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Abstract

Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain 

very rare despite decades of interest, and are currently limited to systems featuring Mo or Fe. This 

report details the synthesis of a molecular Co complex that generates superstoichiometric yields of 

NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. 

While the NH3 yields reported herein are modest by comparison to previously described Fe and 

Mo systems, they intimate that other metals are likely to be viable as molecular N2 reduction 

catalysts. Additionally, comparison of the featured tris(phosphine)borane Co-N2 complex with 

structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction 

performance of potential pre-catalysts are. These studies enable consideration of structural and 

electronic effects that are likely relevant to N2 conversion activity, including π-basicity, charge 

state, and geometric flexibility.

Introduction

The conversion of dinitrogen (N2) to ammonia (NH3) is integral for life.1 Despite extensive 

study, there are many unanswered questions regarding the rational design of molecular N2-

to-NH3 conversion catalysts. It may be that the ability of a complex to activate terminally 

bound N2 (as reported by the N—N stretching frequency) relates to the propensity of that 

complex to functionalize the N2 moiety. For example, HCo(N2)(PPh3)3 (ν(N-N) = 2088 

cm−1) quantitatively releases N2 upon treatment with acid, with no evidence of N2 

functionalization;2,3 however, if this cobalt complex is deprotonated to generate the more 

activated complex [(PPh3)3Co(N2)][Li(Et2O)3] (ν(N-N) = 1900 cm−1), treatment with acid 

does produce some NH3 and N2H4 (0.21 and 0.22 equivalents respectively).3 Extensive 

efforts have been made to study the activation and functionalization of N2 bound to metal 

centers of varying electronic properties.4 In some cases, systems have been shown to 

activate bound N2 to the extent that the N—N bond is fully cleaved.5 In other cases, it has 
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been shown that treatment of strongly activated N2 complexes with acid or H2 leads to 

reduced nitrogenous products.2,3,4 However, this guiding principle alone has been 

insufficient to design many synthetic species capable of the catalytic conversion of N2 to 

NH3.6–8 In this regard it is prudent to study the few systems known to catalyze this reaction 

with an emphasis on identifying those properties critical to the observed N2 reduction 

activity.

We have recently reported that a tris(phosphino)borane-ligated Fe complex is capable of 

catalyzing the conversion of N2 to NH3 at −78 °C.7 We have postulated that the success of 

this system in activating N2 stoichiometrically and mediating its catalytic conversion to NH3 

may arise from a highly flexible Fe-B interaction.9,10 Such flexibility, trans to the N2 

binding site, may allow a single Fe center to access both trigonal bipyramidal and pseudo-

tetrahedral coordination geometries, alternately stabilizing π-acidic or π-basic nitrogenous 

moieties sampled along an N2 fixation pathway.4d,11 Consistent with this hypothesis, we 

have studied isostructural (P3E)-ligated Fe systems and found a measurable dependence of 

activity on the identity of the E atom, with the least flexible E = Si system furnishing 

divergently low NH3 yields and the more flexible E = C or B systems affording moderate 

yields of NH3.7,8 However, the lower NH3 production by the E = Si precursor may 

alternatively be attributed to other factors. Potential factors include (i) a lesser degree of N2 

activation than that observed in the E = C or B species (vide infra); (ii) faster poisoning of 

the E = Si system, for example by more rapid formation of an inactive terminal hydride;7,8 

(iii) faster degradation of the E = Si system, for example by dechelation of the ligand.

To complement our previous ligand modification studies, we chose to alter the identity of 

the transition metal. Moving from Fe to Co predictably modulates the π-basicity and 

electronic configuration of the metal center while maintaining the ligand environment. In 

principle, this allows the extrication of electronic effects, such as π-backbonding, from 

structural features, such as geometric flexibility, via comparison of the Fe and Co systems. 

We therefore sought to explore the N2 reduction activity of Co complexes of TPB (TPB = 

[o-(iPr2P)C6H4]3B), SiP3 (SiP3 = [o-(iPr2P)C6H4]3Si), and CP3 (CP3 = [o-(iPr2P)C6H4]3C). 

While correlating NH3 yields with molecular structure is no doubt informative in terms of 

understanding the behavior of nitrogen fixing systems, correlation does not imply causation 

and the results described herein should be read with that in mind.

