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The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth,
proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence
synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders
(ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological
conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on
common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a
phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin
homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as
a unifying theme in a subset of ASDs.
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Autism is a widespread disorder characterized by deficits in social
interactions, impairments in communication, and repetitive and
stereotypic behaviors. Identification of genetic markers has proved
difficult, because of the highly complex and variable nature of the
disease. Although autism spectrum disorders (ASDs) arise as a con-
sequence of mutations in genes with multiple molecular functions,
they appear to converge on common biological pathways to give rise
to autism-relevant behaviors (Abrahams and Geschwind, 2008).
One such pathway is the phosphatidylinositol 3-kinase (PI3K)–
mammalian target of rapamycin (mTOR) signaling cascade. The
mTOR pathway is a central regulator of a diverse array of cellu-
lar processes, including growth, proliferation, survival, and protein
translation that requires a modified guanosine, termed a cap, at the
5� end of the RNA. In the brain, components of the mTOR pathway
are present at synapses, in which they regulate dendritic spine mor-
phology and are essential for synaptogenesis. Growing evidence in-
dicates that dysregulation of mTOR is involved in human diseases,
including cancer, diabetes, and autism. Mutations in tuberous scle-
rosis complex 1 (TSC1), TSC2, neurofibromatosis 1 (NF1), and
phosphatase and tensin homolog (PTEN) lead to an overactivated
PI3K–mTOR pathway, autism-relevant behaviors, and tuberous
sclerosis, neurofibromatosis, or macrocephaly (Kwon et al., 2006).
Recent findings that PI3K–mTOR signaling is overactivated at syn-
apses of fragile X syndrome (FXS) mice (Sharma et al., 2010) and in

humans with FXS (Hoeffer et al., 2012) provide the first evidence
that genetic mutation not only of components within the mTOR
signaling cascade, but also distant regulatory proteins, can lead to
autism-related phenotypes. mTOR signaling and protein synthesis
are also impaired in a mouse model of Rett syndrome (Ricciardi et
al., 2011; Jiang et al., 2013). In this symposium, we focus on four
signaling mechanisms upstream and downstream of mTOR, includ-
ing the following: (1) the translation initiation machinery; (2)
metabotropic glutamate receptor 5 (mGluR5)–Homer scaffolds; (3)
mTOR-dependent synaptic plasticity; and (4) actin polymerization.
These four components of the mTOR signaling pathway, although
separate and distinct under physiological conditions, lead to a com-
mon pathological phenotype that is most closely associated with
ASDs and ASD-associated syndromes.

Exaggerated cap-dependent translation causes synaptic and
behavioral aberrations associated with ASDs
Excessive translation is posited to be a common molecular anomaly
that contributes to aberrant synaptic plasticity and behaviors associ-
ated with a number of neurodevelopmental disorders (Kelleher and
Bear, 2008; Hoeffer and Klann, 2010; Auerbach et al., 2011). This
idea was based primarily on the observation that FXS, the most com-
monly inherited form of mental retardation, has a high incidence of
autism and is caused by lack of fragile X mental retardation protein
(FMRP), usually a translational repressor (Darnell and Klann, 2013).
FXS model mice exhibit excessive protein synthesis, exaggerated
mGluR-dependent synaptic plasticity, and multiple autism-related
behaviors. In addition, it has been shown that FXS mice exhibit
upregulated mTOR complex 1 (mTORC1) signaling at hippocam-
pal synapses (Sharma et al., 2010; Ronesi et al., 2012), which result in
enhanced assembly of the cap-dependent translation initiation com-
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plex as measured by interactions of the eukaryotic initiation factor 4
(eIF4E; the cap-binding translation factor) with eIF4G (Sharma et
al., 2010; Ronesi et al., 2012) and enhanced activation of p70 S6
kinase 1 (S6K1) (Bhattacharya et al., 2012). Moreover, direct evi-
dence that upregulation of mTORC1 signaling plays a role in FXS
pathophysiology was provided in studies in which Fmr1 knock-out
(KO) mice were crossed with mice that lack both copies of the gene
that encodes S6K1 (Bhattacharya et al., 2012). The genetic reduction
of S6K1 prevented molecular, morphological, synaptic, and behav-
ioral phenotypes displayed by Fmr1 KO mice (Bhattacharya et al.,
2012). Notably, S6K1 has a wide range of substrates, many of which
are not translational control molecules (Magnuson et al., 2012).
Thus, direct evidence that excessive protein synthesis via S6K1 is a
causative factor for exaggerated plasticity and ASD-like behaviors is
still lacking in FXS mice (Darnell and Klann, 2013).

