes, cardiovascular disease, or liver cirrhosis.

Liver biopsy has been accepted as the gold standard for diagnosing NAFLD. However, liver
biopsy is not only invasive but also clinician-dependent, which often causes sampling errors
[13]. Moreover, it is impossible to use this method over a long period to monitor the progress
of NAFLD. In a 2014 study, Davide et al. examined whether extracellular vesicles are increased
in the liver and blood during experimental NAFLD during searchers for bio-markers [14].
Magnetic resonance spectroscopy (MRS) has been widely used to diagnose NAFLD [15-18].
MRS is a noninvasive and in vivo method with high sensitivity and specificity. It is frequently
used to diagnose various diseases such as NAFLD, liver fibrosis, and cirrhosis [19-22]. Total
lipid (TL), total saturated fatty acid (TSFA), total unsaturated fatty acid (TUSFA), total unsatu-
rated bond (TUSB), and polyunsaturated bond (PUSB) can be calculated with liver fatty acid
analysis using 'H-MRS through the signal integration of lipid methyl protons (-CHj_ 0.9 ppm),
methylene protons ((-CH,-)n, 1.3 ppm), allylic protons (-CH,-C = C-CH,-, 2.0 ppm), diallylic
protons (= C-CH,-C =, 2.8 ppm), and methene protons (-CH = CH-, 5.3 ppm) [19]. Many
studies have been conducted on fatty acid deposition in liver parenchyma and fatty acid
changes in liver fibrosis using animal models [19, 23].

Diftusion-weighted imaging (DWTI) techniques have been recently attempted for diagnosing
fatty liver, liver fibrosis, and cirrhosis [24-26]. In particular, the intravoxel incoherent motion
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(IVIM) is a method of obtaining multi b values to encompass both low-b-value and high-b-
value diffusion-weighted images to reflect the random microscopic motion that occurs in vox-
els on MRI of either intracellular or extracellular water molecules and the micro-circulation of
blood through non-linear bi-exponential graph fitting [27]. Previous studies have shown that
pure molecular diffusion and perfusion fraction values in the liver parenchyma of liver fibrosis
or cirrhosis were lower than those in a control group [24-28]. In fatty liver patients, fat deposi-
tion in the liver parenchyma was similar to that in liver fibrosis patients because of distortion
and sinus compression of the microcirculatory anatomy and reduced pure molecular diffusion
[27-28]. However, the correlation of changes in fatty acid in the liver parenchyma with fat
deposition and true diffusion with blood microcirculation has not yet been studied.

Therefore, the objectives of this study were to examine the changes in fatty acid concentra-
tion after high-fat diet administration and to determine factors that affect NAFLD through cor-
relation analysis between fatty acid and pure molecular diffusion (D), perfusion-related
diffusion (Dyg,), or perfusion fraction (Pgqction)-

Materials and Methods

This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the Committee on the Ethics of Animal Experiments of the Korea Basic Science
Institute (KBSI-AEC 1305). All surgery was performed under sodium pentobarbital anesthesia,
and all efforts were made to minimize suffering.

Animal Model

Ten male 8-week-old Sprague-Dawley rats that weighed 100-150 g were housed with ad libi-
tum access to water. The animal care facility was controlled for humidity and temperature on a
12 h light-dark schedule. All Sprague-Dawley rats were fed a 60% high-fat diet that contained
60% fat, 20% protein, and 20% carbohydrate (D12492, Research Diets, New Brunswick, NJ)
until the experiment was complete [29]. Baseline MRI and MRS data were acquired before the
rats were fed the high-fat diet. MRI and MRS data were also acquired every 2 weeks for 8 weeks
according to the schedule of the 'H-MRS experiments. The experimental rats were anesthetized
for all surgical and imaging procedures by general inhalation anesthesia (isofluorane 1.5 to
2.5% vol,, plus O,). After completion of the imaging study, mice were sacrificed under deep
anesthesia and the livers were excised and processed for further histological analysis.