Results and Discussion

The previously reported12 (TPB)Co(N2) complex (Scheme 1, 1) provided a logical entry 

point to study the N2 chemistry of (TPB)Co complexes. The cyclic voltammogram of 1 in 

THF displays a quasi-reversible reduction wave at −2.0 V vs. Fc/Fc+ and a feature 

corresponding to an oxidation process at −0.2 V vs. Fc/Fc+ (Figure 1). These features are 

reminiscent of the cyclic voltammogram of (TPB)Fe(N2), which shows a reduction event at 

−2.2 V vs. Fc/Fc+ and an oxidation event at −1.5 V vs. Fc/Fc+.10

Treatment of 1 with 1 equivalent of NaC10H8 followed by 2 equivalents of 12-crown-4 (12-

c-4) generates diamagnetic [Na(12-c-4)2)][(TPB)Co(N2)] as red crystals (Scheme 1, 2). The 

ν(N-N) stretch of 2 is lower in energy than that of 1 (Table 1) and the solid-state structure of 
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2 (Figure 2, left) displays contracted Co-N, Co-B, and Co-P distances compared to 1, 

consistent with increased backbonding to each of these atoms. The one-electron oxidation of 

1 can be achieved by addition of 1 equivalent of [H•(OEt2)2][BArF
4] at low temperature 

followed by warming, which generates red-purple [(TPB)Co][BArF
4] (Scheme 1, 3, BArF

4 = 

tetrakis(3,5-bistrifluoromethylphenyl)borate). The structure of 3 (Figure 2, right) confirms 

that [(TPB)Co][BArF
4] does not bind N2 in the solid state. The lack of dinitrogen binding at 

room temperature for 3 is consistent with the behavior of the isostructural Fe complex, 

[(TPB)Fe][BArF
4].13 SQUID magnetometry measurements indicate that 3 is high spin (S = 

1) in the solid state with no evidence for spin crossover (Figure 3).

The synthesis of (SiP3)Co(N2) (4) has been reported previously.14 The isoelectronic alkyl 

species, (CP3)Co(N2) (5), was obtained in 83% yield as a deep red solid from the reaction of 

CP3H, CoCl2•(THF)1.5, and MeMgCl under an N2 atmosphere (Scheme 2). Complex 5 
(ν(N-N) = 2057 cm−1) is diamagnetic, possesses C3 symmetry in solution, and binds N2 as 

confirmed by a solid-state structure. The cyclic voltammogram of 5 in THF displays a quasi-

reversible oxidation wave at −1.1 V vs. Fc/Fc+ (Figure 4, left). Treatment of 5 with 1 

equivalent of [Fc][BArF
4] at low temperature allowed for the isolation of the one electron 

oxidation product, [(CP3)Co(N2)][BArF
4] (6, ν(N-N) = 2182 cm−1), in 86% yield after 

recrystallization (Scheme 2). The coordinated N2 ligand of 6 is labile and can be displaced 

under vacuum (Figure 4, middle) to generate a vacant or possibly solvent-coordinated 

[(CP3)Co(L)]+ species. The EPR spectrum of 6 at 80 K under N2 is consistent with an S = ½ 

species (Figure 4, right).

Consideration of the M-E interatomic distances presented in Table 1 reveals that the 

(TPB)Co platform exhibits a significant degree of flexibility of the M-B interaction, similar 

to that observed for the (TPB)Fe platform. Within each platform the M-B distance varies by 

> 0.16 Å between the neutral halide (Table 1, G and H) and anionic N2 complexes (B and J). 

Likewise, the M-C interaction among (CP3)Co complexes exhibits flexibility comparable to 

the analogous Fe series. For both platforms the M-C distance increases by ~0.07 Å upon one 

electron reduction of the cationic N2 complexes (Table 1, F to E and K to L).

A comparison of the trends in interatomic metrics between the isoelectronic 

{(TPB)Co(N2)}n and {(CP3)Co(N2)}n redox series reveals divergent geometric behavior. 

