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GS-5806 is a small-molecule inhibitor of human respiratory syncytial virus fusion protein-mediated viral entry. During viral
entry, the fusion protein undergoes major conformational changes, resulting in fusion of the viral envelope with the host cell
membrane. This process is reproduced in vitro using a purified, truncated respiratory syncytial virus (RSV) fusion protein. GS-
5806 blocked these conformational changes, suggesting a possible mechanism for antiviral activity.

Respiratory syncytial virus (RSV) is an enveloped, single-
stranded, negative-sense RNA virus that belongs to the Pneumo-

virinae subfamily of Paramyxoviridae (1). RSV infects the respira-
tory tract of infants, young children, and immunocompromised
adults, causing severe disease (2–11). GS-5806 is a small-molecule
inhibitor of RSV replication that is active against a diverse collec-
tion of RSV A and RSV B clinical isolates, with a mean 50% effec-
tive concentration (EC50) of 0.43 nM (12, 13). GS-5806 blocks
RSV fusion (F) protein-mediated cell-cell fusion, and mutations
that confer drug resistance map to the RSV F gene, suggesting
that the target of GS-5806 is the RSV F protein. Viral-cell mem-
brane coalescence mediated by paramyxovirus fusion proteins
involves several proteins, such as an attachment protein, cell
surface receptors, and other cellular components that trigger
conformational changes in the fusion protein that catalyze fu-
sion of the two membranes (14–16). In vitro, triggering of pre-
to postfusion conformational changes of RSV F proteins can be
achieved by lowering the ionic strength of the buffer or by
increasing the temperature (17–19). The conformational
changes expose the buried hydrophobic fusion peptides, which
interact with fusion peptides of neighboring molecules to form
rosette-like structures (see Fig. S2, top panel, in the supple-
mental material). These macromolecular structures are dis-
tinct and easily observed by electron microscopy (EM). The
conformational changes can also be triggered in the presence of
liposomes prepared in low-ionic-strength buffer. The RSV F
protein triggered in the presence of liposomes inserts into the
lipid bilayer presumably mediated by the fusion peptides. To
evaluate the effects of GS-5806 on the pre- to postfusion con-
formational changes of RSV F, we expressed the extracellular
domain of RSV F protein (�TM-RSV F) in HEK293 cells. The
protein was stored in high-ionic-strength buffer (500 mM
NaCl, 250 mM imidazole, 20 mM Tris, pH 8.0) to keep it in
pretriggered conformation. On exposure to low-ionic-strength
buffer (10 mM HEPES, pH 8.0) (see Fig. S1 in the supplemental
material), �TM-RSV F formed rosettes or inserted into lipo-
somes that were easily observable by EM (see Fig. S2, bottom
panel, in the supplemental material). These experiments were
used to measure the effect of GS-5806 on the conformational
changes of �TM-RSV F protein (18).

�TM-RSV F protein was triggered in the presence of GS-5806
(5-fold molar excess over protein), an inactive analog of GS-5806
(GSC-1), or 0.1% dimethyl sulfoxide (DMSO). The number of

rosettes observed in 6 to 8 random EM images was quantified by
visual inspection. The average number of rosettes per image in the
DMSO- (control), GSC-1-, and GS-5806-treated samples was
108, 106, and 23, respectively. The decrease in the number of ro-
settes formed in the presence of GS-5806 was significant com-
pared to that with the GSC-1-treated (P � 0.002) or DMSO-
treated (P � 0.002) samples (Fig. 1A). The inhibitory effect of
GS-5806 was dose dependent, with fewer rosettes observed with
increasing concentrations of GS-5806 (Fig. 1B).

An RSV F resistance variant that contains a threonine-to-ala-
nine amino acid change at position 400 of the RSV F protein was
selected in vitro (12). �TM-RSV F T400A protein purified in the
prefusion conformation was also triggered by low-ionic-strength
buffer in a manner similar to that in the wild-type protein, but this
process could not be inhibited by GS-5806. The numbers of ro-
settes formed in the presence of 0.1% DMSO (44 � 9) and GS-
5806 (46.6 � 8) were similar (Fig. 1C), consistent with the reduced
efficacy of GS-5806 observed in RSV variants expressing the
T400A protein.

