Skip to main content
. Author manuscript; available in PMC: 2015 Oct 13.
Published in final edited form as: Inf Process Med Imaging. 2013;23:86–97. doi: 10.1007/978-3-642-38868-2_8

Algorithm 1.

Algorithm for optimizing sparse regression vector

Input: A, b, s, α. ▷ Input data A, predicted data b, sparseness level s, step size α.
x0 ← random seed. ▷ Initialize regression vector.
p0AT (bAx) − λ1xλ2Δx ▷ Initialize direction with negative of gradient.
r0p0 ▷ Initialize residual.
k ← 0 ▷ Initialize iterator.
while not converged do
xk+1xk + αpk ▷ Update solution.
γoptG(xk+1, s) ▷ Find appropriate value of γ for desired sparsity.
xk+1S(xk+1, γopt) ▷ Project solution to entry in sparse feasible set.
rk+1AT (bAxk+1) − λ1xk+1 + λ2Δxk+1 ▷ Update residual.
βrkTrkrk-1Trk-1
pkrk + βpk−1 ▷ Update direction.
kk +1.
end while
Output: xk.