Upon reduction from 1 to 2, the Co-B distance decreases by 0.02 Å, resulting in a significant 

decrease in the pyramidalization about Co (Δτ= 0.13).16 The opposite is true for the 

reduction of 6 to 5, which results in an increase in the Co-C distance and an increase in the 

pyramidalization (Δτ = −0.13). A plausible rationale is that the Z-type borane ligand in 

(TPB)Co complexes enforces a trigonal bipyramidal geometry upon reduction, by drawing 

the Co atom into the P3 plane with an attractive Co-B interaction. The X-type alkyl ligand in 

(CP3)Co complexes instead causes a distortion away from a trigonal pyramidal geometry 

upon reduction, with a comparatively repulsive Co-C interaction forcing the Co above the P3 

plane.

The reactivity of these (P3E)Co complexes with sources of protons and electrons in the 

presence of N2 was investigated. In analogy to the [Na(12-c-4)2][(TPB)Fe(N2)] complex, 

treatment of a suspension of 2 in Et2O at −78 °C with excess [H•(OEt2)2][BArF
4] followed 

Del Castillo et al. Page 3

Inorg Chem. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by excess KC8 under an atmosphere of N2 leads to the formation of 2.4 ± 0.3 equivalents of 

NH3 (240% per Co, average of six iterations with independent NH3 yields of 2.3, 2.1, 2.2, 

2.5, 2.8, 2.2 equiv, Table 2, A). Yields of NH3 were determined by the indophenol 

method;17 no hydrazine was detected by a standard UV-vis quantification method.18 We 

acknowledge that these results are close to a stoichiometric yield of NH3, and include the 

results of individual experiments here to demonstrate that the yields are reproducibly above 

2.1 equivalents. While modest with respect to establishing bona fide catalysis, these yields 

are consistently greater than 200% NH3 normalized to Co in 2 and represent an order of 

magnitude improvement over the only previous report of N2 to NH3 conversion mediated by 

well-defined Co complexes (NH3 yield 0.21 equiv per Co-N2 vide supra).3,19

Notably, no NH3 is formed when either 2, [H•(OEt2)2][BArF
4], or KC8 is omitted from the 

standard conditions, indicating that all three components are necessary for NH3 production. 

In an effort to study the fate of 2 under the reaction conditions, we treated 2 with 10 equiv 

[H•(OEt2)2][BArF
4] and 12 equiv KC8, and observed signs of ligand decomposition by 31P 

NMR (see SI). If the observed reactivity indeed represents modest catalysis, ligand 

decomposition under the reaction conditions provides a plausible rationale for the limited 

turnover number. As a control, free TPB ligand was subjected to the standard conditions as a 

precatalyst, leading to no detectable NH3 production.

Interestingly, though anionic 2 and cationic 3 both generated substantial NH3 under the 

standard conditions, submitting neutral 1 to these conditions provided attenuated yields of 

NH3, comparable to the yields obtained with (TPB)CoBr (Table 2, B–D). Furthermore, 

complexes 4 and 5, which are isoelectronic to 2, are not competent for the reduction of N2 

with protons and electrons, producing ≤ 0.1 equivalents of NH3 and no detectable hydrazine 

under identical conditions (Table 2, E and F). This result appears to underscore the 

importance of the nature of the M-E interaction in facilitating N2 fixation by (P3E)M 

complexes.

To further explore the generality of N2 conversion activity for Co complexes under these 

conditions, we screened a number of additional Co species. We targeted, for instance, a Co 

complex of the tris(phosphino)amine ligand, NArP3 (NArP3 = [2-(iPr2P)-4-(CH3)-

C6H3]3N).20 Synthesis of a (NArP3)Co complex completes a family of tris(phosphino) Co 

complexes featuring L, X and Z type axial donors. [(NArP3)CoCl][BPh4] (Table 2, G) was 

isolated as purple crystals in 90% yield from the reaction of the NArP3 ligand with CoCl2 

and NaBPh4. An X-ray diffraction study revealed a pseudo-tetrahedral geometry at the Co 

center, with minimum interaction with the apical N of the ligand (d = 2.64 Å). As expected 

for tetrahedral Co(II), [(NArP3)CoCl][BPh4] is high-spin S = 3/2, with a solution magnetic 

moment of 3.97 μB in CD2Cl2 at 23 °C. We also tested the known bis(phosphino)boryl Co-
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N2 complex21 (Table 2, H), as well as various other common Co complexes (Table 2, I–K). 