A direct genetic link between ASD and the cap-binding trans-
lation factor eIF4E was reported in 2009. It was shown that a boy
with classic autism had a de novo chromosome translocation be-
tween 4q and 5q, and the breakpoint site was mapped to an
alternative transcript of EIF4E (Neves-Pereira et al., 2009). Mu-
tation screening identified two additional unrelated autism fam-
ilies that harbored the same single nucleotide insertion in the
EIF4E promoter. In vitro studies demonstrated that this mutation
enhances the binding of a nuclear factor and EIF4E promoter
activity, suggesting that overexpression of eIF4E may be causative
for ASD. Moreover, because eIF4E– eIF4G interactions are ele-
vated in FXS model mice (Sharma et al., 2010), a similar aberrant
translational control mechanism may be involved in behavioral
abnormalities in FXS (Darnell and Klann, 2013).

The first direct evidence demonstrating that excessive cap-
dependent translation can result in ASD-like behaviors was pro-
vided by studies of transgenic mice that overexpress eIF4E
(Santini et al., 2013). It was observed that eIF4E transgenic mice
exhibit a 25–50% increase in eIF4E expression throughout the
brain (Santini et al., 2013). Increased expression of eIF4E resulted
in increased eIF4E– eIF4G interactions in the striatum and hip-
pocampus, which were blocked with intracerebroventricular
injections of 4EGI-1 (Santini et al., 2013), which blocks eIF4E–
eIF4G interactions (Moerke et al., 2007; Hoeffer et al., 2011). The
increase in eIF4E– eIF4G interactions resulted in exaggerated
protein synthesis, which also was blocked by 4EGI-1 (Santini et
al., 2013). Behavioral analysis demonstrated that the eIF4E trans-
genic mice display enhanced repetitive behaviors as measured by
self-grooming and marble burying. In addition, the eIF4E trans-
genic mice exhibited impaired arm choice reversal in the water-
based Y maze. These behavioral abnormalities were correlated
with exaggerated long-term depression (LTD) in both corticos-
triatal and hippocampal slices from the eIF4E transgenic mice.
The behavioral and synaptic plasticity abnormalities displayed by
the eIF4E transgenic mice could be reversed with 4EGI-1 treat-
ments (Santini et al., 2013). Consistent with these findings, it was
shown that mice that lack 4E-binding protein 2 (4EBP2), a re-
pressor of eIF4E, exhibit synaptic plasticity and behavioral phe-
notypes similar to those displayed by the eIF4E transgenic mice
(Banko et al., 2005; Gkogkas et al., 2013), which are reversed by
4EGI-1 (Gkogkas et al., 2013). In addition, it has been shown
that altered eIF4E-dependent translation plays a role in FXS.
Either genetic reduction or pharmacological inhibition of
eIF4E phosphorylation prevented molecular, morphological,
synaptic, and behavioral phenotypes exhibited by Fmr1 KO
mice (Gkogkas et al., 2014). Notably, excessive translation of
matrix metalloproteinase-9, which plays an important role in
FXS pathophysiology (Sidhu et al., 2014), was normalized in

FXS mice with reduced eIF4E phosphorylation (Gkogkas et al.,
2014). Finally, crossing eIF4E transgenic mice with Fmr1
KO mice causes cognitive dysfunction in hippocampus-
dependent memory tasks in the double mutant mice that are
not exhibited by either the eIF4E transgenic mice or the Fmr1
KO mice (Huynh et al., 2015). Together, these findings indi-
cate that increased eIF4E-dependent translation can cause
synaptic dysfunction and behavioral aberrations associated
with intellectual disabilities and ASD.

