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Abstract

The brain has a limited capacity and therefore needs mechanisms to selectively enhance the 

information most relevant to one’s current behavior. We refer to these mechanisms as ‘attention’. 

Attention acts by increasing the strength of selected neural representations and preferentially 

routing them through the brain’s large-scale network. This is a critical component of cognition and 

therefore has been a central topic in cognitive neuroscience. Here we review a diverse literature 

that has studied attention at the level of behavior, networks, circuits and neurons. We then 

integrate these disparate results into a unified theory of attention.

Introduction

Over 125 years ago, William James defined attention as the “taking possession by the mind 

… of one out of what seem simultaneously possible objects or trains of thought” (James, 

1890). James’ intuitive understanding of attention is remarkably close to our modern 

definition: attention is the selective prioritization of the neural representations that are most 

relevant to one’s current behavioral goals. Such prioritization is necessary because the brain 

is a limited capacity information system. Representations of external stimuli and internal 

thoughts compete for access to these limited processing resources, and attention helps to 

resolve that competition in favor of the information that is currently task-relevant.

Attention research has been central to the fields of cognitive neuroscience, psychology and 

systems neurophysiology. This has led to the discovery of a large number of attention effects 

at each of these levels of observation. In the first three sections, we briefly review this 

literature, highlighting key insights at the behavioral, network, and neuronal levels. Our goal 

for this review is to integrate these disparate findings into a single unified framework, which 

we outline in the fourth section.

We should note that we will largely constrain our review to visual attention, as it has been 

the best studied. We acknowledge the importance of extending our understanding to other 
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sensory modalities and to interactions between modalities and we hope the knowledge 

gained from understanding visual attention will reveal principles of neural processing that 

may be fundamental to cognition more generally.

Furthermore, even though attention is often studied in isolation, a mechanism that prioritizes 

task-relevant information will likely interface with many cognitive domains such as action 

control and decision making, motivation and emotions, memories at different time scales, 

and awareness. We will review our current knowledge of some of these interactions in the 

last section. Understanding the interaction of selective attention with other cognitive 

domains will ultimately lay the foundation for reaching a cohesive understanding of the 

general principles of cognition and their associated neural mechanisms (2014).

Behavioral effects - Building blocks and shifting concepts

Classical attention paradigms

The two most commonly used paradigms to study visual attention are visual spatial orienting 

(Posner et al., 1980) and visual search (Treisman and Gelade, 1980).

In spatial orienting tasks, subjects are instructed by a predictive cue to direct attention to a 

particular spatial location where they must detect or discriminate a target stimulus. The 

classic finding is that subjects benefit from the cue as they respond faster and more 

accurately to stimuli occurring at the cued location than to stimuli occurring at other 

locations. This facilitation comes at the expense of other objects in the visual environment, 

reflecting the competitive nature of attention.

While orienting tasks typically involve only a single target stimulus, visual search tasks 

more closely relate to our everyday experience, where we typically face cluttered scenes. In 

search tasks, subjects are given an array of stimuli and asked to find a particular target 

stimulus defined by one or more features in the array (e.g. find the green ‘T’ in an array of 

green and blue ‘T’s and ‘L’s; see Figure 1A). Hence, in visual search, the selection process 

is informed by features of the target (i.e. feature-based attention), which then guides spatial 

attention.

Performance on visual search tasks is affected by how many features the target shares with 

other stimuli in the array. If the target has a unique feature, such as being of different color 

from the distracters, the search is completed quickly and effortlessly, regardless of the 

number of elements in the array. This phenomenon is known as ‘pop-out’ or efficient 

(parallel) search. However, just by changing the distractors in the search array, the search for 

the same target can be made much more difficult. For example, if the target is defined by a 

conjunction of features that each are shared by distracters (as in Figure 1A), search time 

increases as a function of the number of elements in the array. This is known as inefficient 

search and the increase in search times is thought to reflect a serial target search, which is 

mediated by a spatial ‘spotlight’ mechanism that can shift from location-to-location about 

every 50 ms (Buschman and Miller, 2009; Wolfe et al., 2011). However, under some 

circumstances, only a subset of the array needs to be searched. Simple features, such as 

color, can be used to guide search to just those elements that share a particular target feature 

Buschman and Kastner Page 2

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Wolfe et al., 1989). Search difficulty also depends on the similarity of the target to the 

distracters and to the dissimilarity of the distracters to each other (Duncan and Humphreys, 

1989).

The results of studies using classical attention paradigms have shaped our current theoretical 

concepts and have been foundational for investigations at the neural level that we will 

review below. However, attention mechanisms have evolved to function in real-world 

scenarios. Recently, there has been a growing number of studies that have asked whether the 

knowledge and concepts gained from simplified laboratory conditions translate to more 

ecologically relevant situations.

Real-world visual search

An important first step to investigate attentional prioritization under more naturalistic 

conditions has been to study the selection of categorical object information from natural 

scenes (for an in depth review, see Peelen and Kastner, 2014). In daily life, we select 

meaningful objects from meaningful scenes such as looking for cars when crossing a street. 

What would be the behavioral prediction for detecting a car in the scene of Figure 1B based 

on classic search paradigms? Typical scenes contain dozens of distracter objects with highly 

variable appearance, and there is not one feature that uniquely defines a target. Based on 

classical attention theories one would predict a long response time reflecting a particularly 

inefficient search. However, the opposite is the case. The detection of familiar object 

categories in scenes is extremely rapid (Thorpe et al., 1996) and search is highly efficient – 

adding additional items to a scene has little cost (Wolfe et al., 2011). Furthermore, one can 

accurately perform such real-world search tasks while simultaneously performing a second, 

demanding attention task at fixation (Figure 1C; Li et al., 2002). This suggests that real-

world search of object categories does not require focused spatial attention.

Neuroimaging studies in humans have begun to investigate the neural basis of real-world 

search by having subjects detect the presence of objects from a target category in briefly 

presented photographs (Peelen and Kastner, 2011; Peelen et al., 2009), or short movie 

segments (Çukur et al., 2013). It was found that the pattern of neural activity in object-

selective cortex evoked by the scenes fully depended on task-relevance: target objects 

embedded in natural scenes were only represented when one was actively searching for 

them. Responses in many parts of the brain increased with the appearance of a stimulus in 

the target category, or a semantically similar category, suggesting that category-based 

attention may have widespread influences on brain activity. Together, these results provide 

neural evidence that the attentional selection mechanism that biases the processing of scenes 

acts at the level of natural categories. Future work is needed to extend our traditional 

concepts of attention to incorporate mechanisms that are optimized for naturalistic 

conditions. Key to this will be the development of appropriate paradigms in animal models 

in order to study the underlying neural mechanisms in greater detail.

Rhythmic properties of selective attention

Classic attention theories (Posner et al., 1980; Treisman and Gelade, 1980) propose a unique 

and indivisible ‘spotlight’ of attention that highlights a selected item. To process an entire 
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scene, this spotlight was thought to be continuously moving from location-to-location, 

shifting at a rate of approximately 20 Hz (Wolfe et al., 2011). Previous studies suggested 

that this shifting may be regular, moving the spotlight of attention in a rhythmic fashion 

around a visual scene (Buschman and Miller, 2009). Surprisingly, recent evidence shows 

that even when this spotlight is sustained at one location, it is not static, but rather appears to 

flash rhythmically. Using EEG, Busch and VanRullen (2010) demonstrated that the 

detection of a visual target at threshold was systematically related to the phase of an ongoing 

theta oscillation (~7 Hz). This phase-behavior relationship was contingent on the allocation 

of attentional resources following a cue and was absent at other locations in the visual field. 

The cue served not only to guide the deployment of attention, but caused the timing of the 

high- and low-excitability states of the oscillation to align across trials (see also Lakatos et 

al., 2009). Thus, it appears that the selection mechanism periodically samples the attended 

location, with the degree of selection fluctuating with the phase of the neural rhythm. 

Intriguingly, recent behavioral studies suggest that there may be at least two concurrent 

spatial mechanisms: the first is the ‘classic’ focusing of attention at a selected location, 

while the second mechanism rhythmically monitors other locations outside this focus 

(Figure 1C; Fiebelkorn et al., 2013; Landau and Fries, 2012). Such rhythmic monitoring of 

other locations and objects may be an important mechanism for flexibly gating the 

reallocation of attentional resources. It is important to note that the rhythmic monitoring 

appears to be an automatic process that is distinct from voluntarily splitting or dividing 

attentional resources across multiple locations. Together, these findings suggest that 

selective attention falls into the class of rhythmic behaviors and is a highly dynamic and 

flexible resource. The neural basis of the rhythmic properties of selective attention is unclear 

and awaits future investigation.

