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Role of inflammation in the hyperreactivity of the

airways in asthma

Although asthma is usually diagnosed because of
spontaneous and reversible attacks of broncho-
constriction, its most characteristic feature is the
increased bronchial reactivity to a large variety of
pharmacological and physical agents, such as hist-
amine, methacholine, leukotrienes, prostaglandins,
cold air, and dust. Thus asthmatic subjects develop a
greater degree of bronchoconstriction from exposure
to these stimuli than do subjects with normal bron-
chial reactivity. That this feature of asthmatic airways
appears to have a fundamental role in the patho-
physiology of asthma is supported by the observation
that the severity of the disease correlates closely with
the degree of hyperreactivity.!

The precise mechanism underlying the hyper-
reactivity of asthma is unknown. Whether this abnor-
mality is inherent in the intrinsic property of airway
smooth muscle or is at the level of its neural control
remains unclear. The possibility that airways
inflammation could be related to the development
and maintenance of the bronchial hyperreactivity of
asthma has been the subject of increasing research in
recent years. Indeed, inflammation of the airways
may create conditions that have themselves been pro-
posed as possible mechanisms of hyperreactivity,
such as bronchial oedema, mucosal hyper-
permeability, exposure of epithelial sensory nerve
endings, and release of inflammatory mediators.?
This article will review (@) the recent experimental
data linking the development of airways
inflammation to the induction of airways hyper-
reactivity and (b) the interactions between
inflammatory cells and mediators that may be crucial
in the pathophysiology of airways hyperreactivity.

Airway inflammation in asthma

The general features of an inflammatory response
include vascular dilatation and increased vascular
permeability with the formation of an exudate consis-
ting of both plasma proteins and migrating
inflammatory cells. Inflammatory reactions that
affect mucous membranes such as those of the air-
ways are also characterised by mucus hypersecretion
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and shedding of the epithelial lining cells into the
lumen.? These features have been described in the air-
ways of subjects dying of acute asthma,*® with an
inflammatory cell infiltration consisting predom-
inantly of eosinophils and appreciable epithelial cell
loss, as shown by the denudation of the airway sur-
face and by clumps of epithelial cells in sputum (Cre-
ola bodies). Although no detailed histological infor-
mation of the airways of individuals with stable
asthma is available, bronchoalveolar lavage of these
subjects has shown that there are more eosinophils
and neutrophils within the airway lumen than in nor-
mal subjects.®” Biopsies of the airway mucosa of
asthmatic patients have confirmed the presence of
epithelial cell damage, particularly of the ciliated cell
type,® and of the submucosal infiltration of
eosinophils.® A persistent low grade inflammatory
response is therefore present in the airways of those
with stable asthma.

Relationship of acute inflammation to airways
hyperreactivity

One approach to evaluating the importance of
inflammatory changes in asthma has been to examine
the effect of inducing acute inflammation of the air-
ways on reactivity of the airways. In several studies
the presence of migrating cells such as eosinophils and
neutrophils in the airways has been used as the sole
index of inflammation, and the temporal relationship
of the presence of these cells to the development of
airways hyperreactivity has been examined. The
effects of a wide range of inflammatory stimuli—for
example, the atmospheric pollutant ozone, environ-
mental antigens, and chemicals encountered at work,
such as toluene diisocyanate—have been investigated
in various species, including man.