In vivo Liver "TH MRS

All MRI and "H-MRS experiments were performed on a 3.0Tesla MRI scanner (Achiva Tx 3.0
T; Philips Medical Systems, Netherlands) with a maximum gradient of 200 mT/m using a
4-channel animal coil (CG-MUC18-H300-AP, Shanghai Chenguang Medical Technologies
Co., Ltd., China). During liver MRS and imaging, all NAFLD model rats were anesthetized
with isoflurane/air at 1.0 to 1.5% via a nose cone with respiratory monitoring [30]. Using T,-
weighted fast spin echo, whole liver parenchyma images were acquired in three transverse axial
(FOV 60 mmx60 mm, slice thickness = 1.5 mm), coronal (FOV 6 cmx6 cm, slice thickness = 1.5
mm), and sagittal (FOV 6 cmx6 cm, slice thickness = 1.5 mm) planes to localize voxels or vol-
ume of interest for MRS.

We used a point-resolved spectroscopy (PRESS) sequence for localized 'H-MRS with
TR = 1,500 msec, TE = 35 msec, NEX = 64, and total scan time = 10 minute. An 8x8x8 mm’>
voxel was placed within a homogeneous liver parenchyma to avoid large blood vessels, as
shown in Fig 1.
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Fig 1. In-vivo MRS analysis. Typical liver 'H proton magnetic resonance spectroscopy spectra at week 8 after the start of the high-fat diet administration,
with typical voxel (0.8x0.8x0.8 cm®) placement, were shown in the T,-weighed axial, sagittal and coronal turbo spin images. The water (H,O) and 4.7 ppm
signals were effectively suppressed in the spectra.

doi:10.1371/journal.pone.0139874.9001

We applied iterative VOI shim [31]. The water signal of each VOI was suppressed by vari-
able pulse power and optimized relaxation delays before the scan. The signal was shimmed to a
line width of lipid (4 to 6 Hz) over VOI (30).

IVIM MR imaging

The multi b value DWT was conducted immediately after the 'H-MRS data were obtained by
using the same MR system. Whole liver parenchyma transverse axial images were obtained.
DWI was performed on a two-dimensional multi-b value spin echo planar imaging with the
following parameters: prepetition time /echo time, 4500 /63 msec; field of view, 120x120 mm?;
matrix, 128x128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25,
50, 75, 100, 200, 500, and 1000 sec/mm”. Individual contributions of true molecular diffusion
and incoherent motions of water molecules in the capillary network to the apparent diffusion
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Fig 2. Week 4 NAFLD IVIM data mapping image of rat. (a) Axial diffusion-weighted image of liver (b = 200
sec/mm?); (b) Drast Mapping image; (c) Dyue Mapping image; (d) Piraction Mapping image.

doi:10.1371/journal.pone.0139874.9002

changes, Di;yes Deast> and Prracrion Were estimated as shown in Fig 2 using a least-square nonlin-
ear fitting in MatLab (Mathworks, Natick, MA, USA) by fitting, pixel by pixel, the DWT signal
decay in the region of interest (ROI) to the IVIM by-compartmental model as follows: SI/SI, =
(1-Pgraction)x€xp (-bDirye) + PrractionXeXp (-bDrag), where SI was the signal intensity and Pyaction
was the perfusion fraction linked to blood volume.

Histology

After 8 weeks of MRI and "H-MRS study, all rats were sacrificed for histological evaluation.
One additional normal animal was sacrificed as a control. All liver specimens were fixed in for-
malin, embedded in paraffin, sectioned, and examined under light microscopy after standard
hematoxylin-eosin staining and Prussian blue staining to confirm fat and iron deposition in
the liver parenchyma.