Studies based on careful observations of behavior have provided the foundation not only for 

theoretical accounts of selective visual processing, but also for the investigations that are 

aimed at revealing its underlying neural mechanisms, as we will discuss next.

Network effects – from functional anatomy to dynamic connectivity

In the primate brain, attentional selection is mediated by a large-scale network of regions, 

including the frontal, parietal, temporal and occipital cortex as well as thalamic and 

midbrain regions (Corbetta and Shulman, 2002; Ungerleider and Kastner, 2000). In this 

section, we will review the functional anatomy of the primate attention network, and its 

major dissociations of function. We will particularly focus on dynamic network interactions 

that ultimately drive the selection process and its associated specific behavior. This is not a 

perceptual deficit as subjects will respond if competing stimuli from the unaffected 

hemifield are removed.

Defining the visual attention network

Early evidence that attentional selection involves a distributed large-scale network comes 

from neuropsychological studies of human patients showing that unilateral brain lesions, 

especially of higher-order cortex, may cause impairment in spatially directing attention to 

the contralateral hemifield. This syndrome is known as visuospatial hemineglect. In severe 

cases, patients suffering from neglect will completely disregard the visual hemifield 
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contralateral to the side of the lesion (e.g. Bisiach and Vallar, 1988). This leads to deficits in 

everyday behaviors; patients will read from only one side of a book, apply make-up to only 

one half of their face, or eat from only one side of a plate.

Visuospatial neglect may follow unilateral lesions at different sites, including most 

frequently the temporo-parietal junction (Mort et al., 2003) and superior temporal cortex 

(e.g. Karnath et al., 2001). Neglect is also, but less frequently observed following damage of 

the frontal lobe (e.g. Damasio et al., 1980), the anterior cingulate cortex (e.g. Janer and 

Pardo, 1991), other sites in parietal cortex such as the superior parietal lobule (Kenzie et al., 

2015), the basal ganglia (e.g. Damasio et al., 1980), and the thalamus, in particular the 

pulvinar (e.g. Karnath et al., 2002). The syndrome is not confined to cortical lesions, but can 

also result from white matter lesions that affect structural connections between nodes of the 

attention network (Lunven et al., 2015). Importantly, neglect occurs more often with right-

sided lesions than with left-sided lesions, which has been taken as evidence for a specialized 

role of the right hemisphere in attentional selection. This observed hemispheric asymmetry 

led to the ‘hemispatial’ theory which proposes that the right hemisphere directs attention to 

both visual hemifields, whereas the left hemisphere directs attention to the right visual field 

only (Heilman and Van Den Abell, 1980). Thus, while left hemispheric damage can be 

compensated for by the right hemisphere, such compensation will not be possible with right 

hemispheric damage, thereby resulting in neglect of the left visual field.

Human neuroimaging studies of the intact brain have provided a more detailed account of 

the neuroanatomy of the attention network. When subjects attend to a location in space in 

anticipation of the appearance of a stimulus, neural signals increase in a fronto-parietal 

network consisting of regions within the superior parietal lobule (SPL), the intraparietal 

sulcus (IPS), the frontal eye field (FEF), and the supplementary eye field (SEF; see Figure 

2A for full map). This dorsal fronto-parietal attention network has been implicated in many 

visuospatial tasks, regardless of whether target stimuli were detected, discriminated or 

tracked in visual space (Ungerleider and Kastner, 2000) and regardless of whether the task 

required spatial attention, spatial working memory, or planning saccades (Jerde et al., 2012).

The fronto-parietal attention network is also activated when subjects select non-spatial 

information. In studies of feature-based attention, similar activations have been found when 

subjects shift attention from one feature to another (e.g. from color to direction of motion in 

a display of colored, moving dots; (Greenberg et al., 2010), or when subjects shift attention 

between two spatially overlapping objects and perform object-based selections (Serences et 

al., 2004). Together, these studies suggest that the fronto-parietal network is a ‘domain-

general’ controller without much functional specialization. However, it is not clear whether 

distributed subpopulations within this network subserve specific functions needed for 

space-, feature-, or object-based attentional control. The different neural mechanisms 

associated with the different selection modes (as described below in our theory section) may 

suggest such a functional organization.

It is important to note that the fronto-parietal network consists of a large number of 

topographically organized areas that coordinate their functional operations (Figure 2A). 

Thus far, nine topographically organized areas have been found in posterior parietal and 
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frontal cortex, each containing a continuous representation of the contralateral visual field 

(for review, Silver and Kastner, 2009). The delineation of topographic organization in 

higher-order cortex in individual subjects has permitted a more systematic study of the 

dorsal attention network in the human brain.

In line with the topographic organization, spatial attention increased responses more 

strongly when directed contra- rather than ipsilaterally (Szczepanski et al., 2010), thus 

generating a contralateral spatial biasing signal in each topographic region. The sum of the 

biasing signals across areas was of similar magnitude across the two hemispheres, 

suggesting a balanced spatial control system in the intact brain. Thus, visual space within a 

hemifield appears to be largely controlled by the contralateral hemisphere, contradicting the 

hemspatial theory of attention control. Instead, these studies have provided evidence for an 

alternative model of neglect, first proposed by Kinsbourne (1977). According to this 

‘interhemispheric competition account’, spatial attention uses an opponent processor control 

system, in which each hemisphere directs attention towards the contralateral visual field. In 

an intact system, the two hemispheric processors are balanced through mutual reciprocal 

inhibition, possibly through direct callosal connections, or through cortico-subcortical 

interactions of parietal cortex and superior colliculus. The interhemispheric competition 

account of attention control has received further empirical support in transcranial magnetic 

stimulation studies showing that attentional biasing signals can be altered in predictable 

ways by perturbing the frontoparietal control system (Szczepanski and Kastner, 2013).

While Kinsbourne’s original model was not able to account for the right hemispheric 

dominance observed with the neglect syndrome, the functional brain imaging studies in the 

intact brain have shown several asymmetries in the strengths of attentional biasing signals 

across the nodes of the dorsal attention network (Sczcepanski et al., 2010). These 

asymmetries can theoretically account for the observed right hemispheric dominance. 

Further support for the Kinsbourne model comes from clinical studies in patients suffering 

from hemi-neglect following a stroke to the right superior temporal cortex, who show 

reduced activity in the right relative to the left dorsal parietal attention network, even though 

these brain regions are structurally intact (Corbetta et al., 2005). Thus, the attentional 

deficits observed in these patients may be explained by a distal impact of the lesion. This 

results in an imbalance of attentional biasing signals generated by each hemisphere and, 

thus, an imbalance in the ability to control contralateral space. This imbalance is also 

accompanied by a breakdown of functional connectivity within the dorsal network between 

the two hemispheres (He et al., 2007).

Functional dissociations of the network

Thus far we have highlighted the distributed nature of attentional processing, which is 

mediated by the strongly interconnected anatomy of the brain, thereby ensuring that any 

information is quickly shared between regions. In this framework, computations and 

behavior do not arise from a single brain region but rather emerge through interactions 

between regions. However, this does not imply that each brain region does exactly the same 

computation. There are important functional dissociations that can be drawn between 

regions.
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One broad functional dissociation that has been made is that higher-order fronto-parietal 

cortex acts as the ‘source’ of modulatory attention-related signals that are fed back to 

sensory cortex. This dissociation was observed in early human neuroimaging studies 

showing that when attention was directed to the location of an upcoming stimulus, activity 

in frontal and parietal cortex was sustained relative to activity in visual cortex, reflecting the 

attentional operations of the task and not sensory processing (Figure 2C; Kastner et al., 

1999). To understand the different contributions of frontal and parietal cortex in controlling 

attention, we will now turn to electrophysiological studies in non-human primates.

The large-scale fronto-parietal attention network seen in humans is generally conserved in 

non-human primates. For spatial selection, important parts of the network include frontal 

cortex (lateral prefrontal, lPFC, and the frontal eye fields, FEF) as well as a region within 

the intraparietal sulcus (lateral intraparietal area, LIP). In addition, a recent neuroimaging 

study has shown evidence for a role of medial posterior parietal cortex including areas V6 

and V6A in mediating dynamic shifts of attention across the visual field (Premereur et al., 

2015). Shifts in attention are reflected in single neuron responses in all of these regions (e.g. 

FEF, Bichot and Schall, 1999; LIP, Bisley and Goldberg, 2003).