RESPONSE TO OZONE

Exposure to ozone results in a transient increase in
non-specific airways reactivity in the dog,'® the
guinea pig,!' and man.!? In the dog the onset of
hyperreactivity is coincident with the presence of
neutrophil chemotaxis in the airway wall!® and with
the recovery of increased numbers of neutrophils and
desquamated epithelial cells in bronchoalveolar
lavage fluid.!'* Depletion of circulating neutrophils
with hydroxyurea inhibits the hyperreactivity,
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implying that the neutrophil is an important effector
cell in the response.!® Hydroxyurea may, however,
have had effects on other cells apart from neutrophils.
In man exposure to a lower concentration of ozone
results in a more modest increase in reactivity to
methacholine, an effect that is also associated with an
influx of neutrophils in bronchoalveolar lavage
fluid.'®

Subsequent studies in the guinea pig have high-
lighted the species differences that exist in the
response to the same stimulus, ozone. Neutrophil
infiltration into the airways is absent during the phase
of increased reactivity but occurs during the remission
of hyperreactivity.!” A similar sequence of events was
seen when guinea pigs were exposed to cigarette
smoke!®; the hyperreactivity induced by this agent
occurred during the phase of fluid and protein extra-
vasation, associated with an increase in airways per-
meability, possibly resulting from disruption of epi-
thelial tight junctions.!® The resulting increase in the
exposure of epithelial sensory nerve fibres to inhaled
substances could be a mechanism for hyperreactivity,
as was first suggested for the exaggerated broncho-
motor response resulting from upper respiratory tract
infections.?® Guinea pigs exposed to ozone are, how-
ever, hyperreactive to inhaled as well as intravenous
methacholine,!! and asthmatic patients with sus-
tained hyperreactivity have normal respiratory
mucosal permeability.?! In contrast to these studies
of ozone and cigarette smoke, the hyperreactivity
induced by toluene diisocyanate in the guinea pig
coincides with the peak of neutrophil influx in the
airway wall,22 suggesting not only species differences
but also stimulus specificity with regard to the
temporal sequence of hyperreactivity and the
components of the inflammatory response.

RESPONSE TO ANTIGEN

Of greater relevance to asthma is the effect of
responses mediated by immunoglobulin E (IgE) in
sensitised subjects. A single inhalation of antigen in
individuals with atopic asthma results in an early and
late phase bronchonconstrictor response, and in a
prolonged increase in airways reactivity that is associ-
ated with exacerbation of asthmatic symptoms?3;
while avoidance of antigen over a period of two to
three months improves asthma and results in a
decrease in airways reactivity.2* The capacity of anti-
gen for causing an inflammatory response in the skin
of atopic subjects with an infiltration of mononuclear
cells, neutrophils, and eosinophils has been well docu-
mented.2® In the ragweed sensitised dog and rabbit
the development of airways hyperreactivity is tempo-
rally associated with an increased number of neu-
trophils in bronchoalveolar lavage fluid.2¢27 Only
antigen challenged dogs with neutrophilia in the

bronchoalveolar lavage fluid developed airways
hyperreactivity.?® By contrast, in the asthmatic sub-
jects bronchoalveolar lavage fluid obtained during the
late phase response to antigen has showed an increase
in eosinophils and in the concentration of eosino-
philic cationic protein, the latter reflecting eosinophil
degranulation,?® although there were no significant
changes in numbers of neutrophils recovered. These
asthmatic subjects with antigen induced late phase
responses would have shown increases in reactivity,?®
and therefore eosinophils may play a part in the
pathophysiology of airways hyperreactivity in
asthma.

Putative role of inflammatory cells and mediators in
airways hyperreactivity

The foregoing studies support the notion that
inflammatory stimuli delivered to the airways activate
cells within the airways (“primary effector cells”) to
release mediators that are chemotactic for cells
derived from the circulation (‘“‘secondary effector
cells”). The precise role of these cells and of their
interactions remains to be defined, but these cells and
their mediators are potential modulators of airways
reactivity.