mGluR5–Homer scaffolds regulate signaling to PI3K and
mTOR: implications for FXS and ASDs
Activation of the PI3K–mTORC1 pathway and signaling to transla-
tion control is necessary for rapid translation of new proteins and
induction of translation-dependent long-term synaptic plasticity in
response to Gq-coupled neurotransmitter receptors, including the
mGluR5 and M1 muscarinic acetylcholine receptors (Hou and
Klann, 2004; Volk et al., 2007). Furthermore, alterations in mGluR5
signaling to mTORC1 and translation-dependent synaptic plasticity
occur in many mouse models of autism, such as FXS (Hou et al.,
2006; Nosyreva and Huber, 2006; Sharma et al., 2010), tuber-
ous sclerosis (Auerbach et al., 2011), Angelman syndrome,
16p11.2 microdeletion (Tian et al., 2015), and may contribute
to disease-relevant behaviors. Recent work has provided a bet-
ter understanding of the molecular mechanisms that couple
mGluR5 signaling to mTORC1 and translational activation in
both healthy and diseased neurons.

Pharmacological activation of acute hippocampal slices
from wild-type mice with the group 1 mGluR agonist, (RS)-
3,5-dihydroxyphenylglycine, results in a rapid activation of
the PI3K–mTORC1 pathway as measured with phospho-
specific antibodies to downstream effectors, such as p70 ribo-
somal S6K and 4EBP, which promotes mRNA translation
initiation (Hou and Klann, 2004; Ronesi and Huber, 2008).
Importantly, activation of PI3K–mTORC1 is necessary for
mGluR5-stimulated LTD and synapse elimination, both of
which rely on translation of dendritic mRNAs (Hou and
Klann, 2004; Wilkerson et al., 2014). In Fmr1 KO mice, a
mouse model of FXS, mGluR5-induced activation of PI3K and
mTORC1 is deficient (Ronesi and Huber, 2008), but basal
levels of PI3K and mTORC1 activity, as well as protein trans-
lation rates, are elevated in Fmr1 KO cortical regions. Basal or
constitutive activity of mGluR5 may drive these changes, be-
cause enhanced PI3K activity and translation rates in Fmr1 KO
tissues are sensitive to the mGluR5 antagonist MPEP (Gross et
al., 2010; Osterweil et al., 2010; Sharma et al., 2010; Ronesi et
al., 2012). These results suggest that there is constitutive sig-
naling of mGluR5 to the PI3K–mTORC1 pathway in FXS that
may reduce or occlude agonist-induced activation of the
pathway.

Recent work by Huber and colleagues suggests that dissociation
of mGluR5 with its postsynaptic scaffolding protein Homer medi-
ates the abnormal mGluR5 signaling to PI3K–mTORC1 in the Fmr1
KO mouse (Giuffrida et al., 2005; Ronesi et al., 2012). The Homer
family of proteins binds to the intracellular C-terminal tail of group
1 mGluRs and function to scaffold mGluRs to signaling complexes
within the postsynaptic density through other Homer binding pro-
teins (Shiraishi-Yamaguchi and Furuichi, 2007). Homers (Homer
1–Homer 3) share a common EVH1 domain at the N terminus,
which binds to mGluR1�, mGluR5, and other scaffolding proteins
(e.g., SHANK), ion channels (e.g., TrpC, CaV1.2), and signaling
pathways [e.g., PI3K enhancer (PIKE), IP3 receptor]. Homers mul-
timerize through their coiled-coil domains to form large signaling
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complexes at the postsynaptic density (Shiraishi-Yamaguchi and Fu-
ruichi, 2007). An activity-dependent short variant of Homer
(Homer1a) lacks a coiled-coil domain and disrupts Homer scaffolds
by competing with long Homers for mGluR5 and other Homer
interacting proteins (Xiao et al., 1998).