What then distinguishes these regions? To answer this question, Buschman and Miller 

(2007) used large-scale, multiple electrode recording techniques to simultaneously record 

the activity of neurons in lPFC, FEF, and LIP. They found that, when a monkey’s attention 

was externally captured by a salient stimulus (i.e. by a ‘pop-out’ stimulus, see above), this 

was reflected first in LIP neurons and then in FEF neurons, suggesting a flow of information 

from parietal to frontal cortex. In contrast, when attention was internally directed by the 

memory of the target stimulus (i.e. during a conjunction search), such voluntary control of 

attention originated in frontal cortex, and information flowed back to parietal cortex. Similar 

results have recently been found in humans (Li et al., 2010).

These results suggest that frontal and parietal cortex play different roles in guiding attention. 

First, parietal cortex (LIP) encodes a ‘saliency’ map of the visual scene, encoding which 

locations in space are of potentially high significance. Such saliency is largely defined by 

the properties of the stimuli. Consistent with this model, LIP neurons will respond to a 

highly salient, transiently flashed stimulus (Bisley and Goldberg, 2006) and encode the 

saliency of stimuli in a visual scene (Arcizet et al., 2011). In contrast, neurons in frontal 

cortex carry information about task-relevant stimuli, not necessarily the most salient 

stimulus (Hasegawa et al., 2000). Furthermore, inactivating lateral PFC disrupts tasks 

requiring top-down, internal direction of attention (Iba and Sawaguchi, 2003).

Further evidence that prefrontal cortex is the source of top-down signals comes from the 

work of Moore and colleagues, who found that electrical stimulation of the frontal eye fields 

(FEF) can induce attention-like effects. Stimulation of FEF increases the animal’s 

behavioral discriminability at the location of the FEF receptive fields, as if attentional 

resources had been directed there (Moore and Fallah, 2004). Furthermore, attention-like 

effects were observed in V4 neurons whose receptive fields overlapped with the stimulated 

FEF neurons (Figure 2D; Moore and Armstrong, 2003). Causal manipulations in humans 
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using TMS have corroborated these findings by showing qualitatively similar effects (Ruff 

et al., 2006).

Dynamic functional connectivity

Despite these functional dissociations, it is clear that the fronto-parietal network works as a 

cohesive unit to direct attention based on a multitude of factors. This then raises the question 

– how can one network dynamically adapt to changing requirements as the situation or goals 

change? More globally, how might the fronto-parietal network induce attention by biasing 

connections throughout the brain? This isn’t likely due to anatomical changes; changes in 

behavior simply happen too quickly. Instead, changes in the effective connectivity between 

interconnected regions allows for the large-scale network to adapt as needed.

Changing the synchrony of neurons is one mechanism that may modulate effective 

connectivity. Theoretical and experimental work has shown that increasing the synchrony of 

inputs into a single neuron has a super-additive effect (Azouz and Gray, 2000; Salinas and 

Sejnowski, 2001). Therefore, modulating the synchrony of a population of neurons will 

dynamically change their downstream impact. Therefore, one way to increase the strength of 

an attended stimulus would be to increase the synchrony of neurons representing that 

stimulus. Early experimental support for such a model came from the somatosensory 

system, where Steinmetz and colleagues (2000) found that attending to tactile stimuli 

increased the synchrony of neurons. Studies on visual attention showed that neural 

synchrony increased in a highly specific way, that is, attention increased the high-frequency 

(40–80 Hz) synchronous oscillations and decreased the low-frequency (<10 Hz) oscillations 

in populations of neurons representing the attended location (Fries et al., 2001; Womelsdorf 

et al., 2006a).

In addition to boosting the effectiveness of local neuronal populations, increasing synchrony 

between brain regions may also change inter-areal effective connectivity. As we detail 

below in the section on an integrated theory of attention, oscillations in population activity 

likely reflect the ebb-and-flow of inhibition in a local network. Therefore, aligning such 

oscillations across regions could ensure that populations of neurons in inter-connected 

regions will be in a co-excitable state, which is one possible way to boost effective 

connectivity (Figure 3A; Bressler, 1996; Fries, 2005). There is growing evidence for such a 

model (Buschman and Miller, 2007; Gregoriou et al., 2009a; Saalmann et al., 2007; Siegel et 

al., 2008). In particular, a recent study by Fries and colleagues demonstrated that synchrony 

between regions can be highly selective, acting on a single visual object (Bosman et al., 

2012). By recording simultaneously from populations of V1 neurons with receptive fields 

encompassing one of two stimuli as well as from V4 neurons whose receptive field 

overlapped both stimuli (Figure 3B, middle), they showed that, when attention was directed 

to a single stimulus, gamma-band oscillations were selectively synchronized between V4 

and only those V1 neurons that encoded the attended stimulus location (Figure 3B, left and 

right).

These effects of synchronization are not limited to visual cortex or specifically to the gamma 

frequency band. Buschman and Miller (2007) found that synchrony between prefrontal and 

parietal cortex differed depending on whether attention was being externally captured by a 
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salient stimulus or internally directed based on a remembered target (Figure 3C). When 

attention was externally captured and information flowed in a bottom-up manner (from 

parietal cortex to prefrontal cortex), synchrony was observed at gamma-band frequencies 

(the same frequency found in visual cortex). In contrast, when attention was internally 

controlled, and information flowed ‘top-down’ from prefrontal to parietal cortex, synchrony 

between prefrontal and parietal cortex was at a lower-frequency ‘beta’ band. These results 

suggest that attention modulates synchrony between brain regions in order to guide 

information flow between regions in a task-specific manner. Furthermore, these results 

provided the first evidence that specific frequency bands might serve specific purposes: 

beta-band oscillations may increase ‘top-down’ signaling while gamma-band oscillations 

increase ‘bottom-up signals.

Importantly, communication in cortical large-scale networks is not only mediated through 

cortico-cortical interactions, but also through thalamo-cortical interactions. In particular, 

there is growing evidence that the pulvinar, the largest nucleus in the primate thalamus, 

plays a key role in attention. The pulvinar is considered a higher-order thalamic nucleus, 

because it forms input-output loops almost exclusively with the cortex, thereby forming 

cortico-thalamo-cortical pathways. As a general principle, directly connected cortical areas 

will be indirectly connected via the pulvinar (Jones, 2001; Shipp, 2003). This indirect 

connectivity may be used to facilitate information transfer between cortical areas. During 

spatial selection, increased synchrony of slow frequency oscillations in the alpha band 

between two interconnected visual cortical areas (V4 and TEO) resulted from pulvino-

cortical rather than cortico-cortical communication (Figure 3D; Saalmann et al., 2012). In 

addition, these slow oscillations were coupled to higher frequency oscillations in the gamma 

band in each cortical region. Such cross-frequency coupling may be an effective mechanism 

for coordinating long-range communication across a network, with lower frequency 

oscillations controlling the excitability of local neural populations in order to facilitate the 

coupling of higher frequency oscillations (Canolty et al., 2006; Lakatos et al., 2008). This 

mechanism may provide a bridge between cortico-cortical and thalamo-cortical mechanisms 

for large-scale communication. These studies have begun to provide a mechanistic 

framework for behavioral observations showing that pulvinar lesions or inactivations impair 

orienting responses and the exploration of visual space (Ward et al., 2002; Wilke et al., 

2010).

Thus far, we have highlighted the dynamic nature of attention. Behaviorally, attention can 

be internally or externally controlled and even when ‘statically’ maintained, it vacillates 

between locations. This is reflected in the dynamic nature of attentional signals across the 

fronto-parietal network, including recent evidence that synchrony within and between brain 

regions may sculpt information flow. Next, we discuss how attention acts on the sensory 

representations themselves.

Neuronal effects – from single neurons to populations

When attention is allocated to a spatial location, feature, or object, its neural representation 

is enhanced relative to when attending elsewhere. This enhancement occurs in many 
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different ways, ranging from changes in the responses of single neurons to changes in the 

dynamics of populations of neurons.