MRS Analysis

Raw "H-MRS data were analyzed using LCModel software (version 6.3-1H, Stephen W. Pro-
vencher). Spectrum type with lipid-11 was selected for quantifying all lipids, with water data as
references. All lipid peaks were automatically calculated in LCModel. The LC model parame-
ters were set according to the LCModel & LCMgui user’s manual (http://s-provencher.com/
pages/lcm-manual.shtml). Less than 10% standard deviation (%SD) of metabolite quantifica-
tion data was allowed. The %SD called the Cramér-Rao lower bound of useful reliability indica-
tors was used for error estimates. The integrating areas under peaks were measured as follows:
signal integrals in lipid methyl protons at 0.90 ppm, methylene proton at 1.30 ppm, allylic pro-
tons at 2.02 ppm, diallylic protons at 2.77 ppm, and methane protons at 5.30 ppm. For relative
quantification, total lipid ((-CH,-)n / noise), total saturated fatty acid, total unsaturated fatty
acid, total unsaturated bond, and polyunsaturated bond were quantified by separating each
peak area of (-CH,-)n, -CH,-C = C-CH,-, = C-CH,-C =, and -CH = CH- by -CHj; as shown in
Table 1.
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Table 1. Peak Area Ratios of Various Metabolite Indices Measured by Proton Magnetic Resonance
Spectroscopy ('H-MRS).

Index Peak Area Ratio Frequency
Total lipid (-CHax-)n/water 1.3/4.7 ppm
Total saturated fatty acid 3(-CH>-)/2(-CHy) 1.3/0.9 ppm
Total unsaturated fatty acid 3(-CH>-C = C-CH5-)/4(-CHy) 2.0/0.9 ppm
Total unsaturated bond 3(-CH = CH-)/2(-CHy) 5.3/0.9 ppm
Polyunsaturated bond 3 (= C-CH,-C =) /2(-CHy) 2.8/0.9 ppm

doi:10.1371/journal.pone.0139874.1001

IVIM MR Analysis

Extracted mapping imaging diffusion coefficient, pseudo diffusion coefficient, and perfusion
fraction were analyzed using standard software on the workstation. All ROIs were manually
positioned by one author (Yu). The region of interest of each image was a set circle in the right
lobe that was just about the same as the VOI region of MRS. Every ROI size was manipulated
differently during measurement to avoid IVIM mapping imaging artifacts. The Wilcoxon
signed-rank test with the Kruskal-Wallis test was used to compare each week’s fatty acid mean
quantifications with significance level p<0.05. Results are expressed as mean + standard devia-
tion. Spearman’s correlation coefficient was used to evaluate the correlations between each
fatty acid (e.g., TL, TSFA, TUSFA, TUSB, and PUSB) and IVIM mapping images (e.g., Drue,
Dfase- and Pgacrion) With a significance level of p<0.05. All statistical analyses were performed
using SPSS version 20.0 (SPSS Incorporated, Chicago, IL, USA).

Results
Comparison of the mean of hepatic fatty acids

The differences in the N number shown under the X axis (Fig 3) were observed because 10% or
lower % SD values were used.

The highest mean TL value was measured at week 8 (0.278+0.10) after the administration of
the 60% high-fat diet, followed by weeks 6, 4, 2, and 0. The TL value at week 2 was 0.201+0.07,
which was insignificantly (p>0.05) lower than that of week 8. The TL value increase at week 2
from baseline week 0 was the most significant (p<0.01) among all of the increases. The mean
increases in the TL value at weeks 2 and 4 were also significant (p<0.05). The TSFA concentra-
tion level (16.99+2.29) at week 4 was the highest. A statistically significant mean difference in
the levels was observed only between the baseline and week 2 (p<0.05). No significant differ-
ences in the concentration levels of TUSFA, TUSB, or polyunsaturated bond PUSB were
observed among different weeks.

Correlation between hepatic fatty acid and IVIM mapping images

The results of the non-parametric analysis of the correlations between hepatic fatty acid and
IVIM mapping images are summarized in Table 2.