Interestingly, of all the Co precursors subjected to the standard conditions, only (TPB)-

ligated Co complexes generated >0.5 equivalents of NH3 per metal center. At this point, we 

can begin to delineate the structural/electronic factors correlated to NH3 production by 

(P3E)M complexes.

Among (P3E)Fe complexes, NH3 production appears to be correlated both with flexibility of 

the M-E interaction and with degree of N2 activation; more flexible and more activating 

platforms providing greater yields of NH3. Moving from Fe to Co, the degrees of N2 

activation are systematically lower, which is expected due to the decreased spatial extent of 

the Co 3d orbitals (due to increased Zeff).22 Nevertheless, NH3 production is still correlated 

among these (P3E)Co complexes with N2 activation. However, comparing the Fe to the Co 

complexes demonstrates that, in an absolute sense, the degree of N2 activation is not 

predictive of the yield of NH3 (Figure 5). For example, [Na(12-c-4)2][(SiP3)Fe(N2)] shows a 

higher degree of N2 activation than 2, yet 2 demonstrates higher N2-to-NH3 conversion 

activity. The relative activity of these two complexes is predicted, on the other hand, by the 

flexibility of the M-E interactions trans to bound N2. Indeed, among the factors considered 

here, only M-E interaction flexibility appears to predict the comparatively high N2 

conversion activity of 2.

The potential at which the anionic states of the complexes depicted in Figure 5 are achieved 

do not follow a clear trend regarding their relative N2 conversion activity. However, a 

comparison of the Fe and Co systems does demonstrate that the accessibility of highly 

reduced, anionic [(P3E)M(N2)]− complexes is favorably correlated to NH3 production. It 

may be the case that the relative basicity of the β-N atom (Nβ) plays an important role in N2 

conversion activity, with anionic species being appreciably more basic. Considering 

complexes 2 and 5, neutral 5 affords <5% NH3 per Co-N2 subunit under the standard 

reaction conditions whereas the isoelectronic and isostructural, yet anionic, 2 produces 

>200% NH3 (Table 2). The enhanced basicity of Nβ in the anion would in turn favor 

protonation to produce a “Co(N2H)” intermediate relative to other reaction pathways. We 

have performed calculations (DFT; see SI for details) to compare the theoretically predicted 

electrostatic potential maps of 2 and 5. As shown in Figure 6, Nβ in anionic 2 shows a far 

greater degree of negative charge relative to the same atom in neutral 5.

Conclusion

We have demonstrated the ability of a molecular Co-dinitrogen complex to facilitate the 

conversion of N2 to NH3 at −78 °C in the presence of proton and electron sources (2.4 

equivalents of NH3 generated per Co center on average). Prior to this report, the only well-

defined molecular systems (including nitrogenase enzymes) capable of directly mediating 

the catalytic conversion of N2 to NH3 contained either Mo or Fe. While the measured NH3 

production by the featured cobalt complex is very modest with respect to catalysis, the 

yields measured do consistently indicate that some degree of catalysis is viable. The 

propensity of the (P3E)M complexes we have studied to perform productive nitrogen 

fixation does not appear to depend solely on the ability of the precursor complex to activate 

N2. The observations collected herein indicate that anionic charge, and hence basicity of the 
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bound N2 ligand, in addition to flexibility of the M-E interaction trans to the bound N2 

ligand, correlate with more favorable NH3 production. Of course, correlation does not 

presume causation and the factors that lead to different NH3 yields may be numerous. While 

some of the design features important to consider in catalysts of the (P3E)M(N2) type have 

been highlighted here, other factors, including comparative rates of H2 evolution and 

catalyst degradation/poisoning rates, warrant further studies.

Experimental

General considerations

All manipulations were carried out using standard Schlenk or glovebox techniques under an 

N2 atmosphere. Solvents were deoxygenated and dried by thoroughly sparging with N2 

followed by passage through an activated alumina column in a solvent purification system 

by SG Water, USA LLC. Nonhalogenated solvents were tested with sodium benzophenone 

ketyl in tetrahydrofuran in order to confirm the absence of oxygen and water. Deuterated 

solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed, and dried 

over activated 3-Å molecular sieves prior to use.