Spatial attention enhances neural responses

In one of the first studies probing attention effects in the primate brain, it was reported that 

directing spatial attention into the receptive field of a single parietal cortex neuron increased 

its response to a stimulus (Bushnell et al., 1981). Since then, studies in monkeys and humans 

have shown that spatial attention increases neural responses to a selected stimulus across 

many levels of processing. This includes cortical visual areas, such as V1, V2, V4, MT, 

MST, and IT (e.g. Chelazzi et al., 1993; Luck et al., 1997; Spitzer et al., 1988; Treue and 

Maunsell, 1999), as well as subcortical regions such as the lateral geniculate nucleus, 

pulvinar, reticular nucleus of the thalamus, and superior colliculus (McAlonan et al., 2006; 

O’Connor et al., 2002; Zénon and Krauzlis, 2012). The magnitude of the spatial attention 

effect increases along the cortical hierarchy, reaching its strongest effect in associative 

regions, such as prefrontal and parietal cortex (Rainer et al., 1998). Similarly, spatial 

attention effects seem to occur first in higher cortical regions and then cascade backwards 

(Buffalo et al., 2010). However, spatial attention does not simply increase the response rate 

of neurons but also increases a neuron’s sensitivity to stimuli. For example, spatial attention 

shifts the contrast-response function of single neurons in V4 and MT such that a neuron is 

more sensitive to low contrast stimuli (Figure 4A, Martínez-Trujillo and Treue, 2002; 

Reynolds et al., 2000). By increasing the neuronal sensitivity the perceived contrast of a 

stimulus can be increased due to attentional allocation, thus improving behavioral 

performance (Carrasco et al., 2004).

Attending to features

As noted above, attention can not only be directed to a specific location, but also to a 

stimulus feature. Such featural attention influences single neuron responses in much the 

same way as spatial attention, increasing the sensitivity of neurons that respond 

preferentially to stimuli matching the sought-after feature (in V1 and V4, Haenny and 

Schiller, 1988; in MT, Treue and Trujillo, 1999). Similar results have been reported in 

human neuroimaging studies (Saenz et al., 2002). Selection of a desired feature also 

suppresses neurons with response properties of differing selectivity (Martinez-Trujillo and 

Treue, 2004) and increases baseline activity in feature-specific ways even when no stimulus 

is present (Serences and Boynton, 2007).

Attention changes population codes

Although many of the effects of attention are observed at the level of single neurons, they 

also impact representations at the population level. For example, increasing the sensitivity of 

selected neurons will lead to an increase in the selectivity of the entire population. In 

addition, attention also acts to directly change the way information is represented in 

populations of neurons. One way that attention improves the encoding of information in a 

neuronal population is by decreasing noise correlations (Cohen and Maunsell, 2009; 

Mitchell et al., 2009). Noise correlations measure the degree to which neurons share 

uninformative signals that vary from trial-to-trial. Since each neuron has a limited 

bandwidth, correlations in their signal reduces the information carrying capacity of the 
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population as a whole. This is perhaps most easily seen in the extreme: if each neuron 

carried the same signal, then the amount of information carried by the entire population 

would be the same as by any one neuron. Therefore, by reducing noise correlations, 

attention can significantly increase the information capacity of the population (Figure 4B).

However, not all correlations have a negative impact. As noted above, attention increases 

the synchrony of selected populations of neurons, particularly at high frequencies (~40–50 

Hz, Fries et al., 2001; Figure 4C). This is thought to boost the transmission of information 

from the selected population (see above). It is important to note that such temporal 

synchrony is orthogonal to noise correlations: information is carried in the pattern of firing 

across a population of neurons, and redundancy in that population (such as in the case of 

noise correlations) reduces the information capacity of a network; synchrony is local 

coincidence in time and ensures the temporal precision of the firing pattern in order to drive 

downstream neurons. Exactly how such synchrony arises remains unknown (although we 

propose one theory in the Model section below). However, it may be under top-down 

control. For example, microstimulation of FEF induces high-frequency oscillations in 

parietal cortex in a topographic manner (Premereur et al., 2012).

Attention resolves competition

Thus far we have largely discussed how attention impacts the representation of isolated 

stimuli. However, as emphasized in the Introduction, the need for attention is greatest when 

multiple stimuli are present and thus there is competition among stimuli for neural 

representation. In a now classic experiment, Moran and Desimone demonstrated how 

competition is resolved within single V4 neurons (Moran and Desimone, 1985). When two 

stimuli were simultaneously presented in the receptive field of a V4 neuron they competed 

with one another, reducing the overall response of the neuron (Figure 4D, purple line). 

However, this effect was counteracted by attention: when attention was directed to one of 

the two stimuli in the receptive field, the neuron responded as if only the attended stimulus 

was presented (Figure 4D, pink dashed line). Similar results have been found in MT and 

MST (Treue and Maunsell, 1999), and corroborating evidence has been obtained in human 

neuroimaging studies (reviewed in Beck and Kastner, 2009). Biasing the competition 

between stimuli can also be conceived as a shift in a neuron’s selectivity: spatial attention 

collapses the receptive field of neurons towards the attended location (Connor et al., 1997; 

Womelsdorf et al., 2006b) while featural attention shifts the tuning curve of neurons toward 

an attended feature (David et al., 2008; Martinez-Trujillo and Treue, 2004).

As reviewed here, there is strong evidence that attention impacts neural representations in 

several different ways. Models of attention typically focus on an individual aspect of these 

effects. However, an integrated understanding of attention will require a unified theoretical 

framework that captures these diverse effects. Next, we outline a theory that attempts to 

build such an integrated understanding.

A unified framework for selective attention

As we have reviewed thus far, attention is a complex, multi-faceted, phenomenon with a 

large and diverse number of associated effects, both in the way attention impacts sensory 

Buschman and Kastner Page 11

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



representations as well as how attentional resources are allocated in space and time. Many 

different theories have been proposed that capture specific components of these attention 

effects. However, an integrated model of attention has yet to be developed. Here we outline 

a theoretical framework that builds upon several existing models of attention with a focus on 

integrating the disparate physiological findings reviewed above.

Basic assertions

Before we detail our theory of attention we will briefly outline three basic assertions upon 

which our theory is built:

i. Sensory cortex learns to represent visual objects; these embedded representations 

are then used during perception.

ii. Normalization of responses is a fundamental aspect of neural processing in the 

cortex.

iii. Oscillations largely reflect rhythmic fluctuations in inhibitory tone in a neural 

network.

Here, we will first explain the evidence for each assertion and, where possible, propose 

underlying neural circuit mechanisms. Then, we describe how these three broad 

observations can be combined with top-down attention signals to explain the large body of 

neurophysiological findings associated with attention.

Our first assertion states that sensory cortex encodes and represents visual objects (Figure 

5A). Although this review is focused on visual attention, it is important to consider the 

computations used by sensory cortex to support perception given that visual attention affects 

sensory processing. Although classical models assumed that these representations were the 

result of fine-tuned wiring (Hubel and Wiesel, 1959), more recent theoretical and 

experimental work suggests that these representations are learned through experience. With 

the help of simple unsupervised learning rules a ‘dictionary’ can be learnt that captures the 

statistical regularities in the world (Simoncelli and Olshausen, 2001). At the level of primary 

visual cortex, such learning results in gabor-like representations (Olshausen and Field, 

1996); in higher-order cortex, it likely generalizes to ‘object’-like properties (e.g. co-

linearity of line segments, correlation of movement, parts of complex objects, etc). In 

support of this model, experiments that ‘re-wired’ auditory cortex to receive visual inputs 

led to neurons in auditory cortex with tuning properties that matched visual cortex (Sharma 

et al., 2000). In other words, the selectivity of the neurons were not defined by a 

developmental plan, but rather neurons learned the representations that best captured the 

variability in their inputs.

Importantly, embedding object-based representations will ensure that the system is tolerant 

to noise as any input will be transformed by the learned object dictionary: signals that match 

an expected pattern will be boosted while signals that are orthogonal to representations in 

the dictionary will be ignored. As the dictionary has been trained to optimally represent the 

world, this means the system will, in effect, perform pattern completion, settling on nearby 

‘known’ representations, even when provided with a noisy input. As we detail below, this 
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will be crucial for allowing broad, unspecific attention signals to become selective based on 

the combination of a learned dictionary and the current sensory drive.

Our second assertion is that response normalization is fundamental to cortical function 

(Figure 5B). Responses in cortex are normalized such that a constant level of overall activity 

in a region is maintained. For example, the response of V1 neurons to multiple stimuli of 

varying constrasts closely fits the predictions of a normalization model (Busse et al., 2009). 

The exact neural mechanisms responsible for normalizing responses remain unknown, 

although several possibilities have been discussed (for review, see Carandini and Heeger, 

2012). In particular, one account that fits well with other observed effects of attention is that 

divisive normalization is the result of lateral inhibition within a cortical region (Figure 5B; 

Lee et al., 2012; Wilson et al., 2012; but also see Nassi et al., 2014 for a role for feedback). 