A group 1 mGluR agonist stimulates association of Homer
with PIKE, a GTPase that enhances PI3K activity by binding to
the p85 subunit of PI3K. Homer and PIKE are both necessary for
mGluR5 to stimulate PI3K activity in neurons (Rong et al., 2003).
Consistent with this finding, acute disruption of mGluR5–
Homer interactions in hippocampal slices, using a peptide that
mimics the proline-rich Homer binding motif in the C terminus
of mGluR5, blocks agonist-induced activation of PI3K–mTOR,
mGluR–LTD, and the rapid translation of proteins required for
LTD, such as Arc (Ronesi and Huber, 2008; Ronesi et al., 2012).
In Fmr1 KO forebrain, mGluR5 is less associated with long
Homer isoforms and more associated with Homer1a, suggesting
that the disrupted mGluR5–Homer mediates the deficit in
mGluR5 signaling to PI3K–mTOR and translation machinery in
Fmr1 KO neurons (Giuffrida et al., 2005; Ronesi et al., 2012).
In support of this idea, genetic deletion of Homer1a restores
mGluR5–Homer scaffolds and mGluR5-induced activation of
mTORC1 pathway, as well as mGluR5-induced activation of
translation initiation (Ronesi et al., 2012). Homer is not neces-
sary for all mGluR5 signaling because peptide disruption of
mGluR5–Homer or Fmr1 KO has no effect on agonist-induced
ERK activation in hippocampal slices (Ronesi and Huber, 2008;
Ronesi et al., 2012), suggesting a specific role for Homer in cou-
pling mGluR5 to PI3K–mTORC1 via PIKE.

Homer1a binding results in constitutive, agonist-independent ac-
tivity of mGluR5 (Ango et al., 2001), suggesting that the
Homer1a-bound mGluR5 in Fmr1 KO neurons may constitu-
tively signal and contribute to the enhanced, mGluR5-dependent
PI3K, mTORC1, translation initiation complex formation, and
basal translation rates. In support of this idea, acute peptide-
mediated disruption of mGluR5–Homer results in elevated pro-
tein synthesis rates in wild-type slices but not those from the
Fmr1 KO slices. Homer1a deletion in the Fmr1 KO rescues ele-
vated protein synthesis rates and enhanced translation initiation
complex formation (Ronesi et al., 2012). The role of Homer or
constitutive mGluR5 activation in driving elevated mTORC1 in
Fmr1 KO is currently unknown. There may also be some regional
differences in the contribution of PI3K–mTORC1 to enhanced
basal translation rates in Fmr1 KOs. However, in both regions,
protein synthesis rates are sensitive to mGluR5 antagonism, sug-
gesting the constitutive mGluR5 signaling, as a result of
Homer1a interactions, is driving signaling to enhance protein
synthesis rates. What is unclear at this time is whether the
enhanced constitutive signaling of mGluR5 saturates the
PI3K–mTORC1 pathway, which prevents subsequent agonist-
induced activation of the pathway, or whether Homer cou-
pling is selectively required for agonist-induced, but not
constitutive, activation of PI3K–mTORC1.

The blockade of agonist-induced activation of PI3K–mTORC1
by disruption of Homer interactions may have additional conse-
quences on mGluR5-dependent translational activation (Fig. 1).
mGluRs stimulate phosphorylation of elongation factor 2 (EF2)
through activation of EF2 kinase (EF2K). Although P-EF2 inhibits
elongation rate, EF2K and moderate inhibition of elongation are
necessary for mGluR-induced synthesis of Arc, as well as mGluR–
LTD (Park et al., 2008). Subthreshold inhibition of global elongation
is thought to promote rate-limiting translation factors, which trans-
late mRNAs that are poorly initiated and cannot compete effectively

for these factors (Scheetz et al., 2000). EF2K is a Homer binding
protein and also binds directly to mGluR5 (Park et al., 2008). Homer
appears not to be required to couple mGluR5 activation to EF2K. On
the contrary, peptide-mediated disruption of Homer–mGluR5 en-
hances agonist-induced activation of P-EF2, suggesting that Homer
inhibits activation of EF2K (Ronesi et al., 2012). Consistent with this
idea, agonist-induced activation of P-EF2 is enhanced in hippocam-
pus of Fmr1 KO mice and rescued by deletion of Homer1a (Ronesi et
al., 2012). Although as yet untested, the bidirectional effects of
Homer on mGluR5 stimulation of mTORC1 and EF2K may be ex-
plained by the known inhibitory effects of S6K phosphorylation of
EF2K. Homer disruption, via peptide or in Fmr1 KOs, prevents
mGluR5 activation of mTORC1–S6K, which would also be expected
to block the S6K phosphorylation and inhibition of EF2K, thus re-
sulting in an overall increase in mGluR stimulation of P-EF2. Thus,
the Homer–mGluR5 scaffold functions to balance mGluR5 signal-
ing pathways for optimal translational activation. Homer is neces-
sary for stimulation of translation initiation through activation of
the PI3K–mTOR pathway (Ronesi and Huber, 2008) and limiting
activation of EF2K and subsequent inhibition of elongation, which is
necessary for rapid translation of new proteins required for synaptic
plasticity.

