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Qnr is a plasmid-encoded and chromosomally determined protein that protects DNA gyrase and topoisomerase IV from inhibi-
tion by quinolones. Despite its prevalence worldwide and existence prior to the discovery of quinolones, its native function is not
known. Other synthetic compounds and natural products also target bacterial topoisomerases. A number were studied as molec-
ular probes to gain insight into how Qnr acts. Qnr blocked inhibition by synthetic compounds with somewhat quinolone-like
structure that target the GyrA subunit, such as the 2-pyridone ABT-719, the quinazoline-2,4-dione PD 0305970, and the spiropy-
rimidinetrione pyrazinyl-alkynyl-tetrahydroquinoline (PAT), indicating that Qnr is not strictly quinolone specific, but Qnr did
not protect against GyrA-targeting simocyclinone D8 despite evidence that both simocyclinone D8 and Qnr affect DNA binding
to gyrase. Qnr did not affect the activity of tricyclic pyrimidoindole or pyrazolopyridones, synthetic inhibitors of the GyrB sub-
unit, or nonsynthetic GyrB inhibitors, such as coumermycin A1, novobiocin, gyramide A, or microcin B17.Thus, in this set of
compounds the protective activity of Qnr was confined to those that, like quinolones, trap gyrase on DNA in cleaved complexes.

Qnr was discovered as a plasmid-encoded protein that reduces
susceptibility to quinolones (1). Quinolones are synthetic

compounds that target the essential bacterial enzymes DNA gy-
rase and topoisomerase IV, homologous tetramers composed of
GyrA and GyrB or ParC and ParE subunits, respectively, that in-
troduce negative supercoils or unknot and decatenate the DNA
helix with energy from ATP hydrolysis (2).Qnr is a pentapeptide
repeat protein that blocks quinolone inhibition of both topoisom-
erases and binds to each of their subunits as well as to the holoen-
zymes (3–5). Many bacteria have qnr-like genes on the chromo-
some, some, especially in aquatic bacteria, closely related to
plasmid-determined qnr varieties (6–8). The native function of
these proteins, which clearly antedate the clinical use of quino-
lones, is not known.

A number of other agents target topoisomerases. Well-studied
natural products include coumermycin A1 (9, 10), gyramide A
(11), microcin B17 (12), novobiocin (9, 10), and simocyclinone
D8 (13, 14). From mutational and other studies the sites of action
of many of these agents are known. For example, the primary site
of resistance mutations for quinolones in Gram-negative bacteria
is a region on the GyrA subunit known as the quinolone resis-
tance-determining region (QRDR) (15), while novobiocin targets
ATPase activity of the GyrB subunit (9). Qnr does not protect
against novobiocin inhibition of gyrase (16), but the protective
effect of Qnr on other natural products is not yet known. Medic-
inal chemists have synthesized synthetic compounds of various
structures intended to act on gyrase at sites different from those
directly affected by quinolones, especially the GyrB subunit.
Whether Qnr protects gyrase from such compounds has not been
investigated. The aim of this study was to use such natural and
synthetic inhibitors as molecular probes to gain insight into how
Qnr protects DNA gyrase.

MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. Strains and plasmids
used are shown in Table 1. Strains were routinely grown in Luria-Bertani
broth at 37°C. Culture plates contained Mueller-Hinton agar (Becton,
Dickinson and Co., Sparks, MD). Plasmids were transferred to Escherichia

coli J53 Azir (azide resistant) by transformation or conjugation using 100
�g/ml of ampicillin, 25 �g/ml of ceftazidime, or 25 �g/ml of chloram-
phenicol for selection and, where necessary, 200 �g/ml of sodium azide
for counterselection. Isopropyl-�-D-thiogalactopyranoside (IPTG) at 100
�M was used to maximize QnrB production with M15 pREP3 pQE-60-
QnrB1.

Susceptibility testing. Disk and agar dilution susceptibility testing
was performed as described by the CLSI, using Mueller-Hinton agar, an
inoculum of 104 CFU, and 16 to 20 h of incubation at 37°C (17). E. coli J53
Azir and ATCC 25922 were used for quality control. Blank disks were
obtained from Becton, Dickinson, and Co.

Chemicals. Ciprofloxacin, coumermycin A1, and novobiocin came
from Sigma-Aldrich Co., St. Louis, MO. ABT-719 was provided by Abbott
Laboratories, Abbott Park, IL. PD 0305970 came from Pfizer Global Re-
search and Development, Ann Arbor, MI. C3 and C4 came from Trius
(subsequently acquired by Cubist). CB-220,404-AB-4 and CB-241,957-
AD-2 came from Cubist Pharmaceuticals Inc., Lexington, MA. Simocy-
clinone D8 came from AdipoGen, San Diego, CA, and (R)-gyramide A
came from Glixx Laboratories, Southborough, MA. Pyrazinyl-alkynyl-
tetrahydroquinoline (PAT) was provided by AstraZeneca, Waltham, MA.