Normalization is thought to be important for cortical functioning for several reasons. First, 

by bounding the overall activity level, normalization may reduce the risk of pathologically 

high levels of excitation. Second, normalization acts to sparsify responses in a cortical 

region, possibly contributing to the formation of the optimal, sparse, responses described 

above (Schwartz and Simoncelli, 2001). Finally, as we detail below, a wide range of the 

attention effects reviewed above have been modeled as the result of attention modulating the 

gain of normalization (Reynolds and Heeger, 2009; Reynolds et al., 1999).

Our third assertion is that oscillations reflect rhythmic fluctuations in inhibition (Figure 5C 

and 5D). Rhythmic fluctuations in neural activity are observed throughout the brain across a 

wide variety of frequency bands (for review, see Buzsaki, 2006). The exact neural 

mechanisms that produce oscillatory activity in the brain remain unknown; however, there is 

a general consensus that inhibitory interneurons play a key role in the generation of rhythms. 

For example, blockade of GABA receptors reduces the high-frequency oscillations 

commonly modulated by attention in the cortex (Hasenstaub et al., 2005). Furthermore, 

optogenetic stimulation of parvalbumin-positive inhibitory interneurons preferentially 

generates high-frequency gamma oscillations (Cardin et al., 2009). These results suggest 

that oscillations in the brain reflect the ebb-and-flow of cortical excitability as inhibition is 

rhythmically modulated.

Outline of the theory

We propose that many of the diverse neurophysiological findings associated with attention 

can be explained by combining our three basic assertions with the mechanisms of top-down 

attentional selection reviewed in the section on network level effects. In particular, we 

propose interactions between excitatory pyramidal neurons and inhibitory interneurons are 

central to the mechanism supporting normalization and in the generation of synchronous 

oscillations. In brief, we propose that attention works through a cascade of effects:

1. Attention can either be a) automatically grabbed by salient stimuli or b) guided by 

task representations in frontal and parietal regions to specific spatial locations or 

features.
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2. The pattern-completion nature of sensory cortex sharpens the broad top-down 

attentional bias, restricting it to perceptually relevant representations. Interactions 

with bottom-up sensory drive will emphasize specific objects.

3. Interneuron-mediated lateral inhibition normalizes activity and, thus, suppresses 

competing stimuli. This results in increased sensitivity and decreased noise 

correlations.

4. Lateral inhibition also leads to the generation of high-frequency synchronous 

oscillations within a cortical region. Inter-areal synchronization follows as these 

local oscillations synchronize along with the propagation of a bottom-up sensory 

drive. Both forms of synchrony act to further boost selected representations.

5. Further build-up of inhibition acts to ‘reset’ the network, thereby restarting the 

process. This reset allows the network to avoid being captured by a single stimulus 

and allows a positive-only selection mechanism to move over time.

As we detail next, many of the effects observed at the neural level can be explained through 

this cascade. In addition to noting neurophysiological observations, we will also highlight 

some of the theoretical models on which our unified framework is built.

Step #1: Direction of attention—Attention is controlled in one of two ways. First, 

attention can be captured by stimuli that are inherently salient based on their physical 

properties (such as their brightness, contrast, speed, etc) or other factors such as their 

associated valence. As noted above, saliency maps capture the saliency of all objects in a 

visual scene, allowing attention to be directed to stimuli in their rank order of salience (Itti 

and Koch, 2001).

Second, attention can be guided towards stimuli that are relevant to one’s current task. Our 

ability to focus our attention in such a manner is remarkably flexible: we can attend to 

different spatial locations, with seemingly different ‘zoom’ levels, as well as to both simple 

and complex features (i.e. ‘red things’ and ‘cars’). As reviewed above, such attention 

templates are ‘top-down’; originating in prefrontal and parietal cortex and influencing 

sensory cortex both through direct descending projections (e.g. from FEF to V4; Figure 6A) 

as well as through a backwards cascade (e.g. from PFC to IT to V4, etc; Figure 6B).

Step #2: From broad to precise top-down modulation—This then presents a 

conundrum: what neural mechanisms would allow for both the flexibility and specificity of 

attentional modulation? One hypothesis is that there are specific anatomical connections that 

support all possible selections that could be desired. Under this model, every form of 

attentional selection would need a physiological correlate. For example, top-down spatial 

attention projections would have to be distributed across different spatial locations as well as 

across different spatial scales. Although this remains a possibility, current anatomical and 

physiological support for this model is limited (Anderson et al., 2011). Instead, we argue 

that broad, non-specific top-down signals are shaped by the local circuitry and activity in 

sensory cortex (Duncan et al., 1997).
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The pattern-completion nature of sensory cortex (Assertion #1) means that non-specific 

inputs will be transformed into something that ‘makes sense’ to the network. In other words, 

any energy input to the circuit that is orthogonal to its inherent representations will be 

discarded while energy along its learned representations will be maintained. This effect will 

be further amplified when the circuit is already receiving (and processing) bottom-up inputs. 

In this case, sensory drive has activated a sub-set of possible activity states for the network – 

moving away from these would require a strong overriding input. Instead, attention is 

modulatory and therefore has the greatest impact on those representations that are already 

active in the network.

To demonstrate this effect, we can imagine a simplified case where attention is being 

directed to a spatial location with two competing neurons that respond to either circular or 

square stimuli. Attending to this location without visual stimulation will broadly boost both 

representations (note that representations not embedded in our network, such as triangular 

stimuli, will not be boosted as our simplified network does not encode them). However, if 

our spatial location begins receiving circular visual input this same attention signal will only 

be effective in increasing the activity of the ‘circle’ neuron as the ‘square’ neuron will be 

suppressed (either in a bottom-up manner or through competition with the circle neuron). 

Featural selection would work in a similar way: attending to a ‘car’ will emphasize car-

components, such as circular wheels. These would be automatically selected in a top-down 

cascade (as seen in Figure 6B). Again, interactions with bottom-up sensory drive would 

collapse that selection to a particular exemplar of a category (i.e. a BMW vs. a Ford).

Generalizing from this simplified example, our theory will make a prediction how attention 

selects objects. As noted above in our first assertion, the visual system has learned the 

statistical regularities of objects and has embedded this knowledge in the connections of a 

distributed network (Figure 5A). Therefore, applying attention to any part of the object 

representation will cause the boosting signal to spread throughout the object. This prediction 

has extensive experimental support. First, attention to an object automatically selects all 

components of an object (Duncan, 1984; Egly et al., 1994; Siegel et al., 2015). In addition, 

recent work suggests that attention will automatically extend to other stimuli that follow 

Gestalt object rules (e.g. collinearity, Wannig et al., 2011). Furthermore, spatially attending 

to a stimulus will also boost the representation of objects with similar features across the 

visual field (McAdams and Maunsell, 2000; Treue and Trujillo, 1999).

Together, these results provide experimental support for a model in which top-down 

attention is broad and non-specific and only becomes focused through interactions with the 

anatomical connectivity embedded in sensory cortex and the bottom-up sensory drive.

Step #3: Biasing competition through normalization—As reviewed above, there is 

evidence that attention resolves competition between stimuli in a way that boosts selected 

representations while suppressing unselected ones. This finding was captured in the highly 

influential ‘biased competition’ theory of attention (Desimone and Duncan, 1995). In brief, 

the model proposes that stimuli are constantly competing with one another for greater 

representation; attention acts to bias this competition, allowing the selected stimulus to 

‘win’.
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Competition between stimuli is likely the result of the normalization process described in 

our second assertion (Reynolds et al., 1999). Recent work by Reynolds and Heeger (2009) 

showed that integrating a normalization model with attentional biasing mechanism, captures 

a wide variety of attentional effects. First, they were able to explain how spatial attention 

can increase the contrast gain of neurons (Reynolds et al., 2000), the response gain 

(Williford and Maunsell, 2006), or multiplicatively scale responses (McAdams and 

Maunsell, 2000). Second, they captured the sharpening of tuning curves with featural 

attention (David et al., 2008; Martinez-Trujillo and Treue, 2004). Finally, like the biased 

competition model, the normalization model of attention also predicts the response to 

multiple stimuli in a single receptive field (Moran and Desimone, 1985).

Lateral inhibition carried out by inhibitory interneurons is a candidate mechanism that may 

instantiate the normalization computation (Figure 5B). If so, one would expect significant 

attentional modulation of the inhibitory neurons that are computing the normalization signal. 