Abnormal mGluR5–Homer scaffolds may be a common defi-
ciency across different genetic causes of autism. Recent work in-
dicates that mGluR5–Homer interactions are enhanced in the
Angelman syndrome mouse model (Ube3A maternal deletion),
which may contribute to impairments in mGluR-induced LTD
(Pignatelli et al., 2014). More work is needed to know whether
and how the enhanced mGluR5–Homer interactions regulate
Angelman syndrome pathophysiology.

Dysregulation of mTOR signaling is critical to impaired
synaptic plasticity and aberrant spine morphology in a mouse
model of FXS
FXS is the most common heritable form of intellectual disabilities
and a leading genetic cause of autism. Whereas other syndromic
ASDs arise from mutations in components of the PI3K–mTOR
pathway, FXS arises from silencing of the gene encoding FMRP
(Fmr1). FMRP is an RNA-binding protein that represses transla-
tion of a large array of RNAs, including PIKE. PIKE, an upstream
activator of mTOR and identified target of FMRP (Darnell et al.,
2011), is elevated at the synapses of Fmr1 KO mice (Gross et al.,
2010; Sharma et al., 2010), humans (Hoeffer et al., 2012), and flies
(McBride et al., 2005), providing a functional link between loss of
FMRP and overactivated mTOR signaling (Fig. 2).

Recent work from Sharma et al. (2010) has demonstrated
that, in hippocampal neurons of Fmr1-deficient mice, upregu-
lation of the PI3K-enhancer PIKE results in overactivation of
PI3K/Akt and mTOR signaling in the hippocampus, as as-
sessed by several functional readouts, including mTOR phos-
phorylation, binding to the regulatory protein Raptor, and
formation of the eIF4F translation initiation complex. More-
over, synaptic plasticity in the form of mGluR–LTD is exag-
gerated and insensitive to the mTOR inhibitor rapamycin at
hippocampal CA3–CA1 synapses of Fmr1-deficient mice
(Sharma et al., 2010). These findings are consistent with a
model in which, in the FXS mouse, the protein(s) required
for mGluR-dependent AMPA receptor internalization and
mGluR–LTD are already accumulated at CA1 synapses under
basal conditions (Bear et al., 2004). These observations pro-
vide an important functional link between overactivated
mGluR signaling, aberrant protein synthesis, and exaggerated
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mGluR–LTD in Fmr1-deficient mice (Sawicka and Zukin,
2012).

A hallmark feature of FXS that is also observed in Fmr1-
deficient mice is synaptic spine abnormalities (Bagni and Gree-
nough, 2005). Spines on hippocampal and cortical neurons of
Fmr1 KO mice exhibit enhanced density and are thinner and
longer than those of age-matched wild-type mice, resembling an
immature morphology. These observations indicate that FMRP

might normally repress local translation of proteins that inhibit
synapse maturation, stabilization, and elimination (Bagni and
Greenough, 2005). Cofilin is an actin depolymerizing factor and
central regulator of apoptosis, activity-dependent synaptic plas-
ticity, and spine morphology. Emerging evidence indicates that
cofilin signaling is downstream of the mTORC2 pathway, an
mTOR signaling complex insensitive to rapamycin and a critical
regulator of embryonic development, actin cytoskeleton dynam-

Figure 1. Working model of Homer scaffolds in agonist-stimulated mGluR5 signaling to translation machinery in wild-type (A) and FXS model (B) cortical neurons.
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ics, synaptic efficacy, and the consolidation of long-term mem-
ory. Dysregulation of cofilin signaling has been linked to aberrant
spine morphology in Tsc1�/� and Tsc2�/� mice (Tavazoie et al.,
2005). Because mTOR is overactivated in FXS and is an upstream
regulator of the postulated cofilin signaling pathway, an intrigu-
ing possibility currently under exploration is that aberrant cofilin
signaling may be causally related to the spine abnormalities that
are a neuroanatomical hallmark of FXS (Pyronneau et al., 2015)
reminiscent of the morphological abnormalities and synaptic
deficits observed in PTEN mutant mice (Kwon et al., 2006;
Takeuchi et al., 2013).