DNA gyrase supercoiling assay. DNA supercoiling assays were per-
formed with E. coli DNA gyrase and relaxed plasmid pUC19 in gyrase
reaction buffer at pH 7.5 containing 35 mM Tris-HCl, 24 mM KCl, 4 mM
MgCl2, 2 mM dithiothreitol (DTT), 1.75 mM ATP, 5 mM spermidine, 0.1
mg/ml of bovine serum albumin (BSA), and 6.5% glycerol, all from New
England BioLabs Inc., Ipswich, MA. The extent of supercoiling was
gauged by the intensity of the lowest DNA band as measured with a Gel
Doc EZ Imager (Bio-Rad, Hercules, CA). QnrB1 was purified from E. coli
BL21(DE3) pET28a:QnrB1 as previously described (16).
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Cross-streak assay. The assay was adapted from a pyocin typing tech-
nique (18). The producer strain E. coli RYC1000 pMM39 was streaked
diametrically across a glass petri dish containing Mueller-Hinton agar as a
band about 1 cm wide. After overnight incubation, bacterial growth was
removed with a glass slide, and 3 to 5 ml of CHCl3 was placed in the
inverted lid and covered with the bottom of the dish for 15 min to kill
residual organisms. CHCl3 in the lid was discarded, and the plate was
opened for a few minutes to allow residual vapor to escape. Cultures of test
organisms were then streaked at right angles to the original inoculum, and
the plate was reincubated overnight.

RESULTS
Synthetic GyrA subunit inhibitors. ABT-719 (Fig. 1) is a 2-pyri-
done inhibitor of bacterial DNA gyrase differing from a fluoro-
quinolone by placement of the nitrogen atom in the ring juncture

(19, 20). Ten micrograms of ABT-719 added to a 6-mm blank disk
produced an inhibitory zone of 13 mm on a lawn of E. coli J53 Azir

but a 6-mm (no inhibition) zone with J53 Azir pMG252, indicat-
ing that qnrA1 protects against ABT-719.

PD 0305970 is a quinazoline-2,4-dione (Fig. 1) that inhibits
bacterial DNA gyrase and topoisomerase IV. It shares structural
similarity with quinolones but remains effective against quinolo-
ne-resistant mutants of Streptococcus pneumoniae (21, 22). A
10-�g PD 0305970 disk produced an inhibitory zone of 29 mm on
J53 Azir but only 18 mm with J53 Azir pMG252, indicating that
qnrA1 also protects against PD0305970.

Pyrazinyl-alkynyl-tetrahydroquinoline (PAT) is a spiropy-
rimidinetrione (Fig. 1) that inhibits DNA gyrase and topoisomer-
ase IV and retains activity against quinolone-resistant mutants of
Staphylococcus aureus and S. pneumoniae (23). A 10-�g disk of
PAT produced a 28-mm zone of inhibition with EW1b �tolC and
a 24-mm zone with EW1b pMG253 containing the cloned qnrA1
gene. To confirm Qnr protection, the ability of purified QnrB1 to
reverse PAT inhibition of gyrase supercoiling was studied in vitro.
An 8 �M concentration of PAT inhibited gyrase activity by 78%,
and QnrB reversed this inhibition with a 50% inhibitory concen-
tration (IC50) of 14 nM (Fig. 2). Hence, Qnr also protects against
compounds with a PAT-like structure.

Synthetic GyrB subunit inhibitors. C3 and C4 are tricyclic
pyrimidoindole inhibitors of the GyrB and ParE subunits (24). In
E. coli J53 Azir or EW1b �tolC, QnrA, QnrB, or QnrS lacked a
protective effect (Table 2).

CB-220 and CB-241 are pyrazolopyridones that are also dual
inhibitors of GyrB and ParE (25). QnrA, QnrB, or QnrS did not
block their activity against E. coli with or without a tolC deletion
(Table 2).

Natural product GyrA inhibitors. Simocyclinone D8 is a chlo-
rinated aminocoumarin linked to an angucyclic polyketide via a

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristic(s) Reference or source

Escherichia coli strains
J53 Azir Plasmid recipient 46
BL21(DE3) Expression host Agilent Technologies
M15 pREP4 Expression host Qiagen
EW1b �tolC 47
RYC1000 pMM39 Microcin B17 producer 48

Plasmids
pMG252 qnrA1 1
pMG253 qnrA1 cloned 3
pMG298 qnrB1 27
pET28a:QnrB1 qnrB1 cloned, His6 tagged,