[H(OEt2)2][BArF
4],23 KC8,24 (TPB)Co(N2),12 (TPB)CoBr,12 (SiP3)Co(N2),14 NArP3,20 

(PBP)Co(N2),21 CP3H,8 and Co(PPh3)2I225 were prepared according to literature 

procedures. All other reagents were purchased from commercial vendors and used without 

further purification unless otherwise stated. Et2O for NH3 generation reactions was stirred 

over Na/K (≥ 2 hours) and filtered before use.

Physical Methods

Elemental analyses were performed by Midwest Microlab, LLC (Indianapolis, IN). 1H 

and 13C chemical shifts are reported in ppm relative to tetramethylsilane, using 1H and 13C 

resonances from residual solvent as internal standards. 31P chemical shifts are reported in 

ppm relative to 85% aqueous H3PO4. Solution phase magnetic measurements were 

performed by the method of Evans.26 IR measurements were obtained as solutions or thin 

films formed by evaporation of solutions using a Bruker Alpha Platinum ATR spectrometer 

with OPUS software. Optical spectroscopy measurements were collected with a Cary 50 

UV-vis spectrophotometer using a 1-cm two-window quartz cell. Electrochemical 

measurements were carried out in a glovebox under an N2 atmosphere in a one compartment 

cell using a CH Instruments 600B electrochemical analyzer. A glassy carbon electrode was 

used as the working electrode and platinum wire was used as the auxiliary electrode. The 

reference electrode was Ag/AgNO3 in THF. The ferrocene couple (Fc/Fc+) was used as an 

internal reference. THF solutions of electrolyte (0.1 M tetra-n-butylammonium 

hexafluorophosphate, TBAPF6) and analyte were also prepared under an inert atmosphere. 

X-band EPR spectra were obtained on a Bruker EMX spectrometer.

X-ray diffraction studies were carried out at the Caltech Division of Chemistry and 

Chemical Engineering X-ray Crystallography Facility on a Bruker three-circle SMART 

diffractometer with a SMART 1K CCD detector. Data was collected at 100K using Mo Kα 

radiation (λ= 0.71073 Å). Structures were solved by direct or Patterson methods using 

SHELXS and refined against F2 on all data by full-matrix least squares with SHELXL-97. 
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All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at 

geometrically calculated positions and refined using a riding model. The isotropic 

displacement parameters of all hydrogen atoms were fixed at 1.2 (1.5 for methyl groups) 

times the Ueq of the atoms to which they are bonded.

[Na(12-crown-4)2][(TPB)Co(N2)] (2)

To a −78 °C solution of (TPB)CoBr (70.5 mg, 0.0967 mmol) in THF (2 mL) was added a 

freshly prepared solution of NaC10H8 (23.5 mg C10H8, 0.222 mmol) in THF (3 mL). The 

solution was brought to room temperature and allowed to stir for six hours. Addition of 12-

crown-4 (51.1 mg, 0.290 mmol) and removal of solvent in vacuo provided a dark red solid. 

Et2O was added and subsequently removed in vacuo. The residue was suspended in C6H6 

and filtered and the solids were washed with C6H6 (2 × 2 mL) and pentane (2 × 2 mL) to 

furnish a red solid (68.8 mg, 0.0660 mmol, 68%). Single crystals were grown by vapor 

diffusion of pentane onto a THF solution of the title compound that had been layered with 

Et2O. 1H NMR (400 MHz, THF-d8) δ 7.41 (3H), 6.94 (3H), 6.66 (3H), 6.44 (3H), 3.64 

(32H), 2.29 (br), 1.37 (6H), 1.20 (6H), 0.93 (6H), −0.26 (6H). 11B NMR (128 MHz, THF-

d8) δ 9.32. 31P NMR (162 MHz, THF-d8) δ 62.03. IR (thin film, cm-1): 1978 (N2). Anal. 

Calcd. for C52H86BCoN2NaO8P3 : C, 59.32; H, 8.23; N, 2.66. Found: C, 59.05; H, 7.99; N, 

2.47.