Indeed, attention has a much larger impact on the responses of putative inhibitory 

interneurons compared to putative pyramidal cells (Mitchell et al., 2007). Direct evidence 

for top-down targeting of inhibitory interneurons comes from a recent study showing that 

long-range projections from cingulate cortex to visual cortex in mice increase center-

surround modulation via local inhibitory interneuron circuits (Zhang et al., 2014).

We propose that a model that centers on lateral inhibition has the potential to explain a 

diverse set of attention effects. For example, as noted by Reynolds and Heeger, such 

recurrent models of normalization may capture the temporal dynamics of attention effects 

(namely the lack of an attention effect on the visual transient) or the alterations of the size 

and center of receptive fields. Lateral inhibition has also been shown to increase the sparsity 

of neural representations (Schwartz and Simoncelli, 2001). As sparser signals are more 

likely to be independent to one another, this will lead to a reduction in noise correlations (as 

observed; Cohen and Maunsell, 2009).

Step #4: Synchrony is rhythmic inhibition—In addition to computing the 

normalization effect, lateral inhibition may also underlie synchronous oscillations (Figure 

5C and 5D). As reviewed above, attention modulates local synchrony, possibly to increase 

the gain of a selected neural representation (Tiesinga et al., 2004) or to boost the 

transmission of information from one region to the next (Fries, 2005). However, such 

models that explain effects on synchronous firing in local populations are often separated 

from those that explain other effects of attention on single neurons. We propose a unifying 

mechanism relying on lateral inhibition: namely, that the same attentional modulation of 

inhibitory interneurons that leads to normalization also increases synchronous high-

frequency oscillations.

Such a model makes several predictions about the nature of synchronous oscillations in 

cortex. First, it predicts high-frequency oscillations are generated by local inhibitory 

interneurons. As noted in our third assertion, a large body of modeling work suggests that 

this is true, either due to interactions between interneurons directly (so called “ING” models; 

Wang and Buzsáki, 1996) or between inhibitory interneurons and excitatory pyramidal 

neurons (so called “PING” networks; Börgers and Kopell, 2005). Furthermore, optogenetic 
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stimulation of inhibitory interneurons produces high-frequency oscillations (Cardin et al., 

2009). Second, the model predicts that attention should target inhibitory interneurons in a 

way that drives synchrony. Indeed, as noted above, experimental evidence suggests that 

attention has its greatest impact on inhibitory interneurons (Mitchell et al., 2007). More 

importantly, and as predicted, Vinck et al (2013) found inhibitory interneurons preferentially 

synchronized with local populations (measured via LFPs), with a phase relationship that 

suggested they were driving the high-frequency oscillations in LFP. Finally, according to 

our model, attention will increase firing rates (particularly in inhibitory interneurons) before 

increasing high-frequency oscillations. Although this has not been directly tested, there is 

some experimental evidence that attention effects on firing rate precede modulations in 

high-frequency oscillations in visual (Fries et al., 2008) and frontal cortex (Gregoriou et al., 

2009b).

By acting on inhibitory interneurons, attention increases local synchrony and, thus, increases 

the impact of a neuronal population on downstream brain regions (see dynamic functional 

connectivity section above for details). Attention also increases synchrony between regions, 

further boosting information transfer. However, if high-frequency oscillations are due to the 

activation of local circuits, then how are they synchronized across different brain regions? 

One possibility is that there is a controlling input that forces synchronization across regions 

(and could be modulated by attention). For example, high-frequency oscillations have been 

found to be coupled to low-frequency oscillations (Colgin, 2013; Schroeder and Lakatos, 

2009) and so a synchronous low-frequency oscillations could organize the temporal 

dynamics of higher-frequency oscillations across regions.

Alternatively, synchronization across brain regions may be a passive process that only 

requires a phase reset to initially align local oscillations. This phase reset would occur with 

the onset of a strong input into the cortex, such as the appearance of a new stimulus in the 

world or an eye movement moving an existing stimulus into a receptive field. The 

propagation of this stimulus across brain regions (in a bottom-up manner), would then 

naturally align the local oscillations across regions. This predicts an increase in high-

frequency synchrony with a strong stimulus drive, as seen following the onset of a pop-out 

stimulus (as seen by Buschman and Miller, 2007).

Step #5: Rhythmic oscillations of inhibition resets the neural network—Many 

of the above effects demonstrate how attention may increase synchrony to select specific 

representations. However, these effects do not strictly rely on synchrony being oscillatory in 

nature. Therefore, it is not clear what mechanistic function an oscillation may serve. We 

propose that oscillations modulate the attractor dynamics of local cortex by periodically 

‘resetting’ the network through strong inhibition (Figure 5C and 5D).

For example, this may be crucial to disengaging attention. Suppose one deploys attention to 

a stimulus, which as a consequence, ‘wins’ the competition with other stimuli through lateral 

inhibition. In this way, the attended stimulus has captured the network; a state that will 

persist, even if attention is released and redeployed. One possible solution to this problem 

might be a strong negative, or inhibitory, signal that can counter the positive selection of 

attention. In support of this model, psychophysical studies have revealed a strong ‘inhibition 
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of return’ (IOR) that inhibits re-selecting an already attended stimulus (Klein, 2000), an 

effect that reduces the neural representation of a previously selected stimulus (Mirpour et al., 

2009). Alternatively, oscillations in global inhibition levels may serve this same purpose: 

every cycle of an oscillation effectively ‘resets’ the network, allowing a new stimulus to be 

captured. Such a mechanism has the advantage of not requiring a strong top-down inhibitory 

signal but rather relies on a local mechanism for generating inhibition. If true, our theory 

would predict that shifts in attention should be tied to ongoing oscillations in neural activity. 

Indeed, Buschman and Miller (2009) observed this effect during a visual search task. Covert 

shifts in attention (measured behaviorally and electrophysiologically) were locked to 

ongoing beta-band oscillations: on each cycle of the beta-band oscillation the animal 

attended to a new location in space. Similar effects have been observed in humans, although 

at lower frequencies (Busch and VanRullen, 2010; Fiebelkorn et al., 2013; Landau and 

Fries, 2012). Similarly, overt shifts in attention (i.e. eye movements) are phase-locked to 

lower frequency oscillations (Schroeder et al., 2010).

Note that, at the behavioral level, rhythmic attention will appear as the classic inhibition of 

return: stimuli are momentarily attended before being inhibited for a sustained period of 

time (as they are never returned to). Indeed, studies of IOR have found the onset of 

inhibition occurs around 225 ms (Klein, 2000), which is approximately the 4 Hz observed in 

rhythmic fluctuations of attention (Fiebelkorn et al., 2013). However, it remains to be seen 

which is the chicken and which is the egg: do oscillations structure the IOR or do we 

observe rhythmic IOR as oscillations?

Networks for attentional control: Interplay of spatial and featural attention

Directing attention to space of features appears to be controlled by individual sources in the 

brain. Spatial attention is likely directed by descending projections into extrastriate visual 

areas (e.g. FEF to V4 projections; Figure 6A). In contrast, featural attention is much broader, 

impacting the entire visual field. Therefore, featural attention likely begins in regions with 

larger receptive fields and more complex representations (Figure 6B). A ‘reverse hierarchy’ 

model of attention suggests selection begins at the highest, most abstract, level before 

filtering down to the details of an object (Hochstein and Ahissar, 2002). Such a model 

predicts the selection to begin in prefrontal/parietal cortex, where neurons represent abstract 

categories (Freedman et al., 2001), and then filters backwards along the cortical hierarchy to 

‘simpler’ visual areas. Surprisingly, it also predicts that the ease of feature-based visual 

search should be directly related to whether the category of the sought-after stimulus is 

‘natural’. Indeed, searching a cluttered natural scene for a complex object can be highly 

efficient if the object is typical to our everyday experiences, as noted above (e.g. “cars”, for 

review see Peelen and Kastner, 2014).

Despite their independent sources, these two forms of attention do interact with one another. 

A network view of selection suggests that such interactions are mediated through the 

convergence of feature and spatial attention in visual cortex (Figure 6C). Attending to a 

spatial location will select an object (or a piece of an object) at that location. This selection 

will propagate up-and-down the visual hierarchy, acting to select associated representations. 

In turn, the more abstract, invariant representations in higher cortical regions will lead to the 
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automatic selection of similar objects in the visual scene based on their featural properties. 

Indeed, psychophysical studies have shown that spatial attention can drive featural attention 

(e.g. spatially attending to a single object leads to increases in attention to its properties 

across the entire cortex, Summerfield et al., 2006). Conversely, featural attention can drive 

spatial attention (e.g. the detection of a car in a visual scene drives spatial attention to that 

location). In this way, spatial and featural attention can be flexibly combined to allow for the 

dynamic nature of attention.