A correlation between total lipid and Dy, was observed (r = 0.333, p<<0.05). Pgaction had no
correlation with TL. TUSFA showed a positive correlation with Dy,.. PUSB was significantly
correlated with Dg, (r = 0.413, p<0.01) and P, qi0n (7 = 0.346, p<<0.05) in the liver paren-
chyma, confirming that Dg, and Pgacion are closely related to liver parenchymal microcircula-
tion. PUSB also correlated with Dy (r = 0.413, p<0.05, Fig 4).
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Fig 3. The mean differences from the fatty acid comparisons of each week’s mean quantification. The
total lipid and TSFA showed the highest concentrations at weeks 8 and 6, respectively. There were no
significant mean differences in TUSFA, TUSB, or PUSB in any of the weeks.

doi:10.1371/journal.pone.0139874.9003

Histologic features

As shown in Fig 5, complete fat deposition in the liver parenchyma was observed in the liver
biopsy of a Sprague-Dawley rat through hematoxylin and eosin stain. In the Prussian blue
staining observation, iron deposition was not confirmed in any liver tissue.

Discussion

In this study, changes in fatty acid with fat deposition were observed in liver parenchyma. Cor-
relations among fatty acid, intracellular or extracellular water molecules, and blood microcircu-
lation were investigated. As the NAFLD progresses into chronic liver diseases such as liver
fibrosis and cirrhosis, the fat deposition in the liver parenchyma is known to have a negative
effect on micro-circulation. In this study, there was great significance in revealing the specific
fatty acid through the correlate fatty acid and representing the micro-circulation factor (Dy;ye,
Dtast» and Pgraction) in NAFLD.

Table 2. Spearman correlation analysis between hepatic fatty acid and IVIM data mapping images.

Total lipid (n = 46)

otal saturated fatty acid (n = 30)
Total unsaturated fatty acid (n = 28)
Total unsaturated bond (n = 22)
Poly unsaturated bond (n = 31)

*%p<0.01
*p<0.05

doi:10.1371/journal.pone.0139874.t002

Dfast Dtrue Pfraction

0.333 (o = 0.012%) 0.238 (p = 0.055) 0.059 (o = 0.349)
0.210 (o = 0.124) 0.260 (b = 0.082) 0.194 (p = 0.152)
0.129 (p = 0.252) 0.535 (p = 0.002"") 0.359 (p = 0.030")
0.159 (b = 0.240) -0.014 (o = 0.475) 0.089 (b = 0.347)
0.413 (p = 0.010"") 0.413 (p = 0.0117) 0.346 (p = 0.028")
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Fig 5. Hematoxylin/eosin and Prussian blue stained histology sections of liver form. (a) Rat not fed
with the 60% high-fat diet (x100), (b) nonalcoholic fatty liver rat model fed with the high-fat diet after 8 weeks.

doi:10.1371/journal.pone.0139874.9005
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After the administration of a 60% high-fat diet, the TL level consistently increased, with the
peak at week 8. However, the mean difference between week 6 and week 8 was statistically
insignificant. TL concentration was saturated at week 6. The NAFLD modeling through the
high-fat diet was completed at week 6 and afterwards.

The TSFA concentration calculated through the 1.3 ppm and 0.9 ppm lipid proton ratio
increased consistently from week 0 to week 4 and decreased thereafter. The mean difference in
TSFA concentrations between week 2 and afterwards was statistically insignificant. The mean
levels of TUSFA and PUSB increased from week 0 to week 6 and decreased thereafter. How-
ever, the differences were statistically insignificant. The mean differences in TUSB concentra-
tions were also statistically insignificant. Changes in TL and TSFA deposition were the most
significant after the administration of the 60% high-fat diet, whereas the changes in the other
unsaturated acids and bonds were insignificant. Excellent liver fat deposition was confirmed
after hematoxylin-eosin staining for histological evaluation. According to studies by Pacifico
etal. [32] and Scorletti et al. [33], the administration of n-3 PUFA positively affected Mets and
NAFLD [32-33]. In this study, the long-term administration of the 60% high-fat diet did not
affect the changes in PUFA, TUSFA, or TUSB. Therefore, a high-fat diet might be an indirect
factor that could adversely affect the liver.