[(TPB)Co][BArF
4] (3)

To a −78 °C solution of (TPB)Co(N2) (1) (91.5 mg, 0.135 mmol) in Et2O (2 mL) was added 

solid [H(OEt2)2][BArF
4] (134.0 mg, 0.132 mmol). The reaction was brought to room 

temperature and vented to allow for the escape of H2. The purple-brown solution was stirred 

for 1 hr. The solution was layered with pentane (5 mL) and stored at −35 °C to furnish red-

purple single crystals of the title compound (162.9 mg, 0.0952 mmol, 82%) which were 

washed with pentane (3 × 2 mL). 1H NMR (400 MHz, C6D6) δ 26.25, 23.80, 8.64, 8.44 

([BArF
4]), 7.88 ([BArF

4]), 6.33, −2.16, −3.68. UV-Vis (Et2O, nm {L cm−1 mol−1}): 585 

{1500}, 760 {532}. Anal. Calcd. for C68H66B2CoF24P3 : C, 53.99; H, 4.40. Found: C, 

53.94; H, 4.51.

(CP3)Co(N2) (5)

(CP3)H (100 mg, 0.169 mmol) and CoCl2 • 1.5 THF (40 mg, 0.169 mmol) were mixed at 

room temperature in THF (10 mL). This mixture was allowed to stir for one hour, yielding a 

homogeneous cyan solution. This solution was chilled to −78 °C, and a solution of MeMgCl 

in tetrahydrofuran (0.5 M, 0.560 mmol) was added in three 370 μL portions over three 

hours. The mixture was allowed to warm slowly to room temperature, and then was 

concentrated to ca. 1 mL. 1,4-dioxane (2 mL) was added, and the resultant suspension was 

stirred vigorously for at least 2 hours before filtration. The filtrate was concentrated to a 

tacky red-brown solid, which was extracted with 1:1 C6H6 : pentane (10 mL), filtered over 

celite and lyophilized to yield the product as a red powder (96 mg, 0.141 mmol, 83%). 

Crystals suitable for X-ray diffraction were grown via slow evaporation of a pentane 

solution. 1H NMR (300 MHz, C6D6) δ 7.28 (br, 3H), 6.82 (m, 9H), 2.82 (oct., -CH, 3H), 

2.09 (sept., -CH, 3H), 1.49 (m, 18H), 1.06 (dd, -CHCH3, 9H), 0.30 (dd, -CHCH3, 
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9H). 31P{1H} (121 MHz, C6D6): δ 47.39. IR (thin film, cm−1): 2057 (N2). Anal. Calcd. for 

C37H54CoN2P3 : C, 65.48; H, 8.02; N, 4.13. Found: C, 64.14; H, 8.36; N, 4.03.

[(CP3)Co(N2)][BArF
4] (6)

5 (75 mg, 0.11 mmol) and [Cp2Fe][BArF
4] (122 mg, 0.12 mmol) were dissolved separately 

in diethyl ether (ca. 3 mL each) and the ethereal solutions were cooled to −78°C. The chilled 

solution of [Cp2Fe][BArF
4] was added dropwise to the solution of 5, and the resultant 

mixture was allowed to stir at low temperature for one hour. At this point, the mixture was 

allowed to warm to room temperature before filtration over celite and concentration to ca. 2 

mL. The concentrated filtrate was layered with pentane, and placed in a freezer at −35°C to 

induce crystallization. Decanting the mother liquor off crystalline solids and washing 

thoroughly with pentane yields [(CP3)Co(N2)][BArF
4] (6) as dark green-brown crystals (147 

mg, 0.095 mmol, 86%). Crystals suitable for X-ray diffraction were grown by slow diffusion 

of pentane vapors into an ethereal solution of 6 at −35°C. μeff (5:1 d8-toluene:d8-THF, 

Evans’ method, 23 °C): 3.49 μB. 1H NMR (300 MHz, C6D6) δ17.22, 9.94, 8.24 ([BArF
4]), 

7.72([BArF
4]), 3.13, 2.57, 1.5 – −2 (br, m), −3.68.IR (cm−1): 2182 (N2, thin film), 2180 (N2, 

solution). Elemental analysis shows low values for N consistent with a labile N2 ligand, 

Anal. Calcd. for C69H66BCoF24N2P3 : C, 53.75; H, 4.31; N, 1.82. Found: C, 53.86; H, 4.31; 

N, 0.27. Note: The magnetic moment for 6 in solution may be complicated by some degree 

of solvent exchange for N2 at the cobalt center as described in the text.