The effect of GS-5806 on �TM-RSV F protein conformational
change was further evaluated by a liposome binding experiment.
In order to increase the chances of insertion into the lipid bilayer
and to avoid rosette formation, the liposome concentration was
kept high (�8 mM, 3,000-fold excess relative to RSV F). During
the triggering process, RSV F molecules inserted into a few lipo-
somes rather than partitioning evenly across all of the liposomes.
The number of liposomes containing �TM-RSV F protein mole-
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cules was quantified by inspection of seven randomly selected EM
images for each experiment. Very few �TM-RSV F-inserted lipo-
somes were observed in the GS-5806-treated sample compared to
those observed in the DMSO- or GSC-1-treated samples (Fig. 2A).
On average, 4% � 3% of �TM-RSV F-containing liposomes were
observed in the GS-5806-treated sample, whereas 13% � 4%
(DMSO) or 13% � 6% (GSC-1) of �TM-RSV F-containing lipo-
somes were observed in control samples. Interestingly, the average
number of �TM-RSV F molecules per liposome in the GS-5806-
treated sample was 7 � 3, versus 25 � 10 in the DMSO-treated or
GSC-1-treated samples. Similarly, the number of liposomes with
�TM-RSV F T400A molecules in GS-5806-treated samples was
8% � 3%, versus those in the DMSO-treated (14% � 3%) or
GSC-1-treated (16% � 2%) samples (Fig. 2B). Unlike �TM-RSV
F, the average numbers of �TM-RSV F T400A molecules depos-
ited per liposome (�30) were similar for all three treatments.
These observations are supported by liposome flotation experi-
ments (see Fig. S3 in the supplemental material). Rosette forma-
tion and liposome association experiments show that GS-5806
interferes with the pre- to posttriggered conformational changes
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FIG 1 (A) GS-5806 inhibits pre- to posttriggered conformational changes of RSV
F protein. Pre- to posttriggered conformational change was initiated by dialyzing
�TM-RSV F protein overnight at 4°C in low-ionic-strength buffer (10 mM
HEPES, pH 8.0) in the presence of a 5-fold molar excess of GS-5806, GSC-1 (an
inactive analog), or DMSO (�0.1%). The mean number of rosettes observed per
grid view for different samples was calculated from at least 6 randomly selected EM
images. The plot shows the mean values, with error bars representing the standard
deviation. (B) The formation of rosettes in GS-5806-containing samples decreased
in a dose-dependent manner. The mean number of rosettes observed per grid view
for different samples containing various concentrations of GS-5806 was calculated
from 6 to 10 randomly selected EM images and plotted as a function of GS-5806
concentration. The error bars represent the standard deviation of the mean values.
(C) The �TM-RSV F protein containing the T400A amino acid change is associ-
ated with reduced susceptibility to GS-5806. The effects of GS-5806 on �TM-RSV
F T400A protein rosette formation were evaluated. The mean number of rosettes
observed per grid view for different samples was calculated from 6 randomly se-
lected EM images. The plot shows the mean values, with error bars representing
the standard deviation.
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FIG 2 (A) GS-5806 inhibits the deposition of the �TM-RSV F protein into
liposomes. The �TM-RSV F protein conformational change was triggered
by mixing with liposomes prepared in low-ionic-strength buffer. The num-
ber of liposomes containing �TM-RSV F molecules in GS-5806-, GSC-1-,
or DMSO-treated samples was quantified from 7 randomly selected EM
images and represented in the plot as a percentage of the total liposomes in
the sample. The error bars represent the standard deviations of the mean
values. (B) GS-5806 does not affect the deposition of RSV F T400A protein
on liposomes. The number of liposomes containing �TM RSV F T400A
molecules in GS-5806-, GSC-1-, or DMSO-treated samples was quantified
from 7 randomly selected EM images and represented in the plot as a
percentage of the total liposomes in the sample. The error bars represent
the standard deviations of the mean values.
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of �TM-RSV F protein, similar to the conformational changes
inhibited by influenza virus entry inhibitor (19).

Several RSV entry inhibitors representing diverse chemical
classes (VP-14637, TMC-353121, and BMS-433771) have been
reported in the literature (20–23). In the presence of these inhib-
itors (5-fold molar excess over protein), the number of rosettes
formed was reduced by 2- to 5-fold compared to those with the
DMSO control (see Fig. S4 in the supplemental material). The
binding sites for two of these entry inhibitors, TMC-353121 and
BMS-433771, were identified by X-ray crystallography and chem-
ical cross-linking methods and found to be close to the six-helix
bundle of the RSV F protein (24, 25). However, GS-5806 did not
influence the formation of six-helix bundles when isolated pep-
tides were mixed in the presence of GS-5806 (see Fig. S5A in the
supplemental material). In addition, differential scanning calo-
rimetry, isothermal titration calorimetry, and circular dichroism
did not detect direct interaction of GS-5806 with isolated six-helix
bundles (see Fig. S5B in the supplemental material). These results
suggest that GS-5806 does not interact with the isolated six-helix
bundle the same as TMC-353121 or BMS-433771 compounds but
still interferes with the transition of the RSV F protein from the
pre- to posttriggered conformation to elicit that it is antiviral ac-
tivity.
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