Studies on liver diseases using DWI have been conducted previously [25-28, 34]. Particu-
larly, Deryes Diast> and Pgracrion data can be analyzed by applying various b-values on the same
slice using signal reduction in the low and high b-values through bi-exponential data fitting. In
previous studies, a slightly negative correlation between the increase in fat fraction value and
the Dy, value was confirmed with statistical significance [29]. In another study, Dy, and Dy,
values were low in the hepatic steatosis group without hepatic steatosis [28]. Based on the
results of previous studies, the TL and TSFA were expected to show negative correlations
with Dy and Dy, because the liver fat content calculation from the equation of Guiu et al.
(100 - CH,)/(CH, + water) was similar to the TL in this study, which was calculated using the
1.3 ppm proton lipid metabolite and water ratios. In this study, no fatty acid showed a correla-
tion with Dy.. Rather, a low correlation was observed between total lipid and Dy, (r = 0.333,
p<0.05). The etiology in the previous studies that targeted human bodies differed from that in
other studies because of fat deposition caused by type b and c type hepatitis as well as by the
fatty liver that was induced by the administration of the high-fat diet. Accordingly, studies on
microcirculation in the liver parenchyma according to the type of fatty acid caused by etiology
are required. In a 2014 study by Joo et al. that used a NAFLD rabbit model, the Dy, value in
the severe NAFLD group decreased slightly without statistical significance. However, Dg,
decreased significantly [35]. Because the NAFLD model Pg,.ion reflects the capillary perfusion
contribution in ADC, the Dy, reduction and the Dy, increase might have been influenced by
the fatting equation that meant a Py, .jon decrease. The positive correlation of Dy with Dy,
in this study could have been for the same reason. The high D, meant an increase in the pure
water diffusivity and in the capillary perfusion [28, 35]. In this study, the fatty acid that showed
a positive correlation with Dy, and Pg .0, Was TUSFA. The correlation coefficient with Dy,
was 0.535 (p<0.01), a significantly high correlation. A positive correlation with P, 0, Was
also confirmed with statistical significance. The increase in the pure water diffusivity positively
affected capillary perfusion. In particular, PUSB was confirmed to have positive correlations
with Di,sp Diruer and P, crion With statistical significance. The positive correlation between Dy,
and Pg,.i0n Was attributed to the fact that Dy, represented the perfusion-related incoherent
micro-circulation whereas Py, iion represented the blood volume. In a study by Monteiro |
et al. [36], n-6 and n-3 polyunsaturated fatty acids had beneficial effects on cardiovascular dis-
eases and non-alcoholic fatty liver diseases. In this study, positive effects on Dy, Dirue, and
Pfraction in USFA and PUSB were confirmed. However, the mean concentrations of USFA and
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PUSB did not significantly increase after the administration of the 60% high-fat diet. Addi-
tional studies on the positive effects of increased TUSFA and PUSB concentrations on blood
perfusion in liver parenchyma are merited.

The limitations of this study are as follows: For accurate metabolite quantifications, spin-lat-
tice (T,) and spin-spin (T,) relaxation must be corrected. T,* correction and accurate fat frac-
tion calculation using chemical shift imaging techniques have been attempted not only in MRS
but also in multi-echo Dixon [37-41]. In a study by Andrew et al., new methods of in vivo T,
time measurement through echo-time averaging were suggested [42]. Iron deposition in the
liver parenchyma was confirmed to be one of the major factors that triggered T,* that was
closely correlated with the development of liver fibrosis and cirrhosis [43-45]. In the fatty liver
model in this study, iron deposition through Prussian blue staining did not occur at week 8 or
afterwards. The absence of T,* correction for accurate metabolite quantification was the most
significant limitation of this study.

Conclusions

In conclusion, the administration of the 60% high-fat diet to rats gradually increased the TL
and TSFA levels in the liver parenchyma, after which the liver parenchyma became saturated.
In the meantime, the levels of TUSFA, TUSFB, and PUSB did not show statistically significant
changes. The fatty acids that showed positive correlations with Dy, and Py, cion in the liver
parenchyma were TUSFA and PUSB.

Supporting Information

S1 Dataset. The raw data of lipid proton concentration MRS and IVIM parameters. The
lipid signals were analyzed using the LCModel algorithm, and a fitting error (the standard devi-
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quality control.
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