[(NArP3)CoCl][BPh4]

THF (5 mL) was added to a solid mixture of NArP3 (58 mg, 91.2 mmol), CoCl2 (12 mg, 

92.4 mmol) and NaBPh4 (31 mg, 90.6 mmol). The reaction was stirred for 4 hours at room 

temperature during which the color evolved from yellow to green to purple. The solvent was 

removed in vacuo and the residue was taken up in dichloromethane. The suspension was 

filtered over a plug of Celite and the filtrate was dried yielding a purple powder (86 mg, 82.1 

mmol, 90%). Single crystals were grown by slow evaporation of a saturated solution of 

[(NArP3)CoCl][BPh4] in diethyl ether/dichloromethane (1:2 v:v). 1H NMR (CD2Cl2, 300 

MHz) δ177.77, 37.50, 23.78, 13.48, 12.96, 7.37, 7.08, 6.92, 4.41, 1.50, −3.60, −9.81; UV-

Vis (THF, nm {L cm−1 mol−1}): 564 {452}, 760 {532}; μeff (CD2Cl2, Evans’ method, 23 

°C): 3.97 μB. Anal. Calcd. for C63H80BClCoNP3 : C, 72.10; H, 7.68; N, 1.33. Found: C, 

71.97; H, 7.76; N, 1.30.

Ammonia Quantification

A Schlenk tube was charged with HCl (3 mL of a 2.0 M solution in Et2O, 6 mmol). 

Reaction mixtures were vacuum transferred into this collection flask. Residual solid in the 

reaction vessel was treated with a solution of [Na][O-t-Bu] (40 mg, 0.4 mmol) in 1,2-

dimethoxyethane (1 mL) and sealed. The resulting suspension was allowed to stir for 10 min 

before all volatiles were again vacuum transferred into the collection flask. After completion 

of the vacuum transfer, the flask was sealed and warmed to room temperature. Solvent was 

removed in vacuo, and the remaining residue was dissolved in H2O (1 mL). An aliquot of 

this solution (20 _L) was then analyzed for the presence of NH3 (present as [NH4][Cl]) by 
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the indophenol method.17 Quantification was performed with UV–vis spectroscopy by 

analyzing absorbance at 635 nm.

Standard NH3 Generation Reaction Procedure with [(TPB)Co(N2)][Na(12-crown-4)2] (2)

[(TPB)Co(N2)][Na(12-crown-4)2] (2.2 mg, 0.002 mmol) was suspended in Et2O (0.5 mL) in 

a 20 mL scintillation vial equipped with a stir bar. This suspension was cooled to −78 °C in 

a cold well inside of a N2 glovebox. A solution of [H·(OEt2)2][BArF
4] (95 mg, 0.094 mmol) 

in Et2O (1.5 mL) similarly cooled to −78 °C was added to this suspension in one portion 

with stirring. Residual acid was dissolved in cold Et2O (0.25 mL) and added subsequently. 

This mixture was allowed to stir 5 minutes at −78 °C, before being transferred to a 

precooled Schlenk tube equipped with a stir bar. The original reaction vial was washed with 

cold Et2O (0.25 mL) which was added subsequently to the Schlenk tube. KC8 (16 mg, 0.119 

mmol) was suspended in cold Et2O (0.75 mL) and added to the reaction mixture over the 

course of 1 minute. The Schlenk tube was then sealed, and the reaction was allowed to stir 

for 40 min at −78 °C before being warmed to room temperature and stirred for 15 min. 
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Figure 1. 
Cyclic voltammagram of (TPB)Co(N2) (1) scanning oxidatively (left) and reductively (right) 

at 100 mV/sec in THF with 0.1 M TBAPF6 electrolyte.
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Figure 2. 
Solid-state crystal structures of 2 (left) and 3 (right; also see SI). Thermal ellipsoids shown 

at 50% probability. Countertions, solvent molecules, and H atoms omitted for clarity.