PRIMARY EFFECTOR CELLS

Mast cells

The mast cell has been proposed as the initiator of
inflammatory responses to both allergic and non-
allergic stimuli in the airways.3° Although mast cells
are abundant in lung tissue, they form a relatively
small proportion of the cells recovered from the
lumen of the airways of normal and asthmatic sub-
jects.” 3! Tt has been suggested that activation and
degranulation of these relatively few intraluminal
mast cells leads to increased mucosal permeability,
with subsequent activation of tissue mast cells.32 The
mast cell releases a wide array of inflammatory medi-
ators that may mimic some of the features of asthma,
including smooth muscle contraction and mucus
secretion.3° It also generates chemotactic factors for
neutrophils and eosinophils, such as hydroxy-
eicosatetranoeic acid (HETE) and leukotriene
B4.3°33 The fact that 15-HETE generated from
eosinophils* and airway epithelial cells*> and major
basic protein released from eosinophils can activate
mediator release from mast cells3® 37 is an illustration
of the highly complex and interdependent roles of the
different cell types present in inflamed airways.

Alveolar macrophages

Alveolar macrophages are in greater abundance
within the airway lumen than are mast cells, and they
also possess the capacity to generate chemotactic fac-
tors for eosinophils and neutrophils.3® 3° This may be



achieved through ‘the activation of their low affinity
surface IgE receptors by antigen.*® In addition, the
capacity of alveolar macrophages for releasing plate-
let activating factor*! provides another mechanism
for eosinophil chemotaxis into the airways because
platelet activating factor (PAF) aerosolised into the
airways of baboons causes eosinophilia in bron-
choalveolar lavage fluid.*?

Epithelial cells

The observation that in tracheal biopsy specimens
from dogs exposed to ozone the concentration of
migrating neutrophils was higher in the epithelial
layer than in the subepithelium suggests that the
airway epithelium could be a source of chemotactic
factors for neutrophils.!® In the presence of arach-
idonic acid canine and human tracheal epithelial cells
in vitro generate substantial amounts of S5-lipoxy-
genase*? and 15-lipoxygenase metabolites,® includ-
ing leukotriene B4 and 8,15-di-HETE, which are both
neutrophil chemotactic agents.

SECONDARY EFFECTOR CELLS
Eosinophils and neutrophils

The recruitment of the eosinophil in preference to the
neutrophil to the human asthmatic airway when the
chemotactic agents released by primary effector cells
are active for both cell types remains to be explained.
The infiltrating eosinophil can generate mediators
that play a part in enhancing airways reactivity.
Eosinophil cationic protein and major basic protein,
both major components of eosinophilic granules,**
are cytotoxic to the respiratory epithelium*® and
could therefore account for the denudation of the epi-
thelium seen in asthma.*® Because airway epithelium
elaborates a smooth muscle relaxant factor that
remains to be identified,*” *® epithelial denudation
may underlie the exaggerated response of the muscle
to bronchoconstrictor substances. Eosinophils have
the capacity to generate sulphidopeptide leukotrienes,
notably leukotriene C4,*° and also the potent
inflammatory mediator PAF.5° Although both medi-
ators are potent bronchoconstrictors, only PAF has
been reported to induce a transient increase in air-
ways reactivity in several species, including the guinea
pig,*! the dog,>? and man.*? Interestingly, PAF pro-
duction is possibly enhanced through the interaction
between the alveolar macrophage and the eosinophil,
as more eosinophils are recruited through the gener-
ation of PAF by both cell types.

Although the neutrophil is less conspicuous than
the eosinophil in the airway wall of asthmatic sub-
jects, it is an extremely potent cell, capable of gener-
ating prostaglandins and thromboxane, leukotriene
B4, and PAF; not surprisingly, it has been implicated
in ozone induced and antigen induced hyperreactivity
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in dogs and rabbits respectively.!®5* Supernatants
from phagocytosing neutrophils in vitro may induce
hyperreactivity when nebulised into the airways of
rabbits but the responsible mediator has yet to be
identified.%®