Future directions

We have attempted to outline a parsimonious theoretical model that captures the diversity of 

attention effects on neural activity. In particular, we have focused on local cortical 

interactions as these are the most prevalent connections in the brain and therefore the most 

likely to impact neural processing. We have also attempted to avoid the need for precise top-

down or controlling inputs, whether it is spatially precise (in the case of a spotlight of 

attention) or temporally precise (in the case of inter-areal synchronization). As we hope is 

clear, this model relies heavily on previous theoretical and experimental work. However, 

despite this strong basis, a more mechanistic model is needed to test the details of our 

theory.

In addition, there are many experimental details that need to be worked out. For example, 

many of the observed effects of attention can be explained by modulating the excitatory/

inhibitory balance of this network, particularly by increasing the inhibitory gain in the 

network. However, we are only beginning to understand how this balance is modulated in 

the brain. For example, there are several (perhaps dozens) of different types of inhibitory 

interneurons. Recent work is beginning to unravel the relative roles of these interneurons, 

both in perception and attention (Lee et al., 2012; Wilson et al., 2012; Zhang et al., 2014) 

but future work must continue to detail the respective roles of these varied cell types.

A particularly intriguing avenue for further exploration is the role of neuromodulation in 

altering the computational properties of local cortical circuitry. In particular, acetylcholine 

(ACh) has been proposed to play a role in attention. Indeed, manipulating ACh receptors 

changes the effect of attention on V1 neurons (Disney et al., 2007; Herrero et al., 2008). 

This effect may be mediated by cholinergic midbrain regions that represent stimulus 

saliency (Asadollahi et al., 2010) and are themselves modulated by prefrontal cortex (Sarter 

et al., 2005).

Finally, the theory outlined here is focused on the effects of attention on perception (almost 

exclusively visual perception). However, attention is just one small part of cognition and it 

is becoming increasingly clear that attention interacts heavily with other cognitive domains, 

as we will review in the final section.

Attention and other cognitive processes

Attention, defined as the act of selecting task-relevant information, is a central component of 

cognition. Although research on attention has been largely focused on its impact on visual 

processing, there are close relationships between attention and other cognitive processes.

Buschman and Kastner Page 19

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Attention and working memory

Working memory is the ability to hold items ‘in mind’, without relying on the external 

world. Working memory plays a central role in cognition: it acts as a dynamic mental 

‘workspace’ in which thoughts are processed, manipulated, and transformed. Indeed, 

attention may rely on working memory workspaces to maintain the current ‘search template’ 

(Wolfe, 1994). Evidence for such a model comes from studies showing that attention can be 

biased by the current contents of working memory (Soto et al., 2008). Furthermore, brain 

regions involved in controlling attention are also strongly recruited during working memory, 

particularly the fronto-parietal network (Awh and Jonides, 2001). However, the relationship 

between attention and working memory is complicated. Models of working memory predict 

the existence of a ‘central executive’ that controls and manipulates the contents of working 

memory ‘sketchpads’ (Baddeley and Hitch, 1974). Recent studies underline the importance 

of this ‘central executive’: an individual’s general intelligence correlates highly with how 

effectively the contents of working memory are controlled (Fukuda and Vogel, 2011).

Attention may be this ‘central executive’ of working memory. In support of this idea, 

attention filters what enters working memory (Gazzaley, 2011) and plays a role in 

maintaining items in memory (Kuo et al., 2011). Attention may also pull together the 

distributed brain regions necessary to support working memory (Postle, 2006). There is also 

growing evidence that the capacity limitation of working memory is due to competition in a 

manner very similar to the competition observed during perception (Buschman et al., 2011), 

suggesting that some of the neural mechanisms limiting perception may also be limiting 

working memory. Indeed, the same brain regions involved in directing attention to external 

stimuli are activated when attending to ‘internal’ stimuli (Chun et al., 2011; Nobre et al., 

2004).

Attention and reward learning

Attention is also intricately related to reward processing. Attention is attracted to salient, 

behaviorally-relevant, stimuli. Obviously, rewarding stimuli should be salient and therefore 

reward signals are likely closely tied to attention signals. Recent electrophysiological 

evidence has begun to tease apart the relationship between attention and reward in visual 

cortex, with some early evidence for partially overlapping representations (Foley et al., 

2014). In addition, since reward information guides learning, it may aid in learning of where 

to direct attention (Rombouts et al., 2015).

Attention may also be critical to learning what is rewarding in the real world. Reinforcement 

learning is not efficient when a reward can be associated with too many possible sources. In 

this context, attention may act to select the most likely sources and therefore limit 

reinforcement learning to this subset (Niv et al., 2015). In this way, attention can act to 

guide learning towards task-relevant stimuli.

Together, these results suggest that attention, working memory, and rewards are closely 

intertwined, and therefore may share many of the same underlying neural mechanisms. 

Future work is needed to continue elucidating which mechanisms are shared and which are 

distinct. This entwinement also highlights the integrative nature of behavior. Attention is 
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crucial to working memory and reward processing because both functions rely on selection 

of task-relevant stimuli. Indeed, as we review next, the selective nature of attention may 

underlie cognitive control more broadly.

Attention and cognitive control

Cognitive control is our ability to guide our actions based on our task, our internal goals, and 

the current context. Cognitive control is thought to operate by guiding activity throughout 

the brain in a task-dependent manner (Miller and Cohen, 2001). In reality, this is just a 

super-set of attention: instead of only acting upon sensory representations, cognitive control 

can operate more broadly to select relevant stimulus representations, decision making 

circuits, and motor planning regions (Norman and Shallice, 1986).

Indeed, there is significant overlap between the neural mechanisms supporting cognitive 

control and attention. For example, similar to attention, prefrontal cortex is thought to be the 

source of cognitive control: lesions in PFC disrupt cognitive control (Barceló and Knight, 

2002) and single neurons in PFC represent the current task (Wallis et al., 2001; White and 

Wise, 1999). Furthermore, synchrony within prefrontal cortex carves out ensembles of task-

related neurons (Buschman et al., 2012), much like in the way attention creates synchronous 

ensembles in posterior cortex.

In this light it seems that by studying attention we have been studying one specific form of 

cognitive control. Therefore, it is possible that many of the neural mechanisms underlying 

attention will apply more broadly. For example, cognitive control may resolve competition 

between motor plans in the same way attention resolves competition between sensory 

stimuli (a generalization of Figure 5B). Similarly, oscillations are observed throughout the 

brain and may play a similar role in moderating cortical dynamics in any cortical region 

(Figure 5C and 5D). This would make sense from an evolutionary perspective – once the 

brain solves one problem, it might as well apply the same solution to other, similar, 

problems.

Conclusions

Attention research has moved from laboratory scenes to the real world at the behavioral 

level, and from the single neuron to local populations and functional interactions across 

large-scale networks at the neural level (see Box 1: Current status of the field). We have 

outlined a unified theory of attention that begins to integrate these disparate effects. We 

propose broad top-down selection signals interact with the inherent knowledge embedded in 

sensory cortex and with bottom-up sensory drive. In addition, we suggest that these signals 

interact within the local cortical circuit to produce oscillatory synchrony. Such oscillations 

temporally parse neural activity in a way that facilitates selection of relevant representation, 

routes information through the brain, and modulates attractor dynamics of a network.
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Box 1

Current status of the field

• Attention is used to select specific representations for greater neural 

representation. This resolves competition for limited neural resources.

• Attention is controlled by a distributed fronto-parietal network that acts upon 

representations in sensory cortex.

• Attention increases the strength of neural responses in several different ways to 

boost the attended representation, allowing it to win the competition for neural 

resources.

• Attention interacts with many other cognitive domains, including learning, 

short- and long-term memory, and decision making.

Future work is needed to continue building a detailed, mechanistic, understanding of 

attention (see Box 2: Future directions). Detailed circuit models of attention will require 

continuing efforts to identify cell-types and quantify their role in attention. In addition, a 

unified theory must account for the dynamics of attention. Studying these dynamics will 

require accurately following the time-course of neural correlates of attention across large 

populations of neurons throughout the brain. Such large-scale recordings will require 

continued improvements in multi-electrode electrophysiology techniques and/or imaging 

approaches. This appears particularly important as neural dynamics may be key to 

understanding the enormous flexibility of attentional resources. Yet, the neural mechanisms 

supporting these dynamics remain largely unknown. Finally, we must continue to integrate 

attention with other cognitive domains. The parcellation of behavior and brain into different 

cognitive domains has yielded important insights into the neural mechanisms of many 

behaviors. However, cognition emerges from the interactions of these ‘cognitive domains’; 

thus, a complete understanding of cognition will require a more integrative approach.