IPTG inducible
16

pQE-60-qnrB1 qnrB1 cloned, His6 tagged,
IPTG inducible

27

pMG306 qnrS1 49

FIG 1 Chemical structures.
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tetraene linker and a D-olivose sugar produced by Streptomyces
antibioticus. Despite its aminocoumarin moiety, it does not in-
hibit GyrB ATPase activity but rather binds to the GyrA subunit
near the QRDR, preventing DNA binding (14, 26). No inhibitory
activity was evident with a 25-�mol simocyclinone D8 disk on a
lawn of E. coli J53 Azir or EW1b, but in vitro, simocyclinone D8
was at least as potent as ciprofloxacin in inhibiting DNA gyrase
supercoiling. QnrB1 did not block simocyclinone D8 inhibition of
DNA gyrase, and QnrB1 at a high concentration (27) still inhib-
ited the enzyme in the presence of simocyclinone (Fig. 3).

Natural product GyrB inhibitors. Coumermycin A1 is an
aminocoumarin produced by a Streptomyces sp. Qnr had no pro-
tective effect (Table 2).

Novobiocin is another aminocoumarin produced by Strepto-
myces niveus. Qnr was not protective in whole cells (Table 2), just
as QnrB1 failed to block novobiocin inhibition of DNA gyrase in
vitro (16).

Gyramide A is an N-benzyl-3-sulfonamidopyrrolidine pro-
duced by an Streptomyces sp. It inhibits GyrB ATPase activity and
produces chromosome condensation halting DNA replication
and segregation (11). Qnr did not protect against gyramide A
inhibition (Table 2).

Microcin B17 is a plasmid encoded, peptide-derived antibiotic
containing oxazoles and thiazoles. It was tested by cross-streaking
a microcin B17 producer with test strains. Figure 4 shows that E.
coli producing microcin B17 is protected from its action, but E. coli
J53 Azir with qnrA, qnrB, or qnrS was just as susceptible as the

plasmid-free strain, and addition of IPTG to stimulate QnrB pro-
duction when the gene was cloned in an IPTG-inducible expres-
sion vector failed to disclose a protective effect.

DISCUSSION

Qnr protects against all fluoroquinolones tested (28, 29) and at a
lower level against nalidixic acid, technically a naphthyridone. Re-
duced susceptibility to these compounds maps to the QRDR of
GyrA, where in E. coli amino acid substitutions at specific residues
between amino acids 51 and 106 affect susceptibility. This is the
cleavage-ligation region of the enzyme where gyrase forms a co-
valent bond with DNA and quinolone intercalation into DNA
increases the concentration of cleavage complexes and facilitates
formation of lethal double-strand DNA breaks (30, 31). In Gram-
negative bacteria, the GyrB subunit and topoisomerase IV are
more resistant to quinolones than GyrA, but once GyrA becomes
less susceptible by mutation, mutations in GyrB at residues 426
and 447, in ParC at positions 78, 80, and 84, and in ParE at residue
445 can further reduce susceptibility (32). Qnr is a pentapeptide
repeat protein that dimerizes and folds into a rod-like molecule
with a size and surface charge similar to those of B-form DNA
(16). It competes with quinolone for gyrase in vitro (3) and in cells
lowers susceptibility to the level of a GyrA mutation, suggesting
that it may interact with GyrA as a DNA mimic in the QRDR
region or DNA gate. However, in a gel displacement assay (4, 5) or
bacterial two-hybrid system (33), Qnr binds to GyrB as well as to
GyrA and to both subunits of topoisomerase IV as well as to the

FIG 2 Protective effect of QnrB1 against gyrase inhibition by PAT. Lane 1, control reaction of relaxed pUC19 substrate and DNA gyrase. Lanes 2 to 12, DNA
substrate, gyrase, and 8 �M PAT with no QnrB1 (lane 2) or with QnrB1 at concentrations of 0.11 nM (lane 3), 0.21 nM (lane 4), 0.43 nM (lane 5), 0.86 nM (lane
6),1.7 nM (lane 7), 3.4 nM (lane 8), 6.9 nM (lane 9), 14 nM (lane 10), 27 nM (lane 11), and 55 nM (lane 12).

TABLE 2 MICs of test compounds with Qnr-containing strains

E. coli strain PMQRa

MIC (�g/ml)

Cipro
floxacin Coumermycin A1 Novobiocin Gyramide A

Cubist
CB-220

Cubist
CB-241 Trius C3 Trius C4

J53 0.016 8 2,048 �8 �10 �10 1.28 0.64
J53 pMG252 qnrA1 0.512 16 512 �8 �10 �10 1.28 0.64
J53 pMG298 qnrB1 aac(6=)Ib-cr 0.512 16 2,048 �8 �10 �10 0.64 0.64
J53 pMG306 qnrS1 2.048 16 512 �8 �10 �10 1.28 0.64
EW1b �tolC 0.004 4 1 1.024 0.32 0.16 0.008 0.04
EW1b pMG253 qnrA1 0.128 4 1 1.024 0.16 0.08 0.004 0.04
a PMQR, plasmid-mediated quinolone resistance.
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holoenzymes, suggesting that a broader range of potential inter-
actions is possible.