Platelets

A role for the platelet has also been suggested because
platelet depletion prevented PAF induced airways
hyperreactivity in guinea pigs,>! implying that this
effect of PAF is mediated through the recruitment of
platelets to the airways. After antigen inhalation chal-
lenge of asthmatic subjects platelets have been recov-
ered in lavage fluid,*® and are activated in the circu-
lation.>” The mechanism by which platelets may
affect airway function remains to be elucidated, but
the close apposition of these cells to airway smooth
muscle in guinea pigs challenged with PAF*® suggests
that they may have a direct effect, perhaps through
the release of mediators. Platelets can also be primar-
ily activated through an IgE dependent mechanism.>°

MEDIATORS OF AIRWAYS HYPERREACTIVITY

The role of several mediators released during airway
inflammation has already been mentioned. While
some of these mediators, such as PAF, may induce
airways hyperreactivity through the activation of
intermediary cells, others—for example, the cyclo-
oxygenase product prostaglandin F;,°°—may act
directly. Cyclo-oxygenase metabolites have been
implicated in ozone induced hyperreactivity in dogs
because it is blocked by indomethacin.5! This effect,
however, is species dependent: in the guinea pig
indomethacin had no effect but inhibition of the lip-
oxygenase pathway of arachidonic acid metabolism
was effective.%? The role of cyclo-oxygenase and lip-
oxygenase products in the induction of hyper-
reactivity in man remains to be elucidated but the late
phase bronchoconstrictor response after antigen chal-
lenge is known to be inhibited by indomethacin.%3
Direct potentiation of airway smooth muscle con-
traction in vitro by inflammatory mediators, such as
5-HETE®* and leukotrienes C4 and D4,%% has been
reported. Whether these effects are at the level of
membrane binding or are due to changes in calcium
fluxes remains to be determined. It seems unlikely
that increases in the affinity of receptors or in their
numbers explain hyperreactivity since this character-
istic property of asthmatic airways occurs in response
to a wide range of bronchoconstrictor agents in vivo.
Because airway smooth muscle responsiveness in
vitro of a group of subjects with wide ranging reac-
tivities in vivo are similar,%® 87 it has been suggested
that airways hyperreactivity may not result from an
intrinsic abnormality of airway smooth muscle. These
results, however, were obtained from patients with
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chronic obstructive airways disease but not from
asthmatic patients.

Inflammatory mediators may also influence reac-
tivity through neural mechanisms. Augmented release
of acetylcholine from postganglionic nerve endings by
serotonin®® or thromboxane A,%® has been sug-
gested, but the failure of anticholinergic drugs to
inhibit antigen induced hyperreactivity in man does
not support this mechanism.”® Local axon reflexes
may be sensitised after epithelial damage and local
release of inflammatory mediators such as brady-
kinin, with the liberation of neuropeptides such as
substance P; this could enhance the effect of other
bronchoconstrictor substances.”! Finally, because
several putative mediators in asthma can increase
vascular permeability in the airways,’? the resulting
oedema of the airway wall may theoretically
contribute to the enhancement of airways reactivity
through geometric factors.”?

Conclusion

The interaction of inflammatory cells and mediators
with airway smooth muscle and its neural control
may form the basis for the exaggerated airway
responses in asthma. The initial clinical and animal
studies have been mainly descriptive, but they
strongly suggest a role for inflammatory cells in alter-
ing airways reactivity. In vitro studies of these cells
and of the mediators they generate have indicated
several mechanisms by which airways hyperreactivity
could occur. The initiating stimulus may determine
the action of specific effector cells and cellular activa-
tion pathways in this process. Future research should
be devoted to examination of the direct effect of
inflammatory cells in the airways by experimental
techniques already available. The mechanisms by
which inflammation in the airways is maintained once
it is initiated remain unclear; possibly the persistence
of airways hyperreactivity in asthma results from
a defect in the switching off of the inflammatory
process. Further understanding of the basis for the
airways hyperreactivity in asthma will depend on an
interdisciplinary approach using the methods of
physiology, pharmacology, biochemistry, and cell
biology.

I thank Professor PJ Barnes for his constructive
suggestions.
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