mTORC2 and its role in ASDs
The evolutionarily conserved mTOR forms two functionally dis-
tinct complexes. mTORC1, which consists of mTOR, Raptor,
and mLST8 (G�L), is sensitive to rapamycin and is thought to
regulate mRNA translation rates. mTORC2 is mostly insensitive
to rapamycin and contains the core components mTOR, mSIN1,
mLST8, and Rictor. Rictor is highly expressed in the brain, in
which it associates with membranes and regulates the actin cyto-
skeleton. Dysregulation of mTORC1 and mTORC2 signaling ap-
pears to have a crucial role in memory disorders, such as the

cognitive deficits associated with ASDs. Notably, the activity of
mTORC2 is altered in the brain of ASD patients harboring mu-
tations in PTEN and/or TSC1 and TSC2 (two upstream negative
regulators of mTORC1; Costa-Mattioli and Monteggia, 2013;
Buffington et al., 2014). These findings raise the intriguing pos-
sibility that the neurological dysfunction in ASD is caused by
dysregulation of mTORC2 rather than by mTORC1 signaling.
Indeed, mTORC2 activity is altered in several cognitive disorders,
including Huntington’s disease, parkinsonism, Alzheimer-type
dementia, and ASDs. Recent work from Huang et al. (2013)
found that mTORC2 is an essential component of memory con-
solidation via its regulation of actin polymerization. Conditional
deletion of Rictor in the postnatal murine forebrain greatly re-
duces mTORC2 activity and selectively impaired both long-term
memory and the late phase of hippocampal long-term potentia-
tion (L-LTP). A comparable impairment of long-term memory is
also discovered in dTORC2-deficient Drosophila, highlighting
the evolutionary conservation of long-term memory in the
mTORC2 signaling pathway. Basal levels of actin polymerization
are reduced in the hippocampus of mTORC2-deficient mice, and
treatment with jasplakinolide restores actin polymerization to
wild-type levels and rescues both L-LTP and long-term memory.

Figure 2. Scheme showing the link between deficits in FMRP and overactivated mTOR signaling in the dendritic spine. Our findings support a model whereby FMRP represses PIKE, thereby
inhibiting mTOR signaling, in wild-type mice. Under basal conditions, mTOR regulates LIM kinase and cofilin through Rac1, a member of the Rho family of GTPases. In FXS mice, we propose that
dysregulation of mTORC2 leads to impaired actin polymerization and spine structure. DHPG, (RS)-3,5-dihydroxyphenylglycine.
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Moreover, a small-molecule activator of mTORC2 activity con-
verts early LTP into L-LTP and enhanced long-term memory.
These results identify both the molecular and synaptic events
occurring upstream and downstream of mTORC2 in the brain
and suggest that mTORC2 could be a therapeutic target for the
treatment of cognitive dysfunction.

The topics highlighted in this symposium support the central
hypothesis that dysregulation of mTOR-dependent signaling,
both upstream and downstream of its kinase activity, contributes
to the pathophysiology associated with multiple ASDs. Muta-
tions in components of the mTOR signaling cascade, including
TSC1, TSC2, NF1, and PTEN, as well as the more distant regula-
tory proteins FMRP and MeCP2, present similar phenotypes in
both mice and humans. Although these ASD-associated syn-
dromes have their own distinct clinical features, the unifying
theme of mTOR dysregulation underscores the significance of
synaptic deficits and its relevance to autism-relevant behaviors,
such as social deficits and cognitive impairment. On the basis of
observations that mTOR signaling, synaptic plasticity, and pro-
tein translation are overactivated in many of these disorders,
compounds that can potentially inhibit the mTOR pathway rep-
resent promising therapeutic candidates for their treatment. In-
deed, the mTORC1 inhibitor rapamycin has shown promising
results in PTEN KO mice (Zhou et al., 2009) and TSC2�/� mice
(Ehninger et al., 2008). Thus, interventions that target mTOR
signaling should be at the leading edge of future translational
research in the autism field.

References
Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the

threshold of a new neurobiology. Nat Rev Genet 9:341–355. CrossRef
Medline
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