Table 3 summarizes information about the compounds tested
to date for interaction with Qnr. Those that Qnr fails to protect
against include coumermycin A1, novobiocin, and gyramide A,
which act at the ATPase site of GyrB or ParE. Resistance to the
aminocoumarin compounds in both E. coli (34) and S. aureus (35)
map in GyrB at sites distinct from those contributing to quinolone
resistance. Similarly, resistance to gyramide A, another competi-
tive inhibitor of GyrB ATPase activity, occurs at sites separate
from those for both quinolones and aminocoumarins. Qnr also
failed to protect against synthetic GyrB ATPase inhibitors, such as
pyrazolopyridone or tricyclic pyrimidoindoles compounds. Lack
of protection against the GyrB targeting microcin B17 is interest-
ing because organisms that produce this toxin protect themselves

in part by coproduction of McbG, a pentapeptide repeat protein
with antiquinolone activity (D. Hooper and J.-L. Yu, personal
communication) that blocks gyrase inhibition by the microcin.
Evidently the pentapeptide repeat Qnr proteins lack this microcin
protective effect.

Qnr does protect against the synthetic compounds shown in
Fig. 1, which have some structural similarity to a quinolone. De-
tailed structural analysis is available for the interaction of the di-
one PD 0305970 with a partially reconstructed topoisomerase IV
of Streptococcus pneumoniae (30) and a similar quinazoline dione
with topoisomerase IV of Bacillus anthracis (36). Quinolone and
dione form similar cleavage complexes at the DNA gate but differ
in their binding to neighboring amino acid residues, thus explain-
ing the lack of cross-resistance between the two inhibitors. Evi-
dently Qnr does not recognize such differences and blocks gyrase
inhibition by both agents. ABT-719 and PAT probably have bind-
ing sites sufficiently near the quinolone binding site so that Qnr
can block their action as well. The CcdB and ParE toxins of plas-
mid addiction systems have recently been shown to act without
inhibition by Qnr (37). The mechanism of CcdB toxicity has been
studied in greater detail than that of ParE (38, 39). CcdB binding
requires gyrase to be in an open confirmation. The toxin also
inhibits gyrase by stabilizing the cleavage complex but differs from
quinolones in the site of resistance mutations. Lack of protection
against simocyclinone D8 is intriguing because this agent binds to
the N-terminal domain of GyrA, like quinolones, with mutations
at such GyrA residues as 81, 83, 84, and 87 providing resistance to
both agents (14). Furthermore, simocyclinone blocks DNA bind-
ing such that if Qnr functions as a DNA mimic, competition be-
tween Qnr and simocylinone would be expected. Nevertheless,
none was seen. Not only did QnrB not prevent simocyclinone
inhibition of gyrase supercoiling, but also it failed to prevent gy-
rase inhibition seen with QnrB at high concentrations (27, 40).
Thus, no nonsynthetic agent has been found for which Qnr pro-
vides protection, although several potential candidates have not
been available for testing, including albicidin (41, 42), clerocidin
(43, 44), and cystobactamid (45).

Qnr reduces quinolone susceptibility but not to the CLSI-de-

FIG 3 Lack of protection by QnrB1 against gyrase inhibition by simocyclinone D8. Lane 1, control reaction of pUC19 substrate and DNA gyrase. Lanes 2 to 11,
DNA substrate, gyrase, and 0.5 �M simocyclinone D8 with no QnrB1 (lane 2) or with QnrB1 at concentrations of 13.5 nM (lane 3), 27 nM (lane 4), 55 nM (lane
5), 110 nM (lane 6), 220 nM (lane 7), 440 nM (lane 8), 880 nM (lane 9), 1.75 �M (lane 10), and 3.5 �M (lane 11).

FIG 4 Cross-streak test for microcin B17 inhibition. The producer strain
RYC1000 pMM39 was grown as a vertical band and removed, leaving microcin
B17 in the agar, which was cross-streaked at right angles with (from the top) E.
coli J53 Azir, J53 pMG298 (qnrB1), J53 pMG252 (qnrA1), J53 pMG306 (qnrS1),
M15 pREP4 pQE-60, M15 pREP4 pQE-60-qnrB1, and RYC1000 pMM39 and
reincubated. The Mueller-Hinton agar medium contained 100 �M IPTG to
maximize QnrB1 production from expression plasmid pQE-60-qnrB1.
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fined breakpoint. It does, however, facilitate the selection of more
quinolone-resistant mutants (1). Lack of protection by Qnr is thus
a desirable property for a new therapeutic agent, and the results of
this study suggest which compounds that target DNA gyrase are
likely to escape this effect.
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