Box 2

Future Directions

• Attention is highly dynamic; changing rapidly between locations and/or 

features. These dynamics have been associated with local population 

oscillations, yet the exact neural mechanisms remain unknown.

• The recruitment of network parts within the fronto-parietal network is highly 

flexible, depending on changing behavioral demands. However, the neural 

mechanisms utilized to couple these parts for a given task are unknown, nor is it 

clear how a network pattern produces the desired behavior.

• Attention may boost neural representations at several different levels, from 

increasing single neuron responses to boosting population selectivity. However, 

it is unknown how these effects interact and whether they share common circuit 

mechanisms.
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• Recent work has highlighted the existence of domain-specific neural networks. 

However, it remains unknown how these networks interact in order to support 

the integrative nature of cognition.
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Figure 1. Behavioral studies
(A) Visual search in artificial displays versus in real-world scenes. Detecting the presence of 

a green T (conjunction search) is effortful and time-consuming, such that reaction times 

increase as a function of display items. (B) In contrast, detecting the presence of categorical 

object information such as ‘people’ or ‘cars’ in real-world scenes requires only a single 

glance, despite the large number and variety of distracter objects. (C) The detection of 

animals or vehicles in natural scenes does not require focused spatial attention. In a dual-

task paradigm, subjects performed a central discrimination task, while detecting animals in 

scenes presented in the periphery. Performance is normalized to a condition when only a 

single task was performed. Performance on the peripheral animal detection task was only 

mildly impaired by simultaneously performing the central discrimination task. Adapted from 

(Li et al., 2002). (D) Selective attention has rhythmic properties. Subjects detected the 

dimming of a part of a rectangular object at a spatially cued (black line; location #1 in the 

two object display depicted as an example), or at an uncued location of the same object than 

the cued location (orange line; location #2), or a different object (blue line; location #3). 

Accuracy is plotted as a function of the cue-target interval revealing the following rhythmic 

properties: at the cued location, detection performance fluctuated at 8Hz, whereas at the 

same- and different-object locations a characteristic anti-phase relationship of a 4Hz rhythm 

was observed. Adapted from (Fiebelkorn et al., 2013).
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Figure 2. Fronto-parietal control of attentional selection
(A) Topographic organization of areas in human frontal and parietal cortex. Using a 

memory-guided saccade task several areas with a systematic representation of the 

contralateral visual field were identified along the intraparietal sulcus (IPS0-5), adjacent 

superior parietal cortex (SPL1), and in superior (FEF) and inferior aspects of precentral 

cortex. Adapted from (Silver and Kastner, 2009). (B) Attention-related activations within 

parietal and frontal cortex in a spatial attention task. There is significant overlap between 

attention-related activations and topographic representations in higher-order cortex. Adapted 

from (Szczepanski et al., 2010). (C) Time series of fMRI signals in V4 and FEF. Directing 

attention to a peripheral target location in the absence of visual stimulation led to an increase 

of baseline activity (textured blocks), which was followed by a further increase after the 
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onset of the stimuli (gray shaded blocks) in V4, but not in FEF, where the initially stronger 

baseline increase was sustained, thus reflecting the attentional operations of the task and not 

sensory processing. Adapted from (Kastner et al., 1999) (D) Microstimulation of FEF 

(below the threshold that evokes an eye movement) induces attention-like increases in the 

spikes/s of V4 neurons with receptive fields that overlap the FEF site (black is baseline; red 

with microstimulation). Adapted from (Moore and Armstrong, 2003).
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Figure 3. Attention dynamically changes the effective connectivity between brain regions
(A) Attention modulates the synchrony between different brain regions. A minor subset of 

the effects of attention is outlined. Circles with letters refer to other parts of the figure. (B) 
Attentional modulation is specific to selected objects: synchrony between V4 and V1 is 

specific to those regions that encode the currently attended stimulus (red for a stimulus 

encoded by V1a; blue for V1b). Note that these changes in the pattern of synchrony overlay 

the underlying anatomy and can occur rapidly, with each shift in attention. Adapted from 

(Bosman et al., 2012). (C) There is also flexibility in the frequency of oscillations between 

brain regions. Internal (top-down) direction of attention and external (bottom-up) capture of 

attention emphasize different frequency bands between the same brain regions. Synchrony 

between prefrontal cortex (PFC) and parietal cortex (PPC) changed frequency depending on 
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the type of attention. When attention was externally captured by a salient stimulus, this was 

reflected in neural activity in PPC first, followed by PFC. In addition, synchrony between 

PFC and PPC was observed at high-frequencies (~45 Hz; shown as negative deflection). In 

contrast, when attention was internally directed by the memory of a target stimulus (as in 

visual search) neural activity was found first in PFC and then PPC and PFC-PPC synchrony 

was observed at low frequencies (~25 Hz; shown as positive deflection). Adapted from 

(Buschman and Miller, 2007) (D) Sub-cortical regions, such as the pulvinar, play an 

important role in attention. In addition, they may act to coordinate activity across cortical 

regions: attention increased low-frequency synchrony between the pulvinar and V4/TEO 

(left/right, respectively), when allocated at the receptive field (RF) represented by the 

recorded neurons (ATT to RF) relative to a different RF location (ATT away from RF). This 

may organize higher-frequency oscillations, facilitating the establishment of synchrony 

observed between cortical regions (as in B and C). Adapted from (Saalmann et al., 2012).
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Figure 4. Attention changes neural responses
(A) Attention increases the sensitivity of V4 neurons. Neurons increase their firing rate 

response to stimuli of increasing contrast; even without attention (gray line). Attending to 

the stimulus increases the response to stimuli at lower contrasts (black line; note leftward 

shift). Data is schematized from (Reynolds et al., 2000). (B) Attention reduces noise 

correlations in neural activity. Simultaneously recorded neurons often share uninformative 

‘noise’ signals. This is schematized in the two model neurons below. Noise is schematized 

as black letters in the encode ‘stream’, gray letters are ‘signal’. The two neurons share much 

of the same ‘noise’; reducing such noise makes the message encoded by both neurons 

clearer (‘toy car’). Attention has such an effect in the brain (top figure; black line is below 

gray line). Adapted from (Cohen and Maunsell, 2009). (C) Attention increases the 

synchrony of selected neurons. The synchrony between individual neurons and the 

population (as measured by the local field potential, LFP) increases with attention allocated 

at RF (‘attended’, red) relative to away from RF (‘unattended’, blue). This effect is specific 

to a ‘gamma’ oscillation at ~50 Hz (note that synchrony is reduced at low-frequency, ~10 

Buschman and Kastner Page 35

Neuron. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hz, oscillations). Adapted from (Fries et al, 2001) (D) Attention resolves competition 

between stimuli. Stimuli compete for representation in V4 neurons: the response to two 

stimuli (purple) is approximately the average of the response to either stimuli when 

presented alone (red, preferred, and blue, non-preferred). Attending to a single stimulus 

‘rescues’ this competition, causing the neuron to respond as if only the attended stimulus 

was presented (pink dashed line). Data is schematized from (Reynolds et al., 1999).
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Figure 5. Theory of local attention effects
We propose many of the effects of attention to be due to local interactions within a cortical 

region. Attentional selection interacts with bottom-up sensory drive (not shown) as well as 

object representations that have been embedded within the neural network through learning 

(A). Attention acts on these representations by changing interactions between excitatory 

neurons (green) and local inhibitory interneurons (red). In particular, pooling of responses 

by inhibitory interneurons could form the basis for normalization of excitatory responses 

(B). As noted in the main text, normalization likely plays a key role in perception and 

attention. Furthermore, rhythmic interactions between excitatory and inhibitory neurons is 

proposed to underlie high-frequency oscillations (C), which are increased with attention. 

These oscillations may play a fundamental role to temporally organize neural activity. For 

example, periods of inhibition may ‘reset’ the network, allowing it to explore more than one 

attractor state (details in main text).
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Figure 6. Cascades of spatial and featural attention across the visual hierarchy
The brain is a densely interconnected network and so attentional selections, whether (A) 
spatial or (B) featural, propagate up and down the visual hierarchy. In this way, they will 

interact (C), allowing spatial attention to lead to selection of objects with similar features or 

featural selection to drive spatial attention.
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