Del Castillo et al. Page 12

Inorg Chem. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Temperature dependence of the magnetic susceptibility of [(TPB)Co][BArF

4] (3) as 

measured by SQUID magnetometry.
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Figure 4. 
(left) Cyclic voltammagram of (CP3)Co(N2) (5) scanning oxidatively at 100 mV/sec in THF 

with 0.1 M TBAPF6 electrolyte. (middle) UV-vis spectra of 6 under 1 atm N2 (solid line) 

and under static vacuum (dotted line: after three freeze-pump-thaw cycles). Spectra were 

collected on a 1 mM solution of 6 in THF at 298 K. (right) X-band EPR spectrum of 6 
collected under 1 atm N2 in 2-Me-THF at 80 K. No low-field features were detected.
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Figure 5. 
Vibrational spectroscopy, electrochemistry, and catalytic competence data for select 

[(P3E)M(N2)]− complexes. Data for M = Fe, E = B is from refs. 7 and 10; data for M = Fe, E 

= C is from ref. 8; data for M = Fe, E = Si is taken refs. 8 and 15; and data for M = Co, E = 

B is from this work. aIR from solid state samples bOxidation potentials determined by cyclic 

voltammetry in THF. Note: NH3 yields based on the addition of ~ 50 equiv [H•(OEt2)2]

[BArF
4] and ~ 60 equiv KC8 in Et2O (see refs. provided for specific details).
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Figure 6. 
Electrostatic potential maps of anionic 2 and neutral 5 (isovalue = 0.015, color map in 

Hartrees), and atomic charges for Nβ.
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Scheme 1. 
Chemical oxidation and reduction of (TPB)Co(N2).
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Scheme 2. 
Synthesis and oxidation of (CP3)Co(N2)
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Table 1

Select Characterization Data for (P3E)M Complexes (M = Co, Fe; E = B, C, Si)

Entry Complex M—E (Å) ν(N-N) (cm−1)f

Aa (TPB)Co(N2) (1) 2.319(1) 2089

B [(TPB)Co(N2)]− (2) 2.300(3) 1978

C [(TPB)Co]+ (3) 2.256(2) —

Db (SiP3)Co(N2) (4) 2.2327(7) 2063

E (CP3)Co(N2) (5) 2.135(4) 2057

F [(CP3)Co(N2)]+ (6) 2.054(2) 2182

Ga (TPB)CoBr 2.4629(8) —

Hc (TPB)FeBr 2.458(5) —

Ic (TPB)Fe(N2) — 2011

Jc [(TPB)Fe(N2)]- 2.293(3) 1905

Kd [(CP3)Fe(N2)]+ 2.081(3) 2128

Ld (CP3)Fe(N2) 2.152(3) 1992

Md [(CP3)Fe(N2)]- 2.165(2) 1905

Ne [(SiP3)Fe(N2)]- 2.236(1) 1920

a
from ref. 12

b
from ref. 14

c
from ref. 10

d
from ref. 8

e
from ref. 15

f
IR from solid-state samples.
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Table 2

Ammonia Generation from N2 Mediated by Co Precursorsa

Entry Co complex NH3 equiv/Co

A [(TPB)Co(N2)][Na(12-c-4)2] (2) 2.4 ± 0.3b

B (TPB)Co(N2) (1) 0.8 ± 0.3

C [(TPB)Co][BArF
4] (3) 1.6 ± 0.2

D (TPB)CoBr 0.7 ± 0.4

E (SiP3)Co(N2) (4) <0.1

F (CP3)Co(N2) (5) 0.1 ± 0.1

G [(NArP3)CoCl][BPh4] <0.1

H (PBP)Co(N2) 0.4 ± 0.2

I Co(PPh3)2I2 0.4 ± 0.1

J CoCp2 0.1 ± 0.1

K Co2(CO)8 <0.1

a
Co precursors at −78 °C under an N2 atmosphere treated with an Et2O solution containing 47 equiv [H•(OEt2)2][BArF4] followed by an Et2O 

suspension containing 60 equiv KC8. Yields are reported as an average of 3 iterations; data for individual experimental iterations presented in 

Supporting Information.

b
Average of 6